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Abstract

In this paper we review and extend the stochastic LCOE portfolio theory, a mean-

risk analysis of electricity generation investment portfolios, focusing on the distinction

between risk and deviation risk measures in terms of risk distribution shaping. Using

standard and more advanced stochastic optimization risk measures, we derive optimal

portfolios in the case of fossil fuels only, and in the case which includes the nuclear asset,

interpreted as a risk free asset useful to hedge and reduce LCOE dispersion around its

mean, in a US market case study. Four CO2 price volatility scenarios are used to

illustrate how the theory handles the impact of indirect correlation among different fuel

technologies induced by CO2 costs on the determination of optimal portfolios.

1 Introduction

Mean-risk modern portfolio theory has been applied for the last ten years to the planning

problem of the optimal choice of electricity generation investment portfolios. This line of

research begun with a seminal paper by Awerbuch and Berger [1] in which a mean-variance

approach was used for energy portfolios, i.e. portfolios invested in energy production tech-

nologies. In this way, that risk management and optimization approach was introduced in

this research field. In a refinement of this work the optimal choice of electricity generation

portfolios was again explored within a mean-variance approach but now using Net Present

Value (NPV), a deterministic quantity that projects expected future costs and revenues

back to the evaluation time. Specifically, in Roques et al. [2] and Roques et al. [3] NPV

was turned stochastic by making costs and revenues stochastic. All distributions used there

were gaussian, and Monte Carlo simulation techniques were used in order to determine the

probability distributions of the stochastic NPV.

Another approach, in competition with NPV, is based on using LCOE (Levelized

Cost Of Electricity), usually a deterministic quantity. The deterministic LCOE is affine to

the deterministic NPV, because the LCOE is that generation cost projected back to the

evaluation time that makes NPV equal to zero (see Mari [4] for a discussion, and references

therein). Moreover, as it will be shown in this paper, in the deterministic case the portfolio
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which maximizes the NPV per MWh minimizes LCOE. Yet, a deterministic, typical LCOE

theory doesn’t include risk. In analogy to the stochastic NPV approach, the LCOE was

turned stochastic in Mari [5], where a mean-variance LCOE theory for generation portfolios

selection was developed. Differently from the NPV case, the approach developed by Mari [5]

is based on risk management of generation costs, and does not include the risk of revenues,

which is the risk associated with uncertain electricity market prices. The reason of this choice

was that present generation costs and risks are expected to impact on future electricity prices

through technology evolution and demand/supply interplay, so that a future dependence

between electricity prices and generation cost risks is very difficult to assess and disentangle

from current data in a model developed in the present. A risk analysis solely based on costs

and not including revenues seems therefore a much more firmly grounded choice than that

of using both revenues and costs.

Because it was pointed out that financial risk in the electric energy sector is mainly due

to the high volatility of fossil fuels and CO2 prices, which evolve in time in an unpredictable

way (Garćıa-Martos et al. [6]), in Mari [5] and in this paper three sources of financial risks

are taken into account, namely the stochastic dynamics of coal and gas market prices and the

stochastic dynamics of CO2 prices. The main tenet of the stochastic LCOE theory is that

the joint effect of fossil fuel prices volatility and the CO2 price volatility can induce rational

electricity producers to diversify their baseload generation portfolios in order to minimize

the impact of such factors on the cost risk of electricity production, and this is shown

by numerically solving a portfolio optimization problem. It can be anticipated here that

the risk-reducing diversification is not trivial because the portfolio two main components,

i.e. the gas and coal technologies, are coupled through the CO2 price process. Moreover,

nuclear technology, i.e. a CO2 free asset which is not risky from a CO2 point of view, can be

introduced in the generation mix as a further, risk free asset, in order to even more mitigate

costs risk, with the positive side-effect of reducing the fossil fuel component, i.e. the carbon

emitting component.

The discussion in the paper will take advantage from the use of a recently introduced

risk measure, easy to compute by linear stochastic optimization. In fact, in general, stochas-
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tic LCOE distributions are not gaussian, having asymmetric long thick tails. The standard

Markowitz mean-variance analysis [7] can then be considered only as a starting approach for

an accurate stochastic LCOE theory, which has hence to be developed with more suitable

risk measures. VaR (Value at Risk) and CVaR (Conditional Value at Risk) could be chosen

as the obvious candidates for this extension (Sarikalyn et al. [8]). Yet, it turns out that they

are not the best choice for this problem, because they are not dispersion measures (unlike

standard deviation), and are not suitable to play the same role as the role that standard

deviation plays in a Markowitz approach. It will be shown that CVaR Deviation (CVaRD)

(Rockafellar et al. [9]), a dispersion measure never used before in this context, and very

seldom used in general, provides a much better alternative, and turns out perfectly suited

for this application.

In this paper, 1) besides extending the Markowitz analysis of the stochastic LCOE

theory proposed by Mari [5] by using VaR, CVaR and CVaRD as risk and deviation mea-

sures, 2) we also improve the underlying stochastic cost model to account for more suitable

stochastic processes with respect to the geometric Brownian motion used in [5] to describe

the evolution of fossil fuels market prices. This is mainly necessary for the gas price process

used in the following case study of the US market, for which in the data there is evidence of

mean reversion and jumps, an aspect which is not taken into account in geometric Brownian

motion models.

More specifically, after this Introduction, in Sec.2 we review the stochastic LCOE

theory. In Sec.3 we set up new and more realistic dynamic stochastic equations for the

cost model of the theory. Specifically, we propose a more accurate description of fossil fuels

market prices using a mean-reverting jump-diffusion process to describe the dynamics of gas

prices and a geometric brownian motion to model coal prices. We estimate both processes

for the case of the US market, for which abundant data are available. Capital costs and other

many costs included in our analysis are referred to US market too. In order to make our case

study more complete, we then analyze four different CO2 price evolution scenarios in order

to show CO2 indirect effects on single-fuel LCOEs cross-correlation, and the implications

of this correlation on the portfolio selection, the central mechanism of the stochastic LCOE
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theory. We will assume that CO2 prices evolve in time according to a geometric Brownian

motion and the four different scenarios refer to different volatility values of the CO2 price

process. In Sec.4 we discuss a choice of available risk and deviation measures. In Sec.5,

using the estimated model, we study those gas and coal portfolios which are optimal under

four risk and deviation measures, namely standard deviation, VaR, CVaR and CVaRD. We

show how CVaRD improves, in regard to the theory proposed by Mari [5], the shape of the

portfolios LCOE distribution when aversion to asymmetric tail risk is considered. In Sec.6

we include the nuclear asset as a risk free asset and hedging instrument, selecting deviation

optimal portfolios using a deviation-expected LCOE plane, and discuss the important role

of a risk free asset in the portfolio selection problem. In Sec.7 we conclude.

