
Noname manuscript No.
(will be inserted by the editor)

Adaptive Cluster Double Sampling with post
stratification with application to an epiphytic lichen
community

Stefano Antonio Gattone · Paolo
Giordani · Tonio Di Battista · Francesca
Fortuna

Received: date / Accepted: date

Abstract The implementation of an adaptive cluster sampling design often
becomes logistically challenging because variation in the final sampling effort
introduces uncertainty in survey planning. To overcome this drawback, an in-
expensive and easy to measure auxiliary variable could be used in a two-phase
survey strategy, called adaptive cluster double sampling (Félix-Medina and
Thompson, 2004). In this paper, a two-phase sampling strategy is proposed
which combines the idea of adaptive cluster double sampling with the principle
of post-stratification. In the first-phase an adaptive cluster sample is selected
by means of an inexpensive auxiliary variable. Networks from the first phase
sampling are then post-stratified according to their size. In the second-phase,
the network structure is used to select a subsample of units by means of strat-
ified random sampling. The proposed sampling strategy employs stratification
without requiring an a priori delineation of the strata. Indeed, the strata sizes
are estimated in the course of the two-phase sampling process. Therefore, it
is suitable for situations where stratification is suspected to be efficient but
strata cannot be easily delineated in advance. In this framework, a new type of
estimator for the population mean which mimics the stratified sampling mean
estimator and an estimator of the sampling variance are proposed. The results
of a simulation study confirm, as expected, that the use of post-stratification
leads to gain in precision for the estimator. The proposed sampling strategy
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is applied for targeting an epiphytic lichen community Lobarion pulmonariae
in a forest area of the Northern Apennines (N-Italy), characterized by several
species of conservation concern.

Keywords adaptive cluster sampling · double sampling · post-stratification ·
rare populations · auxiliary variable · Lobarion lichen communities

1 Introduction

It is well known that standard sampling designs are very inefficient in estimat-
ing parameters of rare and clustered populations. In response to this issue,
adaptive cluster sampling designs (ACS) (Thompson, 1990) have gained pop-
ularity. The basic idea is to conduct an initial sampling phase according to
a standard design and whenever the variable of interest on a selected unit
satisfies a given condition, neighboring units are added to the sample and
surveyed. This procedure continues until no more units are found that meet
the condition. Compared to conventional sampling designs, ACS can result
in higher efficiency and higher rates of encountering occupied habitat and de-
tecting rare species (Thompson, 1990). A practical concern encountered in real
application of ACS is the requirement of some prior information about the rar-
ity and the aggregation of the population under study. Otherwise, a complete
adaptive search may result to be unfeasible and the total cost of the survey
may run out of control. Several remedies have been proposed in the literature
to overcome this drawback (for example see Thompson (2006); Gattone et al
(2016); Gattone and Di Battista (2011) and reference therein). According to
Thompson and Seber (1996), the condition for adaptive designs may be based
on an inexpensive and easy to measure auxiliary variable. For example, in an
ecological framework, the spatial distribution of species may be approximated
by some auxiliary information, such as a habitat suitability variable, which
allows to delineate units with different levels of species occupancy. In partic-
ular, Félix-Medina and Thompson (2004) proposed a multi-phase variant of
adaptive cluster sampling called adaptive cluster double sampling (ACDS) as
a tool to control the sampling effort. The ACDS design consists in a two phase
sampling where in the first phase an adaptive cluster sample is selected using
the auxiliary variable. In the second phase, the network structure of ACS is
used to select a subsample of units by using simple random sampling. Note
that only the values of the survey variable associated with the units in the
final-phase subsample are recorded. This design allows the sampler to con-
trol the number of measurements of the variable of interest. In this paper we
propose to combine ACDS with the principle of double sampling for stratifi-
cation. As in ACDS, an adaptive cluster sample is selected in the first phase
by means of an auxiliary variable. Then, the network structure is used to form
the strata. In the second-phase, the survey variable is sub-sampled in each
stratum with proportional allocation. We call this method ACDS with post-
stratification (ACDS-PS). We talk about post-stratification since stratification
is introduced once the first-phase sampling is completed. The performance of
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such a design depends on the relative cost of collecting the auxiliary infor-
mation with respect to the variable of interest, the extent in which the total
variance is reduced by stratification and the correlation between the auxil-
iary and the survey variable. The novelty of this work is two-fold: the use of
post-stratification which may lead to gain in precision for the estimators; a
new type of estimator for the population mean which mimics the very simple
estimator of stratified sampling. The paper is articulated as follows: Section 2
describes the ACDS-PS design with its mean and variance estimators. Section
3 provides a simulation study to evaluate the performance of the proposed de-
sign. In Section 4 the proposed sampling design has been used for estimating
the population total of an epiphytic lichen community Lobarion pulmonariae
in a forest area of the Northern Apennines (N-Italy), characterized by sev-
eral species of conservation concern. The paper ends with some concluding
comments in Section 5.

