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Abstract.10

Objective. Several scalp EEG functional connectivity studies, mostly clinical,11

seem to overlook the reference electrode impact. The subsequent interpretation12

of brain connectivity is thus often biased by the choice a non-neutral reference.13

This study aims at systematically investigating these effects.14

Approach. As EEG reference, we examined: the vertex electrode (Cz); the dig-15

itally linked mastoids (DLM); the average reference (AVE); and the Reference16

Electrode Standardization Technique (REST). As a connectivity metric, we used17

the imaginary part of coherency. We tested simulated and real data (eyes open18

resting state), by evaluating the influence of electrode density, effect of head model19

accuracy in the REST transformation, and impact on the characterization of the20

topology of functional networks from graph analysis.21

Main results. Simulations demonstrated that REST significantly reduced the dis-22

tortion of connectivity patterns when compared to AVE, Cz and DLM references.23

Moreover, the availability of high-density EEG systems and an accurate knowl-24

edge of the head model are crucial elements to improve REST performance, with25

the individual realistic head model being preferable to the standard realistic head26

model. For real data, a systematic change of the spatial pattern of functional27

connectivity depending on the chosen reference was also observed. The distor-28

tion of connectivity patterns was larger for the Cz reference, and progressively29

decreases when using the DLM, the AVE, the REST. Strikingly, we also showed30

that network attributes derived from graph analysis, i.e. node degree and local31

efficiency, are significantly influenced by the EEG reference choice.32

Significance. Overall, this study highlights that significant differences arise in33

scalp EEG functional connectivity and graph network properties, in dependence34

of the chosen reference. We hope our study will convey the message that caution35

should be taken when interpreting and comparing results obtained from different36

laboratories when using different reference schemes.37

38
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1. Introduction43

The organization of neuronal communication, integration, and functional binding44

in the brain is one of the central questions of neuroscience. Indeed, in the last45

decade it has become clear that an adequate picture of brain functioning can be46

obtained only by understanding the brain as a complex structural and functionally47

integrated system. Despite this concept is well defined, the idea of brain connectivity in48

neuroscience refers to several different and interrelated aspects of brain organization49

(Horwitz 2003, Friston 2011) that are well suited to be investigated with various50

structural or functional neuroimaging modalities. Electroencephalography (EEG),51

with its excellent temporal resolution, is a valuable and cost-effective tool for the study52

of brain functional interactions in a wide range of clinical and research applications53

(Friston & Frith 1995, Courchesne & Pierce 2005, Stam et al. 2007, Fogelson54

et al. 2013, Frantzidis et al. 2014, Van Schependom et al. 2014) since it offers a55

window into the spatiotemporal structure of phase-coupled cortical oscillations which56

have been hypothesized to serve as a mechanism for neuronal communication (Tallon-57

Baudry et al. 1996, Gross et al. 2006, Womelsdorf & Fries 2006, Fries 2009, Miller58

et al. 2009). The recent advances in EEG recording technologies, such as the59

development of high-density EEG systems, have allowed for increased topographic60

accuracy, with improved data quality and reduced preparation time (Tucker 1993,61

Holmes et al. 2010, Kleffner-Canucci et al. 2012). Additionally, the opportunity62

to combine scalp EEG with other imaging modalities, as well as with robotics63

or neurostimulation, has made this technique more attractive for many emerging64

research fields (Lebedev & Nicolelis 2006, Wolpaw & Wolpaw 2011, Bestmann &65

Feredoes 2013).66

Despite of the enormous technological advances, however, an old technical issue,67

namely the choice of the EEG reference, still lacks an accepted solution. This issue68

arises from the fact that, since only relative measures of electric potential are possible,69

the EEG signals represent the potential difference between each location over the scalp70

where the EEG electrodes are placed and a reference site. The latter should be an71

electrically neutral location to avoid any contamination of the signal of interest by the72

reference activity. However, there are not neutral locations in the human body (Nunez73

