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Epidemic proximity and imitation dynamics drive infodemic waves during the COVID-19 pandemic
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An infodemic—an outpouring of information, including misleading and also fake news—is accompanying
the current pandemic caused by SARS-CoV-2. In the absence of valid therapeutic approaches, behavioral
responses may seriously affect the social dynamics of contagion, so the infodemic may cause confusion and
disorientation in the public, leading to possible individually and socially harmful choices. This new phenomenon
requires specific modeling efforts to better understand the complex intertwining of the epidemic and infodemic
components of a pandemic crisis, with a view to building an integrative public health approach. We propose
three models, from epidemiology to game theory, as potential candidates for the onset of the infodemics and
statistically assess their accuracy in reproducing real infodemic waves observed in a data set of 390 million
tweets collected worldwide. Our results show that evolutionary game-theory models are the most suitable ones
to reproduce the observed infodemic modulations around the onset of the local epidemic wave. Furthermore,
we find that the number of confirmed COVID-19 reported cases in each country and worldwide are driving the
modeling dynamics with opposite effects.
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I. INTRODUCTION

In the past two decades, the periodic appearance of highly
infectious, severe respiratory syndromes with pandemic po-
tential caused by viral agents of the coronavirus family
(SARS-CoV-1 in 2003, MERS-CoV in 2012), for which no
reliable therapeutic approach was available at the time, has
brought the issue of the social containment of epidemics to
the attention of both decision makers and the general public.
As a response to the previous crises, several mathematical
models have been developed to make reliable predictions on
the time evolution of an epidemic and at shedding light on
key aspects of its drift and shift dynamics [1] as a basis for
the design and evaluation of appropriate management and
mitigation strategies [2–4].

These developments have proven their importance in the
extreme case of the pandemic diffusion of the new virus
SARS-CoV-2, that is causing a previously unknown severe
acute respiratory syndrome [5], which between early Jan-
uary 2020 and August 2021 has led to a global figure of
216 900 000 confirmed cases and more than 5 500 000 deaths
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[6]. In the absence of pharmaceutical treatments such as
drugs and vaccines, nonpharmaceutical interventions have
been evaluated to control the contagion spreading. Mathe-
matical models allow for nowcasting epidemic dynamics (see
Ref. [7] and references therein) and to better understand the
role of human behavior to flatten the curve and prepare to face
potential future epidemic waves [8,9].

However, one of the most important differences between
the current COVID-19 pandemic crisis and SARS-CoV-1 or
MERS-CoV is the huge evolution of digital media, driven
by the rapid growth and diffusion of social media platforms.
The management of a pandemic crisis has to cope with the
complexity of the current informational ecosystem [10,11]
that tightly interacts and co-evolves with the epidemic one.
According to a report of the World Health Organization
published in early February 2020 [12], the SARS-CoV-2 epi-
demic outbreak and response has been accompanied by a
phenomenal outpouring of information of all kinds from a
multiplicity of sources with various degrees of reliability. This
massive phenomenon is named infodemic and is characterized
not just by the possibility of spreading misleading or false
information, denoted as misinformation or disinformation,
but by the very fact that the volume of available informa-
tion puts both the general public and decision makers under
considerable stress, possibly leading to wrong decisions and
harmful choices. Infodemics proved to be a potential treat
for public health strategies almost two decades ago [13,14],
but only more recently started to pose a large-scale public
health issue [15,16] and only recently studied in more detail
[17,18].
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Originally defined as an epidemic of misinformation, an
infodemic is different from an epidemic in several aspects.
Information travels way faster and through very different
channels than pathogens, and the resulting informational
flows cause emergent phenomena, often as an unintended
consequence of human behavioral reactions and cognitive
biases. Whereas the spreading of pathogens is an essentially
local process that needs a sequence of local contacts to travel
to distant geographic areas (mis- and dis-)information can
travel anywhere almost instantly, without necessarily relying
upon a chain of physical contacts. It is also worth not-
ing that digital media have experimented a rapid evolution
recently and that the understanding of how and why mis-
leading information spreads is currently being investigated
by the scientific community [19,20]. Furthermore, social me-
dia can actively promote dissemination of misleading though
sensational news with the the aim of making profits [21].
This makes infodemics nonlocal dynamical processes which
are more difficult to monitor and control than epidemic
outbreaks.