2 Adaptive cluster double sampling with post-stratification

Suppose to have a population U = {u1, u2, ..., uN} of N units and let yi
and xi denote the y-value and the x-value respectively, associated with ui,
i = 1, 2, ..., N . In this framework, Y is the survey variable while X is a binary
auxiliary variable taking two values xi = 1 or xi = 0 according to the presence
or the absence of a given characteristic. Of interest will be estimating the
population mean µy = 1

N

∑N
i=1 yi.

According to Thompson (1990), the definition of a condition Cx together
with a concept of neighbourhood give rise for each unit ui ∈ U to a network
Ai. When X is a binary variable, the condition Cx is satisfied if xi = 1. The
network Ai is constituted by mi neighboring units such that xj = 1 for j ∈ Ai.
The units which do not satisfy the condition Cx, i.e. when xi = 0, represent
networks of size mi = 1.

Hypothetically we can divide the population into strata according to the
size of the networks. For example, we may think to three strata, say L1, L2

and L3 with size N1, N2 and N3, respectively, with N = N1 +N2 +N3. L1 is
constituted by units which do not meet the condition, i.e. L1 = {ui : xi = 0}.
L2 is constituted by single units belonging to low-size networks, i.e. L2 = {ui :
xi = 1 ∩ mi ≤ Q} while L3 contains units belonging to large-size networks,
i.e. L3 = {ui : xi = 1∩mi > Q}. Q may be either fixed in advance or suitably
chosen once the first phase sampling is completed.

The first-phase sample starts with the selection of a sample of n units
by simple random sampling without replacement (SRSWOR). This selection
results in the inclusion of the values {xi : i ∈ U0} where U0 denotes the set
of labels selected in the first sample. The first-phase is concluded by taking
an ordinary ACS sample U1 based on the values of the auxiliary variable X.
Note that the number of networks in U1 may be less then n since more than
one unit in U0 could belong to the same network.
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Once the first-phase is concluded, units in U1 are classified (post-stratification)
into strata on the basis of their network size. Let n1 be the number of units
belonging to strata L1, n2 the number of units in L2 and n3 the number of
units in L3 where n = n1 + n2 + n3. In the second-phase, a conventional sub-
sample of units from each network selected in the first-phase is taken in each
stratum to observe the survey variable. Note that, for networks in stratum L1,
the second-phase sample will consist of a sub-sample of networks.

The proportions Wh = Nh/N of units in the whole population belonging
to each stratum h are not known but they can be estimated once U1 has been
selected with Ŵh = nh

n , h = 1, 2, 3. The post-stratified sampling like estimator
for the population mean we propose is

µ̂y =

H∑
h=1

Ŵhȳh (1)

where ȳh is the sample mean in stratum h.
For h = 1, the second-phase sample is obtained by selecting a conventional

sub-sample of single units (networks of size one). The stratum sample mean
is given by

ȳ1 =
1

fn1

∑
i∈R2

yi (2)

where R2 denotes the sub-sample of units selected in the second-phase and f
denotes the sub-sampling fraction.

For h = 2, 3, the stratum sample mean is given by

ȳh =
1

nh

nh∑
i=1

ŷ∗i (3)

where

ŷ∗i =
1

fmi

∑
j∈U2i

yj

is an estimate of the i-th network mean, y∗i , based on a SRSWR of size fmi.
U2i denotes the sub-sample of units selected in the i-th network.

In the following results, the properties of the proposed estimator are con-
sidered.
Result 1 µ̂y is an unbiased estimator of the population mean µy.

Proof See Appendix A.