& Srinivasan 2006), and any choice for the reference location inevitably affects the74

EEG measurements. In order to minimize this effect, a number of different reference75

schemes have been proposed, including the vertex (Lehmann et al. 1998, Hesse76

et al. 2004), nose (Andrew & Pfurtscheller 1996, Essl & Rappelsberger 1998), neck77

ring (Katznelson 1981), uni-mastoid or ear (Başar et al. 1998, Thatcher et al. 2001),78

linked mastoids or ears (Gevins & Smith 2000, Croft et al. 2002), average reference79

(i.e. average potential over all EEG electrodes) (Offner 1950, Nunez et al. 2001), which80

provide a relatively neutral reference, at least with respect to the signal of interest.81

The issue of which of the above references is least biased and thus most appropriate82

for EEG measurement has long been debated (Kayser & Tenke 2010, Nunez 2010)83

with the preferential use of one referencing scheme over the others leading to de facto84

conventions for specific laboratories, research fields or clinical practices. The lack of an85

universally accepted reference scheme also represents a major obstacle for across-study86

comparability (Kayser & Tenke 2010). In this framework, the average reference has87

obtained large consensus thanks to a number of objective advantages over the other88

referencing strategies (Srinivasan et al. 1998, Ferree 2006, Nunez & Srinivasan 2006).89

The main reason comes from the observation that the surface integral of the electric90
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potential over a volume conductor containing all the current sources is zero (Bertrand91

et al. 1985). Thus, the average potential over all the electrodes provides a virtual zero-92

potential point, insofar as it approximates this integral. An alternative approach was93

later proposed by Yao (2001) with the Reference Electrode Standardization Technique94

(REST). REST transforms the EEG potentials referenced to any scalp point (or95

to a combination of them, such as the average) into the potentials referenced to a96

point located at infinity, far from all the possible neuronal sources and thus acting97

as an ideal neutral reference location. Despite the proven advantages (Srinivasan98

et al. 1998, Yao 2001, Ferree 2006, Nunez & Srinivasan 2006, Marzetti et al. 2007, Yao99

et al. 2007, Qin et al. 2010), however, the latter two approaches are also not completely100

free of limitations, mainly due to an insufficient electrode density, scalp coverage or,101

additionally and solely for the REST, to an inaccurate knowledge of the head model102

(Desmedt et al. 1990, Dien 1998, Junghofer et al. 1999, Yao 2001, Zhai & Yao 2004, Liu103

et al. 2015).104

Given the above considerations, our major concern at this point is not the105

search for the ideal neutral reference, rather the possible consequence in the analysis106

and interpretation of EEG data and functional connectivity induced by the chosen107

reference scheme. Indeed, the reference choice affects both spatial and temporal108

features of the recorded scalp potentials. In relation to the former, the effects of109

the reference on the shape of EEG potential maps turn into the sum or subtraction110

of a constant value to all the electrodes. This was nicely depicted as the effect of111

rising or receding the water level of a lake in a mountainous area, which changes112

the location of the zero water level mark, but not the landscape (Geselowitz 1998).113

The effects on the temporal aspects of the EEG data are even more marked, due114

to the fact that a non-neutral reference introduces some time-varying activity to the115

recordings at all the electrodes. This not only induces a distortion of the temporal116

waveforms of the EEG recordings, but also an alteration of their spectral properties,117

e.g. power spectrum, which is often less intuitive due to the required transformation.118