Nevertheless, infodemics and epidemics are inevitably
entangled processes. Whereas several studies analyze the
spreading of diseases, keeping into account human infor-
mation processing of the observed levels of contagion and
the ensuing behavioral responses [22,23] or human mobility
patterns (see Refs. [24–26] and references therein), efforts
to mathematically model human behavioral responses to
epidemic-related risk perception and awareness have been less
frequent [27,28].

The literature provides evidence that—under conditions
of information deluge such as those related to the current
COVID-19 pandemic—collective attention in sociotechnical
systems can be driven by a mechanism of preferential atten-
tion toward specific information spreaders [29]. On the other
hand, there is increasing evidence that the global intercon-
nectivity and ease of communication enabled by the current
global information ecosystem allows for an unprecedented
flow of digital data which, at variance with a few years ago,
facilitates the massive diffusion of misinformation [21,30], as
well as online social manipulation by means of smart deploy-
ment of automated bots [31,32]. Moreover, it must also be
considered that in the case of COVID-19, there are additional
factors that might yield factual misperceptions for people,
such as, during the early days of the pandemic, the lack of
completely reliable medical information about a new disease,
the quest for new pharmaceutical treatments, and the decision
makers that are informed by models based on incomplete and
uncertain information. These factors certainly pose serious
challenges to policy-making for mitigation strategies [33,34].

In this paper, we study the impact of external time-varying
processes, such as the epidemic one, on misinformation dy-
namics. This paper should be regarded as a step toward
understanding the mechanisms that drive infodemic dynam-
ics, which is here considered as a dimension that, together
with epidemics, shape part of the complex phenomenon of a
pandemic.

We focus on a specific time interval, that is, the period
around the onset of the local epidemic outbreak when, we
hypothesize, external dynamics could be most effective. We
compare three models to assess their capacity to reproduce

the empirical infodemic modulation around the inception of a
local epidemic.

We first consider as a benchmark a compartmental model,
inspired by epidemic processes, which is widely adopted to
reproduce the spreading of misinformation and which does
not depend on exogenous dynamics. We subsequently move
to evolutionary game theoretic models driven by imitation
where exogenous epidemics dynamics affect infodemic by
modulating an individual’s perceived epidemic risk and re-
lated perceived benefit of spreading misinformation.

According to our findings, in the days around the onset
of the local epidemic outbreak, misinformation diffusion is
not properly reproduced by a simple epidemic-inspired model.
We find that the best fit is provided by the evolutionary models
as a function of epidemic risk awareness, where the latter
depends on the geographical proximity to the infection out-
breaks.

II. MATERIALS AND METHODS

A. Data overview

To track and then model the amount of misinformation
associated to the COVID-19 pandemic circulating in differ-
ent countries, we use a large database of tweets collected
in the Covid19 Infodemics Observatory, described in detail
in Ref. [17] and accessible at [35]. Starting from late Jan-
uary 2020, we automatically collected, for 249 countries from
the Twitter Filter API, messages containing terms associated
with the COVID-19 pandemic from a medical perspec-
tive (namely, coronavirus, ncov, Wuhan, covid19, covid-19,
sarscov2, covid). These terms have an estimated recall of 40%
of all tweets associated with the coronavirus in the period
considered, as discussed in Ref. [17] together with a broad
discussion of the biases inherent with social data gathering.
Other keywords emerged in time to describe other subjects
related to online discourse around the social or economical
consequences of the pandemic (e.g., stay at home, wear a
mask, lockdown...). Topics evolve in time and tracking them
progressively might introduce biases similar, or even stronger,
than those inherent with a limited keyword selection. All bi-
ases associated with the data collection are discussed in detail
in the Method section of Ref. [17].