Result 2 By using the theory of conditional moments and taking into account
the different phases of sampling the design-variance of µ̂y is given by

v(µ̂y) =

H∑
h=1

v(Ŵhȳh) + 2

H−1∑
h=1

H∑
t=h+1

cov(Ŵhȳh, Ŵtȳt). (4)



Title Suppressed Due to Excessive Length 5

The variance term in equation (4), for h = 1, is given by

v(Ŵ1ȳ1) =
1

nNf

[
N1 −

N − n
N − 1

(1−W1)f −W1f

]
σ2
b1

+ Ȳ 2
1

N − n
n(N − 1)

W1(1−W1). (5)

while, for h = 2, 3

v(Ŵhȳh) =
1

nN

[
Nh∑
i=1

σ2
wi

fmi
+

(N − n)(Nh − 1)

N − 1
σ2
bh

]

+ Ȳ 2
h

N − n
n(N − 1)

Wh(1−Wh) (6)

where σ2
wi

=
∑
i∈Ai

(yi−y∗i )2

mi−1 is the within-network variance of the i-th network,

σ2
bh

=
∑Nh

i=1
(y∗i−Ȳh)2

Nh−1 is the between-network variance in stratum h and Ȳh is
the mean of stratum h.

The covariance term in equation (4) is given by

cov(Ŵhȳh, Ŵtȳt) = −ȲhȲt
N − n
n(N − 1)

WhWt. (7)

Proof See Appendix B.

Result 3 An estimator of v(µ̂y) is given by

v̂(µ̂y) =

H∑
h=1

v̂(Ŵhȳh) + 2

H−1∑
h=1

H∑
t=h+1

ˆcov(Ŵhȳh, Ŵtȳt). (8)

For h = 1 the variance term in (8) is given by:

v̂(Ŵ1ȳ1) =
1

nNf

[
NŴ1 −

N − n
N − 1

(1− Ŵ1)f − Ŵ1f

]
σ̂2
b1

+
[
ȳ2

1 − v̂(ȳ1)
] N − n
n(N − 1)

Ŵ1(1− Ŵ1) (9)

where

σ̂2
b1 =

1

fn1 − 1

∑
i∈R2

(yi − ȳ1)
2

(10)

and

v̂ (ȳ1) =


[

1

fn1
− 1

NŴ1

]
+

1− Ŵ1

fn2
[
Ŵ 2

1 − N−n
n(N−1)Ŵ1(1− Ŵ1)

]
 σ̂2

b1 . (11)

For h = 2, 3 the variance term in (8) is given by:
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v̂(Ŵhȳh) =
1

nN

[
nh∑
i=1

σ̂2
wi

fmi
+

(N − n)(NŴh − 1)

N − 1
σ̂2
bh

]

+
[
ȳ2
h − v̂(ȳh)

] N − n
n(N − 1)

Ŵh(1− Ŵh) (12)

where

σ̂2
wi

=
1

fmi − 1

∑
i∈U2i

(yi − ŷ∗i )
2

(13)

σ̂2
bh

=
1

nh − 1

nh∑
i∈1

(ŷ∗i − ȳh)
2

(14)

and

v̂ (ȳh) =
1

nhNŴh

nh∑
i=1

σ̂2
wi

fmi
+
NŴh − nh
NŴhnh

σ̂2
bh
. (15)

The covariance term in (8) is given by:

ˆcov(Ŵhȳh, Ŵtȳt) = −ȳhȳt
N − n
n(N − 1)

ŴhŴt. (16)

Proof See Appendix C.

3 Simulation study

In this section a simulation study will be conducted in order to evaluate the
properties of the mean estimator proposed in equation (1) together with those
of the variance estimator proposed in equation (8).
The survey variable is simulated as a realization of a Poisson cluster process
(Diggle, 2003) within a lattice of 60×60 = 3600 squared units. The number of
parents is set to 6, and they are randomly placed in the study area. A Poisson
distribution with mean equal to 100 is used to assign to each parent a set of
offsprings. The offsprings are located at a radial distance from the center of the
parent cluster selected from an Exponential distribution with mean r = 1.5,
and at a random angle selected from a Normal distribution with mean Φ = 180
and variance equal to 602. This lead to a rare and clustered population with
mean µ = 0.17, standard deviation σ = 1.53 with a proportion of non-zero
units equal to 5%.
In order to study the effect of the correlation between the survey and the
auxiliary variable, two variables, X∗ and Z∗ are simulated using the same
Poisson cluster process modifying only, for the variable Z∗, the mean of the
Normal distribution set to Φ = 0. In this way, X∗ and Y turn out to have
a high level of correlation (ρX∗,Y = 0.95). A lower level of correlation is,
instead, observed between Z∗ and Y (ρZ∗,Y = 0.75). In order to implement
the proposed ACDS-PS design, X∗ and Z∗ are transformed into two binary
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Table 1 Expected sampling effort of ACDS-PS and initial sample of ACS