2 The Stochastic LCOE Theory

In this Section we briefly recapitulate the classical deterministic definition of LCOE, and

show how to extend it to a stochastic setting.

Consider a project of an electricity generating plant, seen as a cash flow stream on

a yearly timetable n (n = −N, . . . , 0, . . . ,M) for which n = −N < 0 is the construction

starting time, n = 0 is the end of construction time, the evaluation time and the operations

starting time. M ≥ 1 is the end of operations time (see Fig.1).

�� �� ���������������� �� 	

Figure 1: Project timeline.

Classically, the Levelized Cost of Electricity (LCOE, or “levelized cost” LC in short)

is defined as that nonnegative price PLC,x (assumed constant in time, and expressed in

real money units) of the electricity produced by a specific generation technology x which

makes the present value of expected revenues from electricity sales equal to the present

value (PV) of all expected costs met during the plant life-cycle (investment costs, operating

costs, incremental capital costs, decommissioning costs and carbon charges when due). The
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LCOE represents the generating costs at the plant level (busbar costs) and does’t include

transmission and distribution costs and all possible network infrastructures adjustments

[16]. To determine the LCOE, PVs are computed by using a discount rate that must provide

equity investors the adequate return for the assumed risk. In general, this return is quantified

by the Weighted Average Cost of Capital (WACC) which accounts for the possibility that

a given project can be financed by a mix of equity and debt [11]. Assessing the LCOE

through the WACC method allows one to include the level of risk perceived by investors

(both equity holders and bondholders) through the debt fraction of the investment in the

discount rate. The LCOE is then a break-even reference unitary cost, internal to the project,

to be compared with the expected market electricity price. Given a set of technologies, PLC,x

is also useful to compare among each other the levelized costs of generation alternatives.

Regarding the set of alternatives, this paper will focus only on the baseload production of

electricity obtained from nuclear energy and two fossil sources, coal and natural gas.

The LCOE for a specific technology x is evaluated at n = 0 after equating present values of

revenues and costs, by solving for PLC,x from

M
∑

n=1

(PLC,xQx
n)(1 + i)n−nbF0,n =

M
∑

n=1

(Cx
n + T x

n )F0,n + Ix0 . (1)

In the l.h.s. of Eq.(1), Qx
n denotes the amount of electricity produced during each period

and it will be assumed constant (as Qx = NW x × 8760×CF x, where NW x is the nominal

capacity of the plant and CF x the Capacity Factor of that plant), i is the expected yearly

inflation rate (since the LCOE has to be expressed in real terms), nb refers to the base year,

and

F0,n =
1

(1 +WACC)n
(2)

is the discount factor in the WACC evaluation scheme, where WACC is kept constant for

the whole life of the project. The technology label x can take the values nu (nuclear), co

(coal), ga (gas). In the r.h.s. of Eq.(1) Cx
n denotes expected nominal operating expenses

which are incurred throughout the operational life of the plant. Cx
n includes (fixed and

variable) operation and maintenance (O&M) costs, fuel costs (not included in the variable

O&M costs), radioactive wastes management costs and set-aside decommissioning funds in
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the case of nuclear energy. Fixed and variable O&M costs and fuel costs are computed

using real escalation rates. With regard to fossil fuels, costs have to include carbon market

costs, or carbon taxes, or abatement expenses, to account for carbon emissions costs. Yearly

nominal tax liabilities

T x
n = Tc(R

x
n − Cx

n − depx

n
), (3)

are computed by subtracting cost Cx
n and asset depreciation depx

n
from sales revenues Rn,

being Tc the tax rate. Ix0 is the pre-operations nominal investment, starting at n = −N

and ending at n = 0, but computed as a lump sum. Ix0 is computed in the following

way. Denoting by Ōx
n the real amount of the overnight cost allocated to year n (again with

reference to Fig. 1), the nominal amount Ox
n at year n can be expressed as,

Ox
n = (1 + i)n−nbŌx

n n = −N, · · · ,−1, 0. (4)

Then, within the WACC approach,

Ix0 = Ox
−N (1 +WACC)N + · · ·+Ox

−1(1 +WACC) +Ox
0 . (5)

Eq.(1) has a very interesting structure, which is found also in other Economics contexts1.

Since revenues have the form

Rx
n = PLC,x Qx(1 + i)n−nb , (6)

using Eq.(3) in Eq.(1), we get the LCOE valuation formula

PLC,x =

∑M
n=1C

x
nF0,n

Qx
∑M

n=1(1 + i)n−nbF0,n

+
Ix0 − Tc

∑M
n=1 dep

x

n
F0,n

(1− Tc)Qx
∑M

n=1(1 + i)n−nbF0,n

. (7)

Eq.(7) is valid for a single-technology (labeled by x) project. For a multi-technology project,

i.e. a portfolio of technologies, the total price PLC is the sum over technology indices

PLC,w =
∑

x

PLC,x Qx

QTOT
=

∑

x

wxPLC,x, (8)

1
P

LC,x inside the l.h.s. can be interpreted as the current time equivalent of the r.h.s., the overall present

value of costs, once the equation is solved for PLC,x. This structure was for example discussed in the context

of growth theory in Mirrlees and Stern [12], which in turn based themselves on Rothschild and Stiglitz [13],

where for the first time a quantity analog to P
LC,x was interpreted as a Balanced Growth Equivalent (BGE),

and the r.h.s. term as the welfare level.
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where QTOT =
∑

xQ
x, and

wx =
Qx

QTOT
(9)

is the weight of technology x in the portfolio. When Qx is expressed in MWh and prices are

in dollars, PLC,w is expressed in real dollars per MWh and Cx
n, I

x
0 , dep

x

n
in nominal dollars.