The Twitter Filter API has provided us the totality of tweets
associated with these words up until February 25, 2020, when
the fraction of tweets included in our filter passed 1% of the
total, hitting the limit set by Twitter for basic accounts. The
total amount of collected tweets up to August 10, 2020 is
more than 390 000 000. To associate tweets with countries, we
use both information about the user location and information
about the tweet’s language included in the information pro-
vided by the Twitter API. The user’s country has been inferred
using the precise coordinates when available for less than
1% of users or, alternatively, the textual user’s auto-declared
location field that has been successfully used for geocoding
with the ArcGIS API for about 50% of users. To ensure that
the data were correctly matched, we further selected only
messages written in one of the official local languages of
the identified country as listed in Ref. [36]. To evaluate the
amount of unreliable news circulating every day in each coun-
try, we first selected all tweets associated with that country

013158-2



EPIDEMIC PROXIMITY AND IMITATION DYNAMICS … PHYSICAL REVIEW RESEARCH 4, 013158 (2022)

containing a URL, and then checked whether the associated
web domain found a match with a database we created by
integrating multiple publicly available databases of manually
checked web domains (see Ref. [17] for more details). This
database allowed us to classify news in one of seven cate-
gories: science, mainstream media, satire, clickbait, political,
fake/hoax, and conspiracy/junk science, plus two types of
unclassified news (unknown, when not in the database, or
shadow, when the link is compressed by nonvanity URL
shorteners). News belonging to science and mainstream media
have been considered as reliable, whereas news categorized
as satire, clickbait, political, fake/hoax, or conspiracy/junk
science have been considered unreliable. We remark that it
need not be the case that a piece of news belonging to an
unreliable domain is necessarily fake; however, it has a higher
likelihood of carrying, in the best case, biased content that has
to be read and reshared with particular caution.

In our analysis, we aim to model, at a national scale, the
infodemic dynamics at the beginning of the local COVID-19
epidemic outbreak. Therefore, we focus upon a time period
of 25 days around the onset of the local epidemic. In partic-
ular, we set the beginning of local COVID-19 epidemics, in
each country, as the date (day0) at which the first infected
individual was detected. Then we select a time window of
(day0 − 15, day0 + 10) days to perform our analysis. We
select a subsample of the 249 countries by considering coun-
tries with non-null epidemic data and an average unreliable
tweet rate in local language greater than 30 tweets/day in the
selected 25-days time window. After the application of this
filter, we finally obtain a subset of 37 countries, with a total
of more than 3 800 000 tweets, on which we carry out our
analysis. We aggregate tweets in daily intervals indicated by
t , from which we evaluate nU (t ) = NU (t )/N (t ) as the fraction
of unreliable tweets with respect to the total (unreliable and
reliable) messages, N (t ). Likewise, we evaluate the fraction
of reliable messages as nR(t ) = NR(t )/N (t ).

Regarding the epidemic data, daily epidemic data were
collected from the Our World in Data project by the University
of Oxford [6]. In our analysis, we use both the epidemic data
reported for a specific country nI (t ) and the global number of
confirmed cases, nW

I (t ), that was computed as the sum of daily
epidemic curves collected across 249 countries.

Both the epidemic and infodemic data have known lim-
itations. Official epidemic data, such as those collected and
aggregated by Our World in Data [6], are often reported with
a systematic delay with respect to the date of collection and
testing of the samples [37]. Also, the use of automatically
collected user-generated content for the study of social phe-
nomena presents a number of known limitations and biases
[38]. In our case, the most prominent is a demographic bias
toward well-educated males (characteristic of Twitter users),
exacerbated by a further bias toward English-speaking users
as a consequence of the terms used to filter COVID-19-related
messages and of the databases used to evaluate news reliabil-
ity (see Materials and Methods for further details). Moreover,
other demographic attributes such as race, socioeconomic
status, and Internet literacy correlate with how likely people
use a social platform [38]. Despite these limitations, the time
series used here successfully capture, for a specific country,
the time evolution of the amount of COVID-19 cases and

misinformation contained in tweets [17], and can be used to
study the dynamic coupling between these two phenomena.