n1 ACDS-PS ACS
E(vaux) E(vy) c2 nACS

30 75 27
5 18
20 13

60 140 50
5 34
20 25

variables X and Z. For example, X was defined as X = 1 if X∗ > 0 and X = 0
otherwise. For the couple X,Y , 2.6% of the units have both X and Y greater
than zero. For the couple Z, Y , the percentage drops to 1.7%.
M = 15000 Monte Carlo samples are simulated from the following designs:
ACDS-PS, ACDS and ACS. The estimators used in each design are µ̂y for
ACDS-PS, an Horvitz-Thompson type estimator [equation (2) of Félix-Medina
and Thompson (2004)] for ACDS and the Horvitz-Thompson estimator for
ACS.
Both ACDS-PS and ACDS are carried out with initial samples of size n =
30, 60 selected by SRSWOR. Whenever the auxiliary variable is equal to one,
the adaptive search is conducted into a neighborhood consisting into the four
plots sharing a common boundary line. The two-phase adaptive designs differ
in the second phase sampling. Under ACDS, the networks are sub-sampled by
SRSWOR, whereas, under ACDS-PS, networks are sub-sampled in the strata
formed after the first phase. The ACDS-PS design is implemented by setting
the number of strata to H = 3 and the strata are identified by setting Q equal
to the median of the sizes of the networks selected in the first phase. The
sampling fraction at the second phase was set to f = 0.5 in all the strata.
The three designs are compared under the same total expected cost. The cost
function is defined as CT = c1vaux + c2vy, where c1, c2 and and vaux and vy
are the per element costs and the sampling effort of the first and the second-
phase sampling, respectively. In determining vaux, the edge units selected in
the first adaptive phase are also counted. Two values of c2 are considered:
c2 = 5, 20. In this way we are considering situations in which observing the
survey variable is five times or twenty times more expensive than observing the
auxiliary variable. Once CT is computed for ACDS-PS, the initial sample of
the ACS design (nACS) is set so to have the same expected total cost E(CT ).
The expected sampling effort of ACDS-PS together with the size of the initial
sample of the ACS design are reported in Table 1. Sampling effort for ACDS
is not reported since it is equivalent to ACDS-PS.

The performance of each estimator is evaluated by its relative efficiency
with respect to the sample mean ȳ under SRSWOR. In particular, the relative
efficiency of an estimator µ̂ is computed as follows:

Re(µ̂) =
σȳ

rMSE(µ̂)
(17)
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Table 2 Relative efficiency of the adaptive designs

Population c2 ACDS − PS ACDS ACS
n = 30 n = 60 n = 30 n = 60 n = 30 n = 60

x, y
5 1.62 1.64 1.21 1.24 1.23 1.25
20 1.89 1.93 1.44 1.46 1.21 1.24

z, y
5 1.35 1.39 1.21 1.22 1.23 1.25
20 1.59 1.64 1.43 1.43 1.21 1.24

Table 3 Relative bias and relative mean squared error of the ACDS-PS variance estimator

Population RB RMSE
n = 30 n = 60 n = 30 n = 60

x, y -0.025 -0.015 0.158 0.083
z, y -0.019 0.004 0.507 0.236

where σȳ =
√

N−n
Nn σ with n = CT

c2
and rMSE(µ̂) =

√
1
M

∑M
j=1(µ̂j − µ)2.

Results for both populations are listed in Table 2 for different initial sample
sizes, n, and different marginal costs of measuring the auxiliary variable, c2.
As expected, with rare and clustered populations all the adaptive designs
are more efficient than SRSWOR. Furthermore, both ACDS and ACDS-PS
improve their efficiency from c2 = 5 to c2 = 20, i.e. in presence of an increase
of the relative cost of measuring the response variable with respect to the
auxiliary variable. ACDS shows better results than ACS when c2 = 20 and
it performs as ACS when c2 = 5. On the other hand, ACDS-PS results to be
the best design reporting more pronounced gains in relative efficiency when
the auxiliary and the response variables have higher correlation. The initial
sample size n seems to not affect the pattern of the performances of the designs
considered in the simulation.
In Table 3 the performance of the variance estimator (8) is evaluated by its
relative bias and its relative root mean squared error (rMSE over the standard
deviation). Results show that the approximation provided for the variance is
very accurate and nearly unbiased.