When it comes to estimating functional connectivity from electric scalp potentials,119

the addition of some activity to all the electrodes has the ultimate severe effect of120

creating spurious connections or suppressing existing ones. To date, relatively few121

studies have systematically investigated this effect. For instance, it has been shown122

that EEG correlation (Rummel et al. 2007, Müller et al. 2014) or coherence (Fein123

et al. 1988, Andrew & Pfurtscheller 1996, Essl & Rappelsberger 1998) are artificially124

inflated or deflated by the reference activity contributing to both of the signals involved125

in the estimation. Analogous results have been reported for the estimation of phase126

coherency (Guevara et al. 2005, Schiff 2005). Zaveri et al. (2000) investigated the127

effects on functional connectivity estimated from invasive intracranial EEG referenced128

to a scalp electrode signal, such as the one recorded from a single mastoid, and reported129

an increase in the magnitude squared coherence due to the contamination of the130

reference signal by artifactual activity. Marzetti et al. (2007) and Qin et al. (2010)131

reported bias effects on functional connectivity measured as coherence or imaginary132

coherency for various references, including the REST transformation for a spherical133

head model. More recently, Cohen (2014) found a striking difference among various134

spatial transformations (reference-based and reference-free) in connectivity analyses135

through inter site phase clustering (Gulbinaite et al. 2014). To the specific aim136

of studying EEG phase synchrony in infants, Tokariev et al. (2015) highlighted a137

dependency on the analysis montage for phase synchrony through imaginary phase138

locking value (Vinck et al. 2011). Taken together, these studies point towards a clear139
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effect of the reference choice on functional connectivity results, which, in turn, suggests140

that researchers may come to different conclusions when interpreting connectivity141

results obtained from different reference schemes. Along this line, it is also conceivable142

that the observed effects will impact network properties derived from graph theoretical143

analysis. Although graph theory is a widely used tool to assess functional networks,144

the influence of the reference choice on network properties has, to our knowledge,145

only been reported in Qin et al. (2010), where the authors found changes in network146

pattern and weighted density depending on the used reference.147

However, in spite of the fact that the choice of the EEG reference has been proven148

to have significant effects on the estimation of functional connections, it was and still is149

common to find studies in which functional connectivity is estimated from scalp EEG150

without using the REST or at least the average reference, a choice which poses the151

question of possible distortions in the connectivity estimates due to the referencing152

scheme (e.g., Shinosaki et al. 2003, Sauseng et al. 2005, Leistedt et al. 2009, Hori153

et al. 2013, Cavinato et al. 2015, Li et al. 2015, Alba et al. 2016, Ligeza et al. 2016, Naro154

et al. 2016).155

The aim of this paper is to contribute in the above direction by a quantitative156

investigation of the effects of the reference choice on EEG functional connectivity157

estimation, through simulated and real data. To this end, we considered the vertex158

(Cz), the digitally linked mastoid, the average reference, and the REST transformation159

as possible reference schemes, and the imaginary coherency (Nolte et al. 2004, Marzetti160

et al. 2007, Marzetti et al. 2008, Nolte & Mueller 2010) as a connectivity metric. In161

simulations, we also investigated the effects of the reference choice on EEG potentials162

for a direct comparison with previous studies (Yao 2001, Zhai & Yao 2004, Marzetti163

et al. 2007, Liu et al. 2015). By using simulations, we evaluated the influence of the164

electrode density in the performance of the above references. In addition, since it has165

been highlighted the need of using a realistic head model to improve the performances166

of REST in re-referencing potentials (Liu et al. 2015), we investigated the effects of167

possible inaccuracies in realistic head model construction, which arise due to, e.g.,168

finite resolution of head structural images, or when a standard realistic head model is169

used in place of the actual head model, as common practice. The contrast with the170

ideal three-shell spherical head model (Yao 2001, Yao et al. 2005) was also included for171

comparison with previous results. Finally, we used real data to evaluate the impact172

of the references on the characterization of the topology of functional networks from173

graph analysis applied to the EEG.174

2. Material and methods175

2.1. The EEG references176

This section gives an overview of the reference schemes most commonly used in EEG177

studies. Notation and formal definitions are also introduced for later use in this paper.178