B. Infodemic models

To model infodemic waves, we focus our attention on mod-
els inspired by both epidemiology and evolutionary biology
that are widely used in literature to capture different types
of social dynamics in well-mixed populations, as driven by
the underlying incentive system. Evolutionary game-theoretic
models are able to take into account how individual strate-
gies change and are driven by simple behavioral mechanisms.
Here, we assume that, for each individual, the action of
sharing (or not) a news item, which is a possible source of
misinformation, reflects a decision-making process influenced
by the epidemic risk perception of the individual. Local and
global epidemic waves are considered as drivers of the on-
going infodemic process, in that they generate the payoff
structure associated to different strategies and therefore the
underlying incentive system. Since we are primarily interested
in the analysis of the infodemic dynamics, we do not model
explicitly the epidemic one and, instead, use the epidemic data
as exogenous drivers.

We consider three models for modeling the diffusion of the
infodemic. First, we consider an epidemics-inspired model,
considering a classical susceptible-infected-susceptible (SIS)
model [25], which has been widely applied to capture
the simple dynamics of adoption in sociotechnical systems
and, in particular, to model the spreading of misinforma-
tion [39]. Here, individuals either belong to the class of
ignorants/stiflers (people who do not spread a piece of mis-
information) or to the class of spreaders (people who share
messages with unreliable content), and their role is exactly
the same as the susceptible versus infected agents of the
SIS model. It is worth noting that here we assume a two-
compartments model and that people who are sharing reliable
news belong to the same class, without fine-grained dis-
tinctions between ignorants and stiflers. We assume that the
fraction of unreliable messages at time t equals the fraction of
spreaders and, according to epidemiclike models, the transi-
tion between the two classes is a function of the spreading rate
rRU and of the awareness rate rUR. Such rates are estimated
for each country with an optimization algorithm (see Opti-
mization algorithm section). Then, the dynamical evolution at
a single-day time step of the fraction of unrealiable news is
given by the differential equation,

dnU (t )

dt
= −rUR · nU (t ) + rRU · nU (t ) · nR(t ), (1)

where, for each day t it holds:

nR(t ) + nU (t ) = 1. (2)

We solve the equation using a first-order numerical procedure.
The second model we consider as a candidate to describe

the interplay between infodemics and epidemics comes from
evolutionary game theory, the so-called double infection (DI)
model [40,41]. Here, individual behavior plays an important
role in the process of misinformation spreading. We assume
that an individual can adopt two different strategies: share
unreliable tweets (strategy U ) or share reliable ones (strategy
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R). The fraction of reliable versus unreliable news at time
t equals, respectively, the fraction of individuals that adopt
strategy R and U . The strategy-specific transmission rates
are proportional to the perceived payoff that derives from
strategy switching, as is typical of evolutionary models. In
particular, we assume that the payoff of switching R → U is
proportional to the worldwide epidemic level nW

I (t ), whereas
the payoff of switching U → R is proportional to the local
epidemic level nI (t ). The time evolution of the fraction of
unreliable news is then given by

dnU (t )

dt
= −kUR(t ) · nU (t ) · nR(t ) + kRU (t ) · nU (t ) · nR(t ),

(3)

where nR(t ) + nU (t ) = 1, kRU (t ) = rRU · nW
I (t ) is the payoff

from the switching R → U , whereas kUR(t ) = rUR · nI (t ) is
the payoff from the switching U → R. nW

I (t ) and nI (t ) are, re-
spectively, the global and local epidemic levels. Hence, Eq. (3)
reduces to

dnU (t )

dt
= nU (t )[1 − nU (t )][kRU (t ) − kUR(t )]. (4)

It is worth noting that the last expression is the standard repli-
cator equation used in evolutionary game dynamics to model
evolution and Darwinian selection of population phenotypes,
which has been extensively applied in several disciplines
[42–44]. The replicator equation allows us to simply capture
the trade-off between two processes operating simultaneously,
that is, the imitation dynamics and the optimization of the
perceived benefit.