4 Application

The proposed ACDS-PS design is used for targeting a rare and clustered epi-
phytic lichen community in a forest area of the Northern Apennines (N-Italy),
characterized by several species of of conservation concern (Nascimbene et al,
2013). In particular, we refer to the species of Lobarion communities which are
considered an important indicator of sustainable forest management (Camp-
bell and Fredeen, 2004; Nascimbene et al, 2010) because they are strictly de-
pendent on forest structure and dynamics (Nascimbene et al, 2010; Giordani
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et al, 2015). In this study, the following species of Lobarion communities are
targeted:

– Collema nigrescens (Huds.) DC.
– Fuscopannaria ignobilis (Anzi) P.M. Jφrg.
– Leptogium burnetiae C.W. Dodge
– Lobaria pulmonaria (L.) Hoffm.
– Lobarina scrobiculata (Scop.) Nyl.
– Nephroma laevigatum Ach.
– Nephroma resupinatum (L.) Ach.
– Nevesia sampaiana (Tav.) P.M. Jφrg., L. Lindblom, Wedin & S. Ekman
– Pannaria conoplea (Ach.) Bory
– Parmeliella testacea P.M. Jφrg.
– Parmeliella triptophylla (Ach.) Müll. Arg.
– Pectenia plumbea (Lightf.) P.M. Jφrg., L. Lindblom, Wedin & S. Ekman
– Peltigera collina (Ach.) Schrad.
– Ricasolia amplissima (Scop.) De Not. (chloromorph and cyanomorph).

These species have been recorded in a survey area of c.a. 2.2Km2 in Lame
Forest (Val d’Aveto, Ligurian Apennines, NW-Italy). The study area was di-
vided into 5456 plots of size 20 × 20 m (white plots in Fig. 1). The area

Fig. 1 Sampled plots in Lame Forest area.

has a considerable naturalistic relevance and is characterized by mixed forest
formations (chestnut, beech, pine forests), with different management, inter-
spersed with grasslands and shrubs. Although the Lame Forest is an optimal
site for species of conservation interest (Nascimbene et al, 2013), the lichen
species under consideration are rare and present a clustered distribution on
both large and local scales. In particular, the targeted lichen species are often
associated to particular habitats, such as chestnut, or to structural charac-
teristics of the same, for example chestnut orchards with very large trees or
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isolated trees (Matteucci et al, 2012). Due to the biological characteristics of
these organisms, the ACDS-PS design may be useful to improve the detection
probabilities for rare species by achieving a cost-effective sampling effort.
In the first phase, an ACS sample is selected with an initial SRSWOR sam-
ple of size n = 60 units (red plots in Fig. 1). The auxiliary information used
in this first phase is a binary variable corresponding to the presence-absence
of Chestnut plantations coverage. The resulting ACS sample is constituted
by K = 56 distinct networks (gray plots in Fig. 1). The latter are classified
(post-stratification) into three strata (L1, L2, L3) on the basis of their size, by
setting Q = 60. The strata represent networks of size one, small and large
sizes, respectively.
In the second phase, a stratified random sampling with proportional allocation
is taken in each stratum to observe the survey variable y, the total number of
trees colonized by at least one of the target species. For each strata, the sam-
pling fraction is set to 0.3. The ACDS-PS sample is composed by n = 231 plots
of which 47 networks of size one in L1, that is units which did not meet the
condition; 6 small size networks (size 26, 38, 29, 16, 25, 51) in strata L2 (green
plots in Fig. 1) and 3 large size networks (size 236, 82, 115) in strata L3 (yellow
plots in Fig. 1). In the whole survey area, a total of 2944 trees (standard error
estimate equal to 515) were estimated to host at least one Lobarion species.
Apparently, this is enough to ensure the conservation of Lobarion community
in the forest, against the pressure of large scale disturbance factors, such as
climate change, which is expected to halve by 2050, the presence of Lobar-
ion species in Italian sites where the taxa currently occur (Nascimbene et al,
2016). Despite the considerable total number of colonized trees in the survey
area, at plot level, the average number of trees with at least one target species,
was very low with µ̂y = 0.5396 and v̂µ̂y