2.1.1. Cephalic electrode reference to Cz. The reference to a common cephalic179

electrode is probably the simplest choice for the EEG reference electrode. In such180

an arrangement, all the electrodes measure the electric potential difference between181

the electrode site and the reference site. Since any location over the scalp is far from182

being electrically neutral, it is well recognized that the activity at the reference site is183

contributing to all the recordings.184
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In this work, the vertex electrode (Cz) (see figure 1) is used as cephalic reference185

electrode. This choice is commonly adopted as on-line reference. In any case, if186

another reference is chosen during data acquisition, data can always be re-referenced187

to Cz through an off-line transformation. Specifically, if we denote by Vm the N ×M188

matrix whose rows contain the EEG recordings measured with any original reference,189

i.e. with N being the number of electrodes and M being the number of time samples,190

then Vm can be re-referenced to Cz by subtracting, for each time sample, the potential191

measured at Cz from each channel. This is equivalent to applying to the original data192

the following linear transformation:193

VCz = TCzVm = (I−RCz)Vm (1)194

where I is the N ×N identity matrix and195

RCz =











0 0 . . . 1 . . . 0 0
0 0 . . . 1 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . 1 . . . 0 0











(2)196

is a N ×N matrix with non-zero entries, i.e. 1, only at the column corresponding to197

the Cz electrode.198

2.1.2. Digitally linked mastoids reference. The digitally linked mastoids (DLM)199

reference is another popular choice for the reference. It consists in a virtual reference200

obtained by averaging the potentials recorded at the left and right mastoids. Similarly201

to the Cz reference, the DLM reference can be obtained from any original reference by202

subtraction. Specifically, for each time sample, half of the potential difference between203

the electrodes located at the left and right mastoids is subtracted from each channel.204

The corresponding linear transformation is:205

VDLM = TDLMVm = (I−RDLM )Vm (3)206

where I is the N ×N identity matrix and207

RDLM =











0 0 . . . 0.5 . . . 0.5 . . . 0 0
0 0 . . . 0.5 . . . 0.5 . . . 0 0
...

...
...

...
...

...
...

...
...

0 0 . . . 0.5 . . . 0.5 . . . 0 0











(4)208

is a N ×N matrix with non-zero entries, i.e. 0.5, only at the columns corresponding209

to the electrodes located in the proximity of the left and right mastoids.210

2.1.3. Average reference. The average (AVE) reference, also called common average211

reference (CAR), consists in referencing the EEG potentials to the average potential212

of all the electrodes. The AVE reference can be computed by subtracting, for each213

time sample, the average of all the electrodes from each channel. The corresponding214

linear transformation is:215

VAV E = TAV EVm = (I−RAVE)Vm (5)216

where I is the N ×N identity matrix and217

RAVE =











1/N 1/N . . . 1/N 1/N
1/N 1/N . . . 1/N 1/N
...

...
...

...
...

1/N 1/N . . . 1/N 1/N











(6)218
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6

is a N ×N matrix with all the entries equal to 1/N .219

2.1.4. Reference Electrode Standardization Technique. The Reference Electrode220

Standardization Technique (REST) (Yao 2001) aims at constructing a virtual reference221

to a point located at infinity. REST exploits the fact that EEG potentials measured222

with any original reference and those referenced to a point at infinity are generated by223

the same (unknown) neuronal sources. Then, if we denote by S the unknown matrix of224

the source activities and by GREST the transfer matrix from these sources to sensors225

with a reference point at infinity, we have226

VREST = GRESTS (7)227

where VREST denotes the matrix of the reconstructed EEG recordings referenced to228

a point at infinity. A similar expression holds for the EEG recordings measured with229

any original reference, i.e.230

Vm = GmS (8)231

where Gm is the corresponding transfer matrix. Thus, by combining the above232

equations, it is possible to derive a linear transformationTREST that allows to directly233