The third model we test to capture the observed infodemic
waves is again based on evolutionary game theory, but now
also taking into account bounded rationality (BR) effects,
which have been extensively studied in decision theory from
different points of view [45–47]. An underlying assumption in
the DI model is that individuals are perfect rational optimizers,
whereas the BR model includes a stochastic component in the
decision to share reliable or unreliable news. In this context, a
BR model accounts for differences in individual attitudes that
can be mapped to a heterogeneous risk perception.

Here, we model BR in terms of the deviation from a
purely rational decision behavior by means of a Fermi func-
tion P(c, z) = (1 + e−cz )−1, where P(c, z) is the probability
of event z, and c indicates how strongly an individual is
responsive to the payoff difference. The time evolution of the
fraction of unreliable news is then given by

dnU (t )

dt
= nU (t )[1 − nU (t )]{P[c, kRU (t )] − P[c, kUR(t )]},

(5)

The effect of BR is to smooth the response function. Thus, the
higher the parameter c, the smoother the response. Like all the
other parameters of our models, c is estimated separately for
each country.

C. Optimization algorithm

The set of model parameters θ are estimated, for each
country and for each model, by finding the minimum of the

root mean square error (RMSE) function

RMSE =
√

1

n
RSS =

√√√√1

n

n∑
t=1

[Ot − Et (θ )]2, (6)

where Ot is the observed data (nU , fraction of unreliable news)
at time t , Et (θ ) is the expected value at time t (depending on
the model parametrized by θ ), n is the number of observations,
and RSS is the residual sum of squares:

RSS =
n∑

t=1

[Ot − Et (θ )]2. (7)

To find the global minima, we use a differential evolution
algorithm [48]. For the DI and SIS models, we estimate three
parameters, namely, nU0 , which is the amount of unreliable
news at t = 0, the spreading rate rRU , the awareness rate rUR.
For the BR model, we also estimate c as an additional model
parameter.

D. Model selection

To evaluate the relative prediction performances of the
three models, we compute a normalized RMSE, ε, defined
as the ratio between the RMSE and the standard deviation of
infodemic data:

ε = RMSE

σdata
. (8)

In fact, if ε is equal or smaller than one (or, in other words,
if RMSE � σdata), the prediction at time t is within the data
statistical uncertainty σdata.

A popular method to compare multiple models is the
Akaike information criterion (AIC) [49,50]. AIC measures the
Kullback-Leibler discrepancy between the model that gener-
ates data and the tested model and can be interpreted as the
probability that a tested model is the best candidate given
the data. It is possible to compute AIC using the estimated
residuals if they are independent and normally distributed. To
test the applicability of AIC to linear regression models, we
plot the residual distributions for SIS, DI and BR models.
Figure 1 shows the theoretical normal quantiles against the
actual quantiles of residuals. Even though the SIS residuals
show a more skewed distribution, for all models we obtain
distributions that follow the normal theoretical ones.

We compute the raw corrected AIC that has to be preferred
to raw AIC when the sample size is small (i.e., the value of
the ratio n/p is less than 40) [50,51],

AIC = n log10

(
RSS

n

)
+ 2p

(
n

n − p − 1

)
, (9)

where p is the number of parameters. Then, for each country,
we evaluate the best model with AIC, by computing weights
in the following way:

(1) For each model i, we compute the differences be-
tween the raw corrected AIC and the AIC of the best model,
�i(AIC) = AICi − min(AIC).