= 0.0943. This may lead to fine scale
extinction events, which in turn, might affect the effectiveness of dispersal and
establishment of new propagules throughout the forest, interrupting the entire
population dynamic.
The choice of the ACDS-PS design is driven by the relative cost of phase 1 to
phase 2 samples, that is approximately equal to 1/50. Indeed, the evaluation
of the auxiliary variable required about 1 hour for 500 plots compared to ca.
30 minutes per plot for measuring the survey variable in the field. Moreover,
the time needed for fieldwork significantly decreased for those plots which are
included in large networks (ca. 15 plots per hour) with respect to scattered
plots of stratum L1 and L2 (less than 10 plots per hour). A possible applicative
constraint of the ACDS-PS lays in its dependence on the cluster distribution
of the response variable: the more the target species is locally abundant and
clustered within the survey area, the more effective is the design. In the case
of our application, many target species resulted even more rare and scattered
than expected. Indeed, even though the auxiliary variable (occurrence of chest-
nut plantations) is highly correlated with the response variable, it is not able
to discern other micro environmental characteristics of the habitat, which de-
cisively drive the occurrence of Lobarion species (Nascimbene et al, 2013).
Thought that these latter factors are hardly cognizable a priori, the ACSDS-
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PS produced a cost-effective trade-off between time needed for fieldwork and
reliability of the results. Our findings may contribute to enhance the conserva-
tion of Lobarion species at local scale. Indeed, notwithstanding these practical
limitations, the ACDS-PS design was able to detect several large clusters of
rare species, getting a fine-scale feature of their distribution even within each
sampled network.

5 Conclusions

To address the need for a successful environmental management system, new
designs for sample surveys have been developed in the last decades. The aim
is to provide targeted information at the desired spatial spread combining two
main requirements: to obtain information in a statistically valid way and to
efficiently use the available resources. This work is about a new sampling design
applied for targeting rare and sparsely distributed populations. A two-phase
strategy, which suitably merge the information available from an auxiliary
variable with the one provided by the survey variable, is proposed. The first-
phase sample is selected using an ACS design. This shall be done using an
inexpensive auxiliary variable. Networks from the first phase sampling are then
post-stratified according to their size. In the second-phase, subsample of units
are selected with stratified random sampling. The values of the survey variable
are measured only in the units of the second, smaller sample. Note that the
proposed sampling strategy employs stratification without requiring an a priori
delineation of the strata. Indeed, the strata sizes are estimated in the course of
the two-phase sampling process. Therefore, it is suitable for situations where
stratification is suspected to be efficient but strata cannot be easily delineated
in advance. The performance of such a design will depend on the extent to
which the total variance is reduced by stratification. We would like to stress
how the proposed design is different from some variants of ACS existing in
the literature which also contain the idea of stratification and the idea of a
two-phase strategy. The idea of stratification has already been introduced in
ACS (Thompson, 1991) where an initial sample of units is selected from a
population using stratified random sampling. Then in each strata, units are
added adaptively. The proposed two-phase strategy is also different from the
Two-Stage ACS (Salehi and Seber, 1997) where after taking a SRSWOR of
primary units, a subsample of secondary units is taken by means of ACS. The
ACDS-PS design is different since an ACS sample is selected in the first-phase
by means of an auxiliary variable and the network structure is used to select in
the second-phase a subsample of units by means of stratified random sampling.
In this study we consider only the case where the auxiliary information is a
binary variable. One of the possible developments of the current work could
be dealing with a continuous auxiliary variable. This will require, for instance,
the use of a ratio-type or regression-type estimator. Also, defining an optimal
criterion for selecting the stratum boundaries and the sampling fraction in
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each stratum to reduce the variance of the proposed estimator would be a
fruitful area of future research.
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A Unbiasedness of µ̂y

We have
E
(
Ŵhȳh

)
= E

[
E
(
Ŵhȳh | Ŵh

)]
= E

[
ŴhE

(
ȳh | Ŵh

)]
. (18)

For samples in which Ŵh is fixed, in every stratum the sample estimate ȳh is unbiased, i.e.

E
(
ȳh | Ŵh

)
= Ȳh. Then,

E
[
ŴhE

(
ȳh | Ŵh

)]
= E

(
Ŵh

)
Ȳh = WhȲh. (19)

Finally, E (µ̂y) = E
(∑H

h=1
Ŵhȳh

)
=
∑H

h=1
WhȲh = µy .