Although the LCOE approach has been used as an alternative to more traditional

evaluation techniques based on NPV, it should be noticed that the maximization of the

NPV per unit of output (e.g., one MWh of electricity)

NPVQ =
NPV

QTOT

as a choice criterion for selecting in the deterministic frame optimal portfolios, is anyway

equivalent to the minimization of the LCOE 2. To see this, let us recall that for a portfolio

of technologies the NPV is defined as the PV of expected revenues from electricity sales at

market prices minus the PV of expected costs, and it can be expressed as

NPV = (1−Tc)

[

QTOT
M
∑

n=1

P e
n(1+ i)n−nbF0,n−

M
∑

n=1

∑

x

(

Cx
nF0,n+

Ix0 − Tcdep
x
nF0,n

1− Tc

)]

, (10)

where P e
n is the expected market real price of electricity in the year n, or equivalently

NPV = (1− Tc)Q
TOT

[ M
∑

n=1

P e
n(1 + i)n−nbF0,n −

M
∑

n=1

(1 + i)n−nbF0,n

∑

x

Qx

QTOT
PLC,x

]

, (11)

in which Eq.(7) and Eq.(8) have been used. Then, NPVQ can be cast in the following useful

two-terms form

NPVQ = V0 − V1P
LC,w, (12)

where V0 = (1 − Tc)
∑M

n=1 P
e
n(1 + i)n−nbF0,n is independent (for baseload generation) from

the portfolio composition and V1 = (1 − Tc)
∑M

n=1(1 + i)n−nbF0,n is a constant. Thus, the

generation portfolio that maximizes NPVQ is the portfolio that minimizes LCOE.

Tab.1 details all technical data and costs included in our analysis, for nuclear and

fossil fuel technologies, denominated in US dollars referred to the base year 2012, i.e. in

real dollars. Data shown in Tab.1 are collected from the “Annual Energy Outlook 2013”

2Notice that the relevant quantity for generation portfolio optimization is not the NPV itself, because

doubling the size of a plant would double the NPV, which is not what is sought by portfolio optimization.
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(AEO 2013) [14] as reported in “Updated Capital Cost Estimates for Utility Scale Electricity

Generating Plants” [15] provided by the U.S. Energy Information Administration, integrated

with data from “The Future of Nuclear Power” by the Massachusetts Institute of Technology

[16] and its last update “Update of the MIT 2003 - Future of Nuclear Power” [?, 17].

In accordance to the Annual Energy Outlook 2013, we assume an expected inflation rate

i = 1.75% per annum, and a tax rate Tc = 37%. As a reference case, we adopt a nominal

WACC rate of 8.5%, in agreement with the assumption of a real weighted average cost of

capital of 6.6% adopted in “Levelized cost of new generation resources in the Annual Energy

Outlook 2013” [18].

Inserting a deterministic operation costs sequence Cx
n in Eq.(7), assessed for example

as a succession of expected values, generates a deterministic PLC,x. Promoting the sequence

Cx
n to a stochastic process, due to a set of risky sources stochastic paths ω, makes a (time-

independent) stochastic variable

PLC,x(ω) (13)

of the LC, with a distribution p(PLC,x), an expected value µLC,x and a variance (σLC,x)2.

In what follows, we will refer to PLC,x of Eq.(13) as “stochastic LCOE”, or more simply

LCOE or LC. As specified in Introduction, three sources of financial risks are taken into

account, namely the stochastic dynamics of coal and gas market prices and the the stochastic

dynamics of CO2 prices.

More specifically, stochastic dynamic processes for nominal fossil fuel prices, Xx
n(ω)

(x = ‘co’,‘ga’), and CO2 price, Zn(ω) (per ton), from 0 to M can be inserted in Cx
n , turning

it into a stochastic process Cx
n(ω). In this case it is more convenient to rewrite Eq. (7) for

x = ‘co’,‘ga’ as a linear combination of fuel and carbon contributions, to get

PLC,x(ω) = Ax

M
∑

n=1

Xx
n(ω)F0,n +Bx

M
∑

n=1

Zn(ω)F0,n +Kx, (14)

where Kx is the deterministic component of the LC accounting for all residual terms in

Eq.(7), different from fuel and CO2 costs. Moreover, in Eq.(14)

Ax =
Hx

1000
∑M

n=1(1 + i)n−nbF0,n

, (15)
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Units Nuclear Coal Gas

Technology symbol nu co ga

Capacity factor 90% 85% 87%

Heat rate Btu/kWh 10452 8800 7050

Overnight cost $/kW 5530 2934 917

Fixed O&M costs $/kW/year 93.28 31.18 13.17

Variable O&M costs mills/kWh 2.14 4.47 3.60

Fuel costs $/mmBtu 0.74 stoch stoch

CO2 intensity Kg-C/mmBtu 0 25.8 14.5

Waste fee $/kWh 0.001 – –

Decommissioning cost $ million 750 – –

O&M real escalation rate 1.0% 1.0% 1.0%

Fuel real escalation rate 0.5% 1.0% 2.0%

Construction period # of years 6 4 3

Operations start 2018 2018 2018

Plant life # of years 40 40 40

Depreciation scheme MACRS,15 MACRS,20 MACRS,15

Table 1: Technical assumptions. All dollar amounts are in year 2012 dollars. Overnight costs

are assumed to be uniformly distributed on the construction period. O&M stands for operation and

maintenance. Mill stands for 1/1000 of a dollar. mmBTU stands for one million BTUs. Depreciation

is developed according to the MACRS (Modified Accelerated Cost Recovery System) scheme as

reproduced in Appendix 1. ‘stoch’ stands for stochastic.

Bx =
Sx

∑M
n=1(1 + i)n−nbF0,n

, (16)

where Hx is the fuel heat rate and Sx is the CO2 intensity (expressed in tCO2/MWh).

Declaring Kx deterministic in Eq. (14) implies that we assumed that other costs have a

negligible variance w.r.t. fuel costs volatility. To be noticed that these other costs not

only have a negligible variance, but in a gas fired plant about 75% of the generation cost
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depends on the cost of natural gas, and even if the volatility of coal prices is lower than

the volatility of gas prices, in a coal fired plant coal costs are responsible for more than

35% of the generating costs [4]. A further aspect of Eq.(14) has to be highlighted. When

x = ‘co’,‘ga’, notice that the second term of both PLC,co(ω) and PLC,ga(ω) is not zero and

in both cases contains the same process Zn(ω), making the levelized costs of coal and gas

correlated. This correlation will show up in the variance of a coal and gas portfolio.