(2) Then we estimate the relative likelihood of a model as

Li = exp

[
−�i(AIC)

2

]
. (10)
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FIG. 1. Quantiles of the normal distribution against the quantiles of residuals for SIS (left panel), double imitation (middle), and bounded
rationality (right) models.

(3) Finally, we normalize the relative likelihood and we
obtain the Akaike weights:

wi(AIC) = exp
[−�i (AIC)

2

]
∑K

k=1 exp
[−�k (AIC)

2

] . (11)

We also compute the overall AIC for the three models,
where

Overall − AIC =
N∑

j=1

[
n log10

(
(RMSE j )

2
)]

+2pN

(
nN

nN − pN − N

)
(12)

and N is the number of considered data sets (countries).

III. RESULTS

A. Modeling infodemic waves

We numerically integrate the dynamical Eqs. (1), (3), and
(5), with a single-day time step and report the results in Fig. 2,

FIG. 2. Modeling dynamics in a sample country. SIS, double
infection (DI), and bounded rationality (BR) dynamics are plotted as,
respectively, orange, blue, and green lines. The local epidemic level,
as cumulative number of reported cases, is represented by a grey
dashed line. The empirical fraction of unreliable tweets with respect
to the total tweets is represented by grey line. Empirical quantities
are normalized in [0,1]. The country here considered is India.

along with the real infodemic and epidemic data. We can
appreciate how the models studied fit misinformation waves:
evolutionary models (blue and green line for, respectively, DI
and BR models) are able to capture the ascending and de-
scending trends that characterize infodemic waves around the
onset of epidemic outbreak, whereas the SIS model (orange
line) fails.

We next evaluate to which extent our models are good at
fitting infodemic data. We display in Fig. 3(a) the absolute
quality of the fits in terms of normalized RMSE, ε, that, as
anticipated, is the ratio between the RMSE and the standard
deviation of the data. For all tested countries, at least one
of the tested models shows ε < 1, indicating that modeling
dynamics is within statistical uncertainty and, therefore, the
performance of our model can be considered satisfactory.
Furthermore, Fig. 3(a) shows that model performance may
vary across countries, with dynamics that are usually best
explained with a DI model. To compare model performances,
we compute for each country the AIC weights (see Materials
and Methods section) and report our results in Fig. 3(b). AIC
analysis shows that the choice of the best model strongly
depends upon the actual country being tested. In particular, the
DI model is the best candidate to explain infodemic data for
most of the countries and the BR model is instead penalized
with respect to other models since, even if it presents com-
parable or even lower residuals, it requires the estimation of
one more parameters with respect to the others. Finally, the
SIS model is the best candidate model only for 4 out of 37
considered countries.

To summarize and test the significance of the measures of
model performance across the whole data set, we show in
Fig. 4 the distributions of the normalized RMSE and AIC
weights, whose quartile values are reported respectively in
Figs. 4(a) and 4(b). Quartile values of ε obtained for the SIS
model are significantly higher than the ones obtained for the
DI and BR ones (two-sided Mann-Whitney U test with Bon-
ferroni correction [52,53]) and medians of those distributions
are lower than one (median values are 1.7, 0.94, and 0.89
for the SIS, DI, and BR models, respectively). Figure 4(b)
shows that the distributions of AIC weights for the DI and
BR models are comparable, whereas the SIS model has the
lowest results. To gather conclusive evidence about the best
model among the three tested ones, we estimate the overall
AIC, which is a way to calculate AIC weights for multiple
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(a) (b)

FIG. 3. Model performances across the 37 tested countries. Orange, blue, and green bars refer, respectively, to SIS, double infection, and
bounded rationality models. Country names from the list of the current officially assigned ISO 3166-1 alpha-3 codes. (a) Normalized RMSE,
ε. Dotted black lines mark statistical uncertainty, that is, models with ε < 1 are considered to be effective as to the data description (b) AIC
weights. For a fixed country, that measure is interpreted as the probability that a model is the best candidate, among the tested ones, to explain
infodemic data.