B Design variance of µ̂h

The variance term in equation (4) is equal to

v
(
Ŵhȳh

)
= E

[
v
(
Ŵhȳh | Ŵh

)]
+ v
[
E
(
Ŵhȳh | Ŵh

)]
= E

[
Ŵ 2

hv
(
ȳh | Ŵh

)]
+ Ȳ 2

h v
(
Ŵh

)
= E

[
Ŵ 2

hv
(
ȳh | Ŵh

)]
+ Ȳ 2

h

N − n
(N − 1)n

Wh(1−Wh). (20)

For h = 2, 3, the conditional variance in the first term of equation (20) can be obtained
using the results of Thompson (1990) for the Hansen-Hurwitz estimator and considering the
variability in the two phases of sampling.

v
(
ȳh | Ŵh

)
=

1

nhNh

Nh∑
i=1

σ2
wi

mi
+
Nh − nh

Nhnh
σ2
bh
. (21)

The second term of equation (21) is the variance of the Hansen-Hurwitz estimator in ordinary
ACS while the first term represents the increase in variance that arises because of the sub-
sampling of networks in the second phase.

Substituting equation (21) in the first term of (20), after some algebraic manipulations

and noting that E(nh) = nWh and E(n2
h) = N−n

N−1
nWh(1−Wh) + n2W 2

h we obtain

E
[
Ŵ 2

hv
(
ȳh | Ŵh

)]
=

1

nN

[
Nh∑
i=1

σ2
wi

mi
+

(N − n)(Nh − 1)

N − 1
σ2
bh

]
. (22)

Substituting (22) in equation (20) we obtain equation (6) of section 2.
In the first strata, h = 1, σ2

wi
= 0 since the networks have size one. Then equation (21)

changes to

v
(
ȳ1 | Ŵ1

)
=
N1 − n1f

N1n1f
σ2
b1

(23)

Substituting equation (23) in the first term of (20), after some algebraic manipulations
we obtain

E
[
Ŵ 2

1 v
(
ȳ1 | Ŵ1

)]
=

1

nNf

[
N1 −

N − n
N − 1

(1−W1)f −W1f

]
σ2
b1
. (24)
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Substituting (24) in equation (20) we obtain equation (5) of section 2.
Finally, applying the law of total covariance allows us to express the covariance term in

equation (4) as follows:

cov
(
Ŵhȳh, Ŵtȳt

)
= E

[
cov
(
Ŵhȳh, Ŵtȳt | Ŵh, Ŵt

)]
+cov

[
E
(
Ŵhȳh | Ŵh

)
, E
(
Ŵtȳt | Ŵt

)]
.

(25)

The first term is clearly zero and noting that cov
(
Ŵh, Ŵt

)
= − N−n

(N−1)n
WhWt we have

cov(Ŵhȳh, Ŵtȳt) = −ȲhȲt
N − n

(N − 1)n
WhWt. (26)

C Estimator of the variance of µ̂h

For h = 1, the variance term in (5) is estimated by equation (9). The first part is obtained by

substituting to W1 and σ2
b1

the estimators Ŵ1 = n1
n

and σ̂2
b1

. The second part is obtained

by substituting to Ȳ 2
1 its estimate ȳ21 − v̂ (ȳ1).

In order to compute the variance of ȳ1 = 1
fn1

∑
i∈R2

yi we have to consider that the

number of units n1 in the sample belonging to stratum L1 will vary from sample to sample.
We have that v (ȳ1) = E [v (ȳ1 | n1)] + v [E (ȳ1 | n1)] where the first term is the variance of
ȳ1 for samples in which n1 is fixed while the second term is zero. Thus

v (ȳ1) = E

[
N1 − fn1

N1fn1
σ2
b1

]
= E

[
1

fn1
−

1

N1

]
σ2
b1
. (27)

From Stephan (1945) an approximation of the expected value E
(

1
n1

)
is given by

E

(
1

n1

)
≈ =

1

nW1
+

1−W1

n2W 2
1

. (28)

By substituting the above result in equation (27) we end up with

v (ȳ1) =

[
1

fn1
−

1

N1
+

1−W1

fn2W 2
1

]
σ2
b1
. (29)

The estimator v̂ (ȳ1) of v (ȳ1) provided in equation (11) is obtained by estimating N1 with

NŴ1, W1 with Ŵ1, W 2
1 with Ŵ 2

1 −
N−n

n(N−1)
Ŵ1(1− Ŵ1) and σ2

b1
with σ̂2

b1
.

Similarly, for h = 2, 3, we can obtain the estimator (12) of the variance term in (6).