Under our three sources of risk hypothesis, we assume that PLC,nu(ω) follows a deter-

ministic price path because electricity production from nuclear energy doesn’t release CO2.

A nuclear plant can be seen, therefore, as a risk-free asset in an otherwise risky portfolio.

In the following, this feature will be used to hedge the volatility of the LC due to fossil fuels

and carbon prices volatility.

For a portfolio of technologies, each with weight wx, the LC will be the sum

PLC,w(ω) =
∑

x

wxPLC,x(ω), (17)

parametrically dependent on w. We will call PLC,w(ω) “portfolio LCOE”. Its expectation

is

µLC,w = E[PLC,w(ω)] =
∑

x

wxµLC,x (18)

where µLC,x = E[PLC,x(ω)]. Clearly, its variance

(σLC,w)2 = E[(PLC,w(ω)− µLC,w)2] (19)

will not in general be equal to the weighted sum of the component variances (σLC,x)2. Eq.

(17) is then useful because it clearly takes into account the fact that the levelized unit cost

of generating electricity is very sensitive not only to fuel and CO2 prices volatilities, but

also to the way these volatilities interact.

In this stochastic frame Eq.(12) is still valid, just considering that the V0 term on the

r.h.s. will contain an additional source of risk, namely the market electricity price P e risk,

even though not dependent on portfolio composition. A possible co-dependence of stochastic

P e with stochastic PLC,w could be taken into consideration, but since current generation

costs and risks will impact on future electricity prices through technology evolution and
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Figure 2: Historical behavior of fuel real prices (left, gas upper curve, coal lower curve) and

log-prices (right, gas upper curve, coal lower curve) since January, 1990 until August, 2013.

Prices are deflated and expressed in dollars (2012) per Million Btu.

demand/supply interplay, a future dependence of P e on PLC,w would be very difficult to

assess and disentangle from generation cost risks, so that we don’t include it in our model.

3 Accurately Modelling Fossil Fuels Market Prices

In this Section we propose a stochastic dynamical model to describe the time evolution of

fossil fuels nominal market prices Xx(ω) to be inserted in PLC,w(ω), which improves on

the cost model of Mari [5], in which only geometric Brownian processes were considered.

Fig.2 shows the historical behavior since January 1990 until August 2013 of real US coal

and gas market prices that we are going to use to model nominal prices. Both series

are taken at a monthly frequency, deflated, and expressed in 2012 dollars per million Btu

(mmBtu). Data were downloaded from the U.S. Energy Information Administration at site

www.eia.doe.gov/totalenergy. Tab.2 provides the descriptive statistics of the monthly

changes in the natural logarithm of market prices.

To account for the observed features of the historical price paths, we propose a stochas-

tic model in continuous time t, in which the time evolution of the coal price is described by

a geometric Brownian motion, and the dynamics of the natural gas price is described by a
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Figure 3: Historical behavior of monthly changes of fuel prices in natural logarithms of

market prices (gas left, coal right) (L.H.R. scale amplified).

Coal Gas

Start Jan 1990 Jan 1990

End Aug 2013 Aug 2013

# of points 284 284

Mean -0.0004 -0.0011

Std. dev. 0.0139 0.0982

Skew 0.2714 0.2572

Kurt 3.6915 4.6945

ρf -0.088

Table 2: Descriptive statistics of monthly percent changes of fuels price processes. Their correlation

coefficient is indicated as ρf .
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mean-reverting jump-diffusion process. Although geometric Brownian motion is often used

to model fossil fuels prices dynamics [19], it should be noted that such a stochastic process

may not capture completely the observed dynamics of market prices. Some evidence exists

for more complicated behavior showing mean reversion around some long run value, jumps

and stochastic volatility [6]. Calling Xco(ω) the coal nominal price process and Xga(ω) the

gas nominal price process, the Xco(ω) dynamics is described by

dXco

Xco
= (πco + π)dt+ σcodW co, (20)

where in πco = ln(1 + γco) the quantity γco is the real escalation rate of the coal price,

chosen as reported in Tab.3, and in π = ln(1 + i) the quantity i is the expected inflation

rate, which we choose as i = 0.0175 (taken from AEO 2013). σco is the volatility of coal

prices, which is the only parameter to be estimated on time-series data for this dynamics,

and W co(ω) is a standard Brownian motion.

Coal Gas

γco = 0.01 γga = 0.02

πco = ln(1.01) πga = ln(1.02)

Table 3: Real escalation rates for fossil fuels prices, taken from AEO 2013.

To determine the nominal dynamics of Xga(ω) we pose

Xga(ω) = e(π
ga+π)(t−tb)X̃ga(ω), (21)

where X̃ga(ω) is the real gas price process, and the exponential factor accounts for both

inflation and real excalation rate of the fuel. In πga = ln(1 + γga) the quantity γga is the

real escalation rate of the gas price (see again Tab.3 ). After defining

Ξ̃ga(ω) = log X̃ga(ω), (22)

the dynamics of Ξ̃ga(ω) is chosen according to the following stochastic differential equation:

dΞ̃ga = (θga − αgaΞ̃ga)dt+ σgadW ga + JdN, (23)
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Coal Gas

θga 0.0432 (0.0256)

αga 0.0292 (0.0158)

λJ 0.2542 (0.1501)

σJ 0.1258 (0.0256)

σx 0.0139 (0.0006) 0.0737 (0.0086)

LLx 807.94 264.58

Table 4: Estimation results. Standard errors are between parentheses. LLx stands for loglikelihood

of fuel x.

where θga and αga are mean reversion parameters, σga is the gas price volatility and W ga(ω)

is a standard Brownian motion. N(ω) is a Poisson process with constant intensity λJ , and

the jump amplitude J is distributed as a normal random variable with zero mean and stan-

dard deviation σJ. We assume that N(ω), W co(ω) and W ga(ω) are mutually independent

processes. Although in Tab.2 the estimated correlation coefficient between the coal and gas

prices monthly percent changes ρf = −0.088 is not exactly zero, in agreement with Hogue

[19] we assume it equal to zero. This is going to be consistent also with the fact that the

quantitatively important correlation between coal and gas LCOEs results from the CO2

coupling due to CO2 volatility.