estimate VREST from Vm as in:234

VREST = GRESTS = GREST (G
+
mVm) = TRESTVm (9)235

where (·)+ denotes the Moore-Penrose generalized inverse and236

TREST = GRESTG
+
m (10)237

The main advantage of REST is that we do not need to explicitly solve the238

EEG inverse problem, that is, we do not need to know the actual sources S to239

compute the transformation matrix TREST . Indeed, from equation (10), we observe240

that only the transfer matrices GREST and Gm are needed to build TREST . Since241

the potential generated by any source can be equivalently produced by a source242

distribution enclosing the actual sources (Yao 2000, Yao 2003), we may assume, for243

instance, an equivalent source distribution (ESD) on the cortical surface which encloses244

all the possible neural sources, and calculateGREST andGm based on this ESD rather245

than on the actual sources. The major advantage of this approach is that TREST246

does not depend on actual EEG data, but only on the head model, electrode montage,247

original reference and the spatial geometric information of the assumed ESD. In this248

study the ESD was assumed to be a discrete layer of current dipoles forming a closed249

surface, in analogy with previous studies (e.g. Marzetti et al. 2007, Yao 2001, Yao250

et al. 2005).251

2.2. Connectivity estimation by imaginary part of coherency252

In the present study, the imaginary part of coherency (Nolte et al. 2004) is used as253

a measure of functional connectivity between EEG signals. We here briefly recall its254

definition and properties for later use in this paper.255

Let vi(t) and vj(t) be the time series of signals recorded by two EEG electrodes,256

namely i and j, with any given reference. Their cross-spectrum is defined as257

Cij(f) =
〈

v̂i(f)v̂
∗
j (f)

〉

(11)258

where v̂i(f) and v̂j(f) are the complex-valued Fourier coefficients of (eventually259

windowed) data segments in which vi(t) and vj(t) are divided, ∗ denotes complex260
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conjugation, and 〈·〉 denotes expectation value, i.e. the average over a sufficiently261

large number of segments. Coherency is defined as the cross-spectrum normalized by262

power, i.e.263

Cohij(f) =
Cij(f)

(Cii(f)Cjj(f))
1/2

(12)264

whose magnitude ranges from 0 to 1.265

Coherency is a complex-valued function of frequency, and is essentially a measure266

of how the phases of signals at a specific frequency are coupled. To see this, let267

us rewrite the Fourier coefficients v̂i(f) and v̂j(f) in terms of their amplitude and268

phases (in the following, the dependence on frequency will be omitted for the ease of269

reading), i.e. v̂i = ai exp(ıϕi) and v̂j = aj exp(ıϕj), with ı being the imaginary unit.270

Then coherency becomes271

Cohij(f) =
〈aiaj exp(∆ϕ)〉
(

〈a2i 〉
〈

a2j
〉)1/2

(13)272

where ∆ϕ = ϕi − ϕj denotes the phase difference between the signals recorded273

by electrodes i and j at a specific frequency. It turns out that coherency is the274

expectation value of ∆ϕ weighted with the product of the signal amplitudes, apart275

for a normalization factor. If the phases of the two signals are not coupled, ∆ϕ is a276

random number, and thus coherency vanishes.277

A serious concern for scalp EEG connectivity analysis is represented by the278

artifacts of volume conduction (Nunez et al. 1997, Schoffelen & Gross 2009, Srinivasan279

et al. 2007, Winter et al. 2007). These are essentially due to the low spatial resolution280

of the EEG, namely two sensors can record from the same brain area, opening the281

possibility for spurious interactions between sensors even in the absence of true brain282

interactions. Almost all the measures of EEG connectivity, including EEG coherency,283

are highly sensitive to mixing artifacts.284

To address the issue in relation to coherency, it has been suggested to use the imaginary285

part of coherency, inasmuch this quantity is robust to artifact of volume conduction286