data sets [Fig. 4(c), see Materials and Methods]. We find that
the DI model is the best candidate and that it overall performs
better than the others in modeling infodemic waves. We also
evaluate the performance of the proposed models against a
fourth simple model, that is, a constant function nU (t ) = C,
where parameter C is estimated for each country by finding
the minimum RMSE function. Results are reported in the Sup-
plemental Material [54] and show that, even if distributions
of AIC are comparable for C, DI and BR models, thanks to

the fact that constant predictor model uses only one parameter
for describing infodemics (see Fig. S1B), nevertheless game
theoretic models perform better than a simple constant model
in terms of normalized RMSE (see Fig. S1A) and are able
to capture the dynamics characteristic of infodemic processes
where the constant model fails (Fig. S2). Those results sug-
gest the importance of investigating infodemic processes with
models that are able to capture their time dependence on other
external dynamics.

(a) (b) (c)

FIG. 4. Distributions and significance tests of model performances. Orange, blue, and green bars refer, respectively, to SIS, double infection
(DI), and bounded rationality models. Box plots show the three quartile values of the distributions along with extreme values, bars extend the
analysis to points that lie within a 1.5 interquartile range. (a) Normalized RMSE (Mann-Whitney with multiple comparisons test, ns: p > 0.05,
****: p < 10−4). Results show that the SIS model presents a significantly higher normalized RMSE with respect to DI and BR models, while
no significant difference in performance can be found between DI and BR models. (b) Distributions of AIC weights show that the DI has the
highest probability to be the best model. (c) Overall AIC weights. This measure is needed when evaluating AIC weights in multiple data sets
and shows that the DI model can be selected as the best option among the tested models.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 5. Out-of-sample validation. (a)–(c) Spreading rate rRU values estimated for, respectively, SIS, double infection, and bounded
rationality models. Box plots show the three quartile values of the distributions. Red lines are medians of distributions. Logarithmic scale.
(d)–(f) Awareness rate rUR values estimated for, respectively, SIS, SIS, and BR models. Formats as in (a).(g) Distributions of normalized
RMSE for leave-one-out validation (Mann-Whitney with multiple comparisons test, see Materials and Methods), ****: p < 10−4). Orange,
blue, and green bars refer, respectively, to SIS, DI, and BR models. Results show that DI and BR models have the lowest normalized RMSE
when they are applied to out-of-sample prediction, whereas the SIS model presents significantly higher errors. (h) Distributions of AIC weights
for leave-one-out validation. Results suggest that, among the tested models, game theoretic ones are the best candidates for out-of-sample
prediction.

B. Out-of-sample validation

We validate our models by analyzing how they could be
generalized to out-of-sample data. We adopt a leave-one-out
validation as follows: for each country in our data set and
for each tested model, we simulate the dynamics by using as
model parameters the median values of the rates rRU and rUR

computed from the distributions of the remaining data set. In
Fig. 5, we investigate the range of values of the parameters
estimated for each model. In particular we focus our attention
on the spreading rate rRU [Fig. 5(a)] and on the awareness rate
rUR [Fig. 5(b)], since they vary across models and countries.
Quartile box plots show that values for the SIS model appear
to be less concentrated around the median. This means that
the reliability of rRU and rUR estimated for the DI and BR
models is higher with respect to the SIS model, and that evolu-
tionary models could be the best candidates for the prediction
of infodemic dynamics of an out-of-sample country. To test
our hypothesis, we use the leave-one-out validation described
above and we find that the normalized RMSE [Fig. 5(g)]

obtained from the SIS model is significantly higher than for DI
(p < 10−4) and BR (p < 10−4). Those results are confirmed
by the AIC analysis [Fig. 5(h)]: AIC weights for the SIS
model are close to zero, whereas AIC weights related to DI
and BR are comparable. Results suggest that game theoretic
models are the best candidates among the tested models to
predict out-of-sample data.

IV. CONCLUSION

Modeling infodemic waves which spread through online
social media during an ongoing epidemic is challenging, and
here we provide an exploration of this issue.