The dynamical parameters, namely σco for coal prices and the five parameters θga,

αga, σga, λJ , and σJ for gas prices, were estimated on our data set by maximum likelihood,

the results being summarized in Tab.4. Tab.5 displays the first four moments of the model

distribution of monthly log-returns, obtained averaging over 5000 simulated paths randomly

generated using estimated parameters. The statistical analysis of simulated trajectories

shows a very interesting agreement with empirical data: the values of the first four moments

of the simulated distributions of power prices and prices are very close to the empirical ones.

The dynamics of nominal carbon prices is assessed according to a geometric Brownian motion
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Coal Gas

Mean -0.0001 (0.0008) -0.0005 (0.0014)

Std.dev. 0.0139 (0.0006) 0.0983 (0.0056)

Skewness 0.0035 (0.1387) 0.0038 (0.2851)

Kurtosis 2.9740 (0.2738) 4.4475 (0.7952)

Table 5: Simulated moments. Standard errors are between parentheses.

of the type,

dZ

Z
= πdt+ σcadW ca, (24)

where σca is the carbon volatility and W ca(ω) is a standard Brownian motion which is

assumed to be independent of W co(ω), W ga(ω) and N(ω). In this case, volatility won’t be

estimated but it will be taken as a parameter. The initial market price of CO2 emissions has

been fixed in 25 $/ton. As discussed before, the dynamics of Z affects the time evolution of

both LCOEs, introducing positive correlation between fossil fuel LCOEs. The quantification

of such a correlation, as well as the values of the volatility of LCOE for both coal and natural

gas generating technologies, can be obtained by using Monte Carlo techniques. Simulations

have been performed in four different scenarios, namely assuming a carbon price volatility

equal to 10%, 15%, 20% and 25% respectively. These assumptions try to depict low, medium,

high and very high carbon prices volatility scenarios [20] in order to capture the relevance

of hedging effects. The distributions of a sample of stochastic levelized costs obtained using

this procedure, for coal and gas, are shown in Fig.4 when σca = 0.20, computed using of

100000 Monte Carlo randomly generated trajectories ω. For each trajectory, computed using

the antithetic variable method, an evolution path for fossil fuel prices and carbon prices was

obtained and, along such paths, LCOE values were computed according to single-technology

Eq.(7). The first four LCOE moments are shown in Tab.6 for all four σca scenarios. In Fig.4,

since the higher is the LCOE (which is nonnegative) the higher is the risk not to cover the

costs, on the x axis of the graph the LCOE is shown reversed (i.e. with a minus sign), so

that the left tail of the distributions represents a risk of loss. This convention will be useful
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σca fuel µLC,x σLC,x PLC,x skew. PLC,x kurt. ρ

0.10
coal 97.4 7.1 0.7 4.1

0.25
gas 77.2 8.6 0.5 3.5

0.15
coal 97.4 10.0 1.5 9.0

0.41
gas 77.2 9.1 0.6 3.7

0.20
coal 97.4 13.6 2.8 21.5

0.56
gas 77.2 10.0 1.0 6.1

0.25
coal 97.4 18.2 5.6 94.2

0.68
gas 77.2 11.3 2.3 27.1

Table 6: First four central moments of the PLC,x (LCOE) distribution.

in what follows. Notice that the two distributions in Fig.4 are strongly asymmetric with long

tails, and have clearly different shapes and a nonnegative support. In order to show how

long are their left tails, a dot marks the minimum −LCOE value which the computations

find. Long tails mean that low probability events do exist such that breakeven is largely

missed. The deterministic approach to LCOE doesn’t take this risk into account.

4 LCOE Risk Analysis

In this Section we discuss a selection of risk measures under which to choose an optimal

combination of gas and coal assets, nuclear for the moment excluded, in terms of an op-

timal choice of the portfolio weights w1 and w2 = 1 − w1 (1 ≥ w1 ≥ 0, no short selling

allowed) introduced in Eq. (17). We will show that a measure called CVaR Deviation, not

very often used in literature, is yet particularly suited to our stochastic LCOE case, and

improves on usual Markowitz variance. Before starting, just notice that LCOEs are costs,

not returns, with a strictly non-negative support. Hereafter, all Monte Carlo simulations

use 10000 LCOE values only (instead of 100000), in order to limit stochastic optimization

computational times, especially in the case of portfolios which include nuclear.

A Markowitz portfolio analysis was used to show how to manage the stochastic LCOE
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Figure 4: Single fuel LCOEs, for σca = 0.20. UPPER: coal; LOWER: gas. The horizontal

axis is reversed. The dot on the abscissa marks the lowest −LCOE values found in each

simulation. 100000 runs where used. The two sample distributions are clearly different.

risk [5], for example by computing the variance (σLC,w)2 for a sequence of admissible µLC,w,

and looking at the generation mix that minimizes the portfolio variance. For a pair of risky

assets like coal and gas, (σLC,w)2 vs. µLC,w is a parabola with a minimum at µLC
mvp, the min-

imum variance portfolio, at optimal w∗. In this way, optimization can be introduced in the

stochastic LCOE problem, proposing portfolios of assets with minimum ‘dispersion’ about

µLC,w∗
. Investment risk is controlled choosing assets in such a way that uncertainty around

expected LCOEs is minimal. The rationale is that, since LCOE estimates always include

uncertainty because of fluctuating fuel prices, instead of getting rid of this uncertainty by

hiding it under the carpet, it is wiser to arrange the investment in such a way to control it

in the best possible way.