(Nolte et al. 2004). Indeed, a nonvanishing imaginary part of coherency requires a non-287

zero value for ∆ϕ to be observable. Thus, it cannot be generated by the superposition288

of independent neuronal sources, regardless of the number of sources and how they are289

mapped into sensors, provided that this mapping is instantaneous, i.e. with no phase290

distortions, which is in fact an excellent approximation for frequencies below 1KHz291

(Stinstra & Peters 1998). This obviously implies that the imaginary part of coherency292

is only sensitive to processes time-lagged to each other, whereas perfectly synchronous293

sources, i.e. for which ∆ϕ = 0, do not contribute to the imaginary part of coherency294

but only to its real part and therefore cannot be detected using the imaginary part295

of coherency alone. Also, by considering only the imaginary part of coherency,296

which measures amplitude weighted phase coupling, it is not possible to differentiate297

between a change in the magnitude of coherency (i.e., coherence) and a change in the298

phase relationship, because the magnitude and the phase of complex-valued coherency299

require both real and the imaginary part to be reconstructed. Demanding to observe300

this difference and still retaining the robustness to volume conduction would require301

the application of non-linear methods (Chella et al. 2014), which is subject to ongoing302

research.303
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2.3. Simulations304

A simulation study was carried out to investigate the effects of the reference choice305

on EEG potentials and functional connectivity. Since a point located at infinity306

would act as an ideal neutral reference, we quantitatively evaluated these effects307

by contrasting the potentials and imaginary part of coherency values obtained from308

the EEG referenced to each of the above described references to the same quantities309

obtained from the EEG referenced to infinity.310

2.3.1. Head model and EEG electrodes. Ten different realistic head shapes were used311

in our simulation in order to take into account possible effects induced by individual312

anatomical features, as will be motivated in more detail in section 2.3.6 describing313

the simulation repetitions. Specifically, the head shapes were obtained from the314

segmentation by Curry 6.0 software (Neuroscan Compumedics USA, Ltd. - Charlotte,315

NC, USA) of the MRI whole-head images of the ten subjects recruited for the real data316

experiment described in this paper (see section 2.4.1). For each subject, a realistically317

shaped head model was constructed, consisting of a volume conductor and a source318

space. The volume conductor included three compartments, i.e. brain, skull and scalp,319

while the source space consisted in a three-dimensional grid uniformly sampled in the320

volume encompassed by the cortical mantle, with a 5 mm step. Relative conductivities321

were assumed equal to 1.0 for the brain and the scalp, and 0.02=1/50 for the skull.322

The spatial resolution for the shells delimiting the above compartments, i.e. inner323

skull, outer skull and skin, were set equal to 5, 7 and 8 millimetres, respectively.324

The full EEG sensor layout consisted of 128 electrodes which were fitted on the325

outermost shell of the head model, in accordance with the positions provided by the326

10-5 electrode system (Oostenveld & Praamstra 2001). Since the performances of the327

AVE and the REST are expected to depend on the electrode density (e.g. Nunez &328

Srinivasan 2006, Liu et al. 2015), different EEG layouts were realized by varying the329

number of electrodes over the scalp and used in the simulation study. Specifically, we330

considered four different layouts:331

• 21 electrodes, i.e. 19 electrodes located in accordance with the International 10-20332

system (Jasper 1958) with the addition of the TP9 and TP10 electrodes;333

• 34 electrodes, i.e. a selection of the electrodes from the 10-10 system (Chatrian334

et al. 1985);335

• 74 electrodes, i.e. the whole 10-10 electrode system (Chatrian et al. 1985);336

• 128 electrodes, i.e. a selection of the 10-5 electrode system (Oostenveld &337

Praamstra 2001).338

A schematic representation of the different electrode layouts is given in figure 1. All339

the electrode subsets provide an approximatively uniform coverage of the whole scalp.340

Moreover, they have been chosen in such a way that the more dense subset includes341

the more sparse subset (i.e. the 128-electrode subset includes the 74- , the 34- and342

the 21-electrode subset, the 74-electrode subset includes the 34- and the 21-electrode