To tackle this challenge, we collect more than 390 millions
messages posted worldwide to Twitter, a popular microblog-
ging platform, to analyze the infodemic dynamic associated to
SARS-CoV-2 epidemic outbreaks across 249 countries.

We first consider as a benchmark a well-known epidemi-
ological model, widely adopted to model social phenomena
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such as the spreading of rumors, that does not take into
account time-varying processes as drivers of infodemic dy-
namics. To investigate the role of epidemic drivers, we also
consider two additional models derived from evolutionary
game theory, widely adopted to model population dynamics
in ecological and competitive systems, that present increasing
levels of modeling detail of the behavioral processes of agents:
the first one based on a simple imitation dynamics, and the
second explicitly accounting for a form of limited rationality.

We project social media data over two categories of
information: reliable and unreliable news, according to inde-
pendent expert classification of the majority of their sources.
We assume that an individual’s choice to share (or not) one
piece of content is binary as well, assuming that such a choice
is guided by two strategies driven by exogenous events, mod-
ulating the payoffs related to different options. This small set
of assumptions allow us to integrate in our model the effects
of individual behavior at the expense of the description of spe-
cific classes of agents, such as ignorants or stiflers, which are
usually studied separately in epidemic-like models but whose
differential activity cannot be reproduced from the available
data.

Interestingly, we find that the infodemic dynamics in the
early phase of the epidemic can be successfully described
by a DI model borrowed by evolutionary game theory. Its
reduced number of parameters avoids the overfitting issue that
is characteristic of the BR model, and provides more accurate
results than a classic epidemic SIS model, especially when
implemented out of sample. This result implies in particular
that, for the modeling of the infodemic dynamics, the extra
level of behavioral detail provided by the BR model is not
worth the extra informational cost that it entails and that,
therefore, a more parsimonious evolutionary model works
better here. This is a useful insight, also with a view to the
future development of more sophisticated infodemic models.

Another important source of insight comes from the
global-local tension that drives the social dynamics of
the infodemic. According to our findings, the spreading of
the epidemic has opposite effects on infodemic waves depend-
ing on the geographical proximity to the infection outbreaks
and on their incidence. If a country does not report cases of
SARS-CoV-2, the local fraction of messages from potentially
unreliable sources is proportional to the epidemic increase

registered worldwide. Conversely, when the pandemic wave
hits a country, individual risk perception undergoes an abrupt
change and the fraction of unreliable sources shared decreases
proportionally to the level of the local epidemic. Similar so-
cial dynamics are well-known in evolutionary game models
of the emergence of cooperation [55]. Recent studies have
also explicitly linked the emergence of cooperation within a
population to the epidemic level of a disease [56].

It is worth stressing here that our results refer to a time
window around the onset of the local epidemic outbreak.
However, further studies are needed to analyze the complex
unfolding of infodemic processes for longer time periods or
characterized by different interplays with epidemic processes
unfolding at different scales.

Our results can be considered as a step toward the com-
prehension of the dynamic coevolution between epidemic and
infodemic processes that represents the necessary baseline to
design and test integrated epidemic/infodemic public health
interventions during pandemic crises. We obtain some insights
into some macro-level mechanisms that could drive infodemic
dynamics that are worth further attention.

From an evolutionary game-theoretic perspective, the
spreading of unreliable content may be considered as anti-
social behavior. However, we find that such behavior can be
driven by nonlocal forces and can therefore fail to reflect
local social conditions, as happens, e.g., when the disease is
spreading worldwide but not locally. This is radically different
from what it is usually assumed in canonical epidemiological
models, where the spreading of a piece of (mis)information
fades away and spontaneously decays whenever individuals
lose their interest in disseminating it. Our results suggest,
instead, that such forms of antisocial behavior have their own
characteristic dynamics, driven by perceived payoff, and that
other external forces influencing an individual’s perceived
benefit have to come into play to actively mitigate it.
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