Yet, variance is the typical Markowitz risk measure, sensitive to correlation but not to

asymmetries or long tails of distributions, whereas our LCOE distributions are long-tailed

and skewed. A possible alternative risk measure, more sensitive to tail risk, is Value at Risk

(VaR). In general, given 1) a vector of random variables y(ω) representing asset prices or
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returns, with joint probability density p(y), 2) a vector of choice variables w representing

portfolio weights, 3) a loss function f(ω) = f(w, y(ω)) representing portfolio losses (if the

variables y(ω) represented returns it could be for example that f(ω) = −w′ y(ω), which is a

random variable with values in percent), 4) a threshold h for the losses f(ω), 5) a probability

α, the VaR for a given portfolio of components w is defined as a quantile

VaRw
α (f(ω)) = min

h
{

∫

f(w,y(ω))≤h

p(y) dy(ω) ≥ α}, (25)

i.e. as the minimum threshold h∗ = VaRw
α (f(ω)) above which the probability of losses is

equal or greater than α. For example, in the standard Markowitz case when losses are ex-

pressed as returns and in percent, VaRw
95% = 10% represents a portfolio which doesn’t loose

more than 10% in 95% of the cases. Yet, in general, VaR is not very suitable to optimization

uses when the underlying distribution is not gaussian (Pachamanova and Fabozzi [21]) and

doesn’t give information about what happens in the adverse cases. A better alternative

to VaR is Conditional Value at Risk (CVaR), sensitive to tail risk and asymmetry, and

with good minimization properties, expecially from a numerical point of view. CVaR for a

portfolio of risks parametrized by w was introduced by Uryasev [22] and by Rockafellar and

Uryasev [23] (see also Krokhml et al. [24]) in terms of VaR, as

CVaRw
α (f(ω)) =

1

1− α

∫

f(w,y(ω))≥VaRα
w

f(w, y(ω)) p(y) dy(ω) (26)

Eq.(26) shows that CVaR can be interpreted as the expected value of losses greater in value

than VaR (in the example above, CVaRw
95% would give the percent expected to be lost

in the worst 5% cases). A first consequence of this is that CVaRw
α ≥ VaRw

α . A second

consequence is that, as an expected value, a CVaR can be estimated on sample data, i.e.

in many circumstances the CVaR of a portfolio can be numerically obtained by linear (i.e.

convex) stochastic optimization on sampled portfolio values with respect to an internal

variable that at its optimal value turns out to be the VaR itself (Sarykalin et al. [8] and

references therein). Estimates of minimum CVaR portfolios can be obtained as a joint linear

stochastic minimization in both this variable and the portfolio coefficients. Some details of

these results are sketched in Appendix 2.
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There is more about CVaR that is useful to our purpose. CVaR belongs to a class

of risk measures in a more technical sense introduced by Artzner et al. [25], thereafter

called ADEH risk measures. CVaR is also a “strictly expectation bounded risk measure”

(Rockafellar et al. [26]), a subclass R(f(ω)) of ADEH risk measures. Measures in this class

have useful common properties, like the fact that, for a constant c,

CVaRw
α (f(ω)− c) = CVaRw

α (f(ω)) + c. (27)

In constrast, standard deviation, the root of the variance (σLC)2 = E[(PLC(ω) − µLC)2],

is a deviation measure, belonging to an alternative class D(f(ω)) connected one-to-one to

R(f(ω)) [26]. Generally speaking, each risk measure in R(f(ω)) evaluates outcomes in an

absolute way, whereas its partner deviation in D(f(ω)) evaluates distribution widths. This

one-to-one correspondence between risk measures R ∈ R(f(ω)) and their partner deviation

measures D ∈ D(f(ω)) is estabilished as

D(f(ω)) = R(f(ω)− E[f(ω)]) = R(f(ω)) + E[f(ω)] (28)

where Eq.(27) was used for the second equality (for an updated and extended discussion of

this correspondence see also [8, 9]). Measures in D(f(ω)) have properties similar to those of

the standard deviation (for example they are nonnegative and vanish only if f = E[f ]), but

in general, D(f(ω)) 6= D(−f(ω)), i.e. they can be asymmetric. More specifically, defined

CVaR as in Eq.(26), the CVaR Deviation (CVaRD) for a portfolio can be defined, according

to Eq.(28), as

CVaRDw
α (f(ω)) = CVaRw

α (f(ω)− E[f(ω)]), (29)

so that, in a lighter notation where Ew = E[f(ω)],

CVaRDw
α = CVaRw

α + Ew. (30)

Besides being an important theoretical result, Eq.(30) has a practical advantage: knowledge

of CVaRw
α is sufficient to compute CVaRDw

α . Because of the structure of theR(f(ω))/D(f(ω))

theory, it is only in their CVaRD form that CVaR optimization results can be safely com-

pared to Markowitz standard deviation optimization results. It will be now shown in which

sense minimum CVaRD LCOE portfolios improve on minimum variance LCOE portfolios.
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Figure 5: Risk measures (from top to bottom: standard deviation, VaR, CVaR, CVaRD) vs.

mean. LHS: σca = 0.10; RHS: σca = 0.15. Color keys: CVaR (blue), VaR (green), CVaRD

(red), standard deviation (black).

5 Coal and Gas Portfolios

In the Markowitz analysis of the optimal coal and gas portfolio (with w1 coal and w2 = 1−w1

gas weights), covariance measures the degree of dependency between the two coal-only and

gas-only LCOEs. In our model, this mutual dependency is controlled by σca. Fig.5 and

Fig.6 show a sequence of four CO2 scenarios, for σca = 0.10, 0.15, 0.20, 0.25. Markowitz

theory requires that for low dependency (e.g. no dependency at all, then zero correlation)

a well diversified mix of the two assests is preferred to single asset portfolios. In Fig.5,

left panel, the case for low correlation σca = 0.10 scenario is shown. In the top graph

the portfolio standard deviation σLC,w as a function of µLC,w is shown, as w1 ∈ [0, 1] and

w2 = 1 − w1 vary. The dot indicates the position of the minimum risk portfolio according

to the Markowitz criterion. The Markowitz inefficient frontier stands on the l.h.s. of the

dot, where the expected LCOE is very negative (a bad thing for investors). This minimum

variance portfolio mixes coal and gas assets. In the second and third graphs VaRw
95% and

CVaRw
95% as a function of µLC,w are shown. VaR or CVaR are chosen as risk measures to

take into account the long asymmetric tails of Fig.4, by agents adverse to left tail risk that

don’t want to end up with a too high LCOE w.r.t. an expected electricity market price,

i.e. a precise level. In this case, choosing a portfolio according to the minimum VaR or
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Figure 6: Risk measures (from top to bottom: standard deviation, VaR, CVaR, CVaRD) vs.

mean. LHS: σca = 0.20; RHS: σca = 0.25. Color keys: CVaR (blue), VaR (green), CVaRD

(red), standard deviation (black).

CVaR criterium would favour only-gas generation (the extremum is on the r.h.s.). This

is consequential with the fact that, in current market data, gas and coal expected LCOEs

are so distant one from the other that CVaR diversification doesn’t work - gas is always

the best choice. But an agent selectively adverse to uncertainty on the left tail of the

LCOE, i.e. adverse to the width of its distribution (not with respect to any reference point

as in the CVaR case) and not to LCOEs being close to zero (a good thing for investors),

would minimize CVaRDw

95%, as in the fourth graph. In this case, the portfolio obtained

would be mixed, even though different from the Markowitz portfolio in expected value and

components. It is also evident from the Figure that CVaRD is not symmetric, differently

from the variance case. In Fig.5, right panel, the same measures are shown for σca = 0.15.

More correlation displaces the minimum towards the r.h.s. edge, with a difference between

standard deviation and CVaRD, since CVaRD is more adverse to tail risk. In the case of

standard deviation, increasing σca makes coal riskier than gas (σLC,co > σLC,ga, cfr. Tab.

6, fourth column) so that an only-gas portfolio is more and more preferred. VaR and CVaR

portfolios stick to the only-gas choice. In general, variances and CVaRD minima move to

the r.h.s. w.r.t. the left panel. In Fig.6, left panel, the case σca = 0.20 is shown. Whereas

the Markowitz criterion still suggests a mixed portfolio, VaR, CVaR and CVaRD now agree
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Figure 7: Sequence of 4 out of 100 portfolios for σca = 0.15, as component w1 varies from

0 (index j = 1, gas-only) to 1 (index j = 100, coal-only). LHS: distribution densities,

RHS: corresponding cumulative distributions and their (minus) CVaR (blue), VaR (green),

CVaRD (red), standard deviation (black). Compare with RHS of Fig. 5 (same color keys).

on a gas-only portfolio. Correlation is very high and tail averse agents prefer gas, which has

a shorter tail. In Fig.6, right panel, the case σca = 0.25 is shown. Maximum correlation, all

four measures agree on gas-only portfolios. Notice that in all four cases CVaRw

α ≥ VaRw

α . It

is then interesting to look at the shape of the portfolio distribution density, as w1 increases

from 0 (gas-only portfolio) to 1 (coal-only portfolio), for a given σca.

L.h.s. panel of Fig.7, from top to bottom, shows such a scan for σca = 0.15, for the

four combinations for which w1 = 0, 0.2424, 0.7474, 1, in our reversed-axis convention. On

the r.h.s. panel the corresponding cumulative distributions are plotted, in order to help

one’s eye to locate the 95% VaR position (which is defined in terms of a fixed 0.05 level

for the cumulative distribution, not shown in the graphs, see Eq.(25)). On their abscissas,

the four positions of the risk measures is marked as a set of four points, one set for each

w1 value (compare also with Fig.5, which uses the same color code). Notice that quantities

like CVaR (blue), VaR (green), CVaRD (red) and standard deviation (black) are positive

definite, so that, in order to show them on the plot, their sign was flipped. As expected,

CVaRw

α ≥ VaRw

α . Notice that CVaRD is always larger in absolute value than variance.

Since this scan doesn’t cover all values of w1, it is obviously not possible to see here that

the minimum variance and minimum CVaRD distributions lay somewhere between the first
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Figure 8: Portfolio distributions, for σca = 0.15, which are optimal under the four different

risk measures. LHS: list of all four distributions, i.e. optimal under variance, VaR, CVaR,

CVaRD. RHS: direct comparison between variance (blue) and CVaRD (red) distributions,

i.e. between deviation measures only - optimal variance first weight is w1 = 0.4343, optimal

CVaRD first weight is w1 = 0.3232.

(i.e. top) and the second graph. L.h.s. panel of Fig.8 shows the σca = 0.15 optimal

distributions under (top to bottom) standard deviation, VaR, CVaR and CVaRD measures.

VaR and CVaR are very conservative in terms of large LCOEs and coincide with the gas-

only distribution. Standard deviation and CVaRD accept more tail risk and diversify their

components. R.h.s. panel of Fig.8 directly compares the standard deviation (blue) and the

CVaRD (red) optimal distributions. Being more left-tail risk adverse, CVaRD optimum

selects an asset mix with w1 = 0.3232 (less coal) in contrast to a w1 = 0.4343 (more coal)

of the variance optimum, so that in CVaRD mix there is a smaller probability of a too large

LCOE (bad thing) than in the case of the variance optimum, whereas low LCOE probability

(good thing) is enhanced in comparison to the variance case. This is the reason why, in the

case of the stochastic LCOE, we propose CVaRD as a better alternative to usual Markowitz

variance.

6 Including the Nuclear Asset

When the zero-variance nuclear asset is included in the problem, interesting results appear

in analogy with the mean - standard deviation Markowitz plane [5], where the portfolios
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Figure 9: Mean - standard deviation plane. LCOE of nuclear is 105.2. Red line: efficient

frontier for zero nuclear. Black dotted line: efficient frontier. Red dot: see text. L.H.S.

σca = 0.10. R.H.S. σca = 0.15.

Figure 10: Mean - standard deviation plane. LCOE of nuclear is 105.2. Red line: efficient

frontier for zero nuclear. Black dotted line: efficient frontier. Red dot: see text.L.H.S.

σca = 0.20. R.H.S. σca = 0.25.

efficient frontier can be drawn and the inclusion of a risk-free asset like a bond induces the

presence of a “capital market line” (suitably reinterpreted), tangent to the efficient frontier

in the tangent portfolio.

Using then our reversed-axis convention, Fig.9 and Fig.10 show on a usual Markowitz

plane all possible portfolios that can be obtained when nuclear is included, for the same

sequence of CO2 volatility values used above. The LCOE of the nuclear asset is computed

(again, using data from Tab.1) as 105.2. As expected, the inclusion of a nuclear asset allows

one to identify a portfolio (OP, marked with a red dot in Fig.9 and Fig.10) with the same
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Figure 11: Mean - CVaRD plane. LCOE of nuclear is 105.2. Red line: efficient frontier for

zero nuclear. Black dotted line: efficient frontier. Red dot: see text. L.H.S. σca = 0.10.

R.H.S. σca = 0.15.

Figure 12: Mean - CVaRD plane. LCOE of nuclear is 105.2. Red line: efficient frontier for

zero nuclear. Black dotted line: efficient frontier. Red dot: see text. L.H.S. σca = 0.20.

R.H.S. σca = 0.25.
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expected LCOE of the minimum variance portfolio but with a reduced standard deviation

risk. In a less obvious way, a CVaRD - expected LCOE plane which includes nuclear displays

patterns similar to the standard deviation case. This can be seen in Fig.11 and Fig.12, where

all possible three-component portfolios are plotted. Each point is obtained as a separate

stochastic optimization. The fact that a CVaRD - expected values plane has to show the

same features of the standard Markowitz plane is discussed for example by Rockafellar et

al. [27]. In general, the presence of the nuclear asset reduces the portfolio risk under

both risk deviation measures. Looking at the two sets of Figures, as σca increases from

σca = 0.10 onward, OP gets closer to the gas-only portfolio (the prong in the upper right

hand corner of the portfolio universe), i.e. the gas weight increases. The stochastic LCOE

theory provides a quantitative estimate of the component weights. More specifically, under

the CVaRD measure, as σca goes from 0.10 to 0.25, the gas weight goes from 58% to 97%.

Correspondingly, the other two components get reduced from 8% to 0% in the case of coal

and from 34% to 3% in the case of nuclear. Notice that an analysis that includes nuclear

is less restrictive on the selection of optimal portfolios among which risk adverse investors

can choose. Without nuclear, the minimum deviation portfolio is always the best one. With

nuclear, the investor can tune the risk of its portfolio from zero (only nuclear) to the OP

(red dot) risk value, which in any case is a portfolio less risky than the minimum deviation

portfolio that can be obtained excluding nuclear. On the contrary, an investor in any case

adverse to high LCOE values always chooses a gas only portfolio.

7 Concluding Remarks

In this paper we discussed the stochastic LCOE theory when its underlying price model

uses a realistic very volatile fossil fuels dynamics coupled to a CO2 pivotal dynamics. In

particular, we showed how to optimally shape portfolio LCOE distributions when selective

asymmetric tail-risk aversion is considered, using a CVaRD approach. We wish to remark

that ours is a rare financial case in which CVaR is not appropriate, and in any case not

very telling. This is consequential with the fact that, in current market data, gas and coal
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expected LCOEs are so distant one from the other that CVaR diversification doesn’t work -

gas is always the best choice. We also discussed the role of the nuclear asset in this theory.

We considered portfolios which include gas, coal and nuclear, assuming that the nuclear

component plays the role of a risk free asset in terms of its LCOE.

Yet, we are aware that the nuclear LCOE cannot be considered risk free when the

construction time-span becomes uncertain, since this variable has a large impact on the

LCOE (Kessides [28]). As it is well documented in literature, the nuclear fuel cost itself has

a very low impact on LCOE (about 8%, see Mari [4]). In contrast, and as a consequence of

this, the uncertain duration of the construction period is the main source of financial cost

risk for the nuclear source. This would make the nuclear source an asset which LCOE is

risky but still uncorrelated with the other fossil fuel LCOEs. Even if this asset is taken as

risky, it can be anyway used in a well diversified baseload energy portfolio for the purpose

of hedging, with maybe a lesser effect, that can be yet quantitatively assessed only using

our stochastic LCOE theory. The uncertainty about construction time can be assessed and

modeled by collecting data on operating reactors that were built and connected to the grid

in the last years.

Our stochastic LCOE approach is interesting also because it can be used to under-

stand, from the point of view of a policy maker which manages CO2 prices, how rational

investors would react to a given policy scheme in a free market context. Taking into con-

sideration this rational behavior, the policy maker could refine the design of CO2 pricing

market mechanisms.

We leave all this to future investigation.
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Appendix 1: Further technical assumptions

Asset depreciation depxn of Eq.(3) is technology dependent and it is computed using the

MACRS system (Modified Accelerated Cost Recovery System) displayed in Tab. 7.

MACRS,15 MACRS,20

Year 1 5.00% 3.750%

Year 2 9.50% 7.219%

Year 3 8.55% 6.677%

Year 4 7.70% 6.177%

Year 5 6.93% 5.713%

Year 6 6.23% 5.285%

Year 7 5.90% 4.888%

Year 8 5.90% 4.522%

Year 9 5.91% 4.462%

Year 10 5.90% 4.461%

Year 11 5.91% 4.462%

Year 12 5.90% 4.461%

Year 13 5.91% 4.462%

Year 14 5.90% 4.461%

Year 15 5.91% 4.462%

Year 16 2.95% 4.461%

Year 17 4.462%

Year 18 4.461%

Year 19 4.462%

Year 20 4.461%

Year 21 2.231%

Table 7: Depreciation Schedule.
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Appendix 2: Numerical CVaR computation

Recall that, for a stochastic variable L of support y (like f(w, y(ω)) in Eq.(26)),

Prob(L ≥ y) = −
d

dy
E[max(L− y, 0)].

Consider the stochastic unconstrained program objective, parametric in α (the probability

α in Eq.(26), i.e. a confidence level),

gα(y) = y +
1

1− α
E[max(L− y, 0)].

The necessary condition to find the argmin of the program

min
y

gα(y)

is obtained by setting the derivative of the objective to zero, to give

1− α− Prob(L ≥ y) = 0,

which returns the condition for optimal y∗

Prob(L ≥ y∗) = 1− α.

Thus, y∗ = argminy gα(y) =VaRα, from the definition of VaR in Eq.(25). The value of the

objective at optimality, i.e. the optimal expected value of the problem, is

y∗ +

(

1

1− α

)

E[max(L− y∗, 0)] =

(

1

1− α

)(

(1− α)y∗ +

∫ ∞

y∗
(y − y∗) p(y) dy

)

=

(

1

1− α

)
∫ ∞

y∗
y p(y) dy = E[L|L ≥ y∗],

because
∫∞

y∗
p(y)dy = (1− α). This value can be written as the conditional expected value

E[L|L ≥ VaRα]

which is the CVaRα of the definition in Eq.(26). Furthermore, if a set of values yi (i =

1, . . . , N) sampled from L is available, the objective gα(y) can be approximated by

gα(y) ≈ ĝα(y) = y +
1

N(1− α)

N
∑

i=1

max(yi − y, 0).
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Since the (nonlinear) max function in this expression can be rewritten as a linear combination

of accessory nonnegative variables, an estimate of y∗, i.e. the CVaR of L, is obtained as the

solution of a convex stochastic optimization problem [23].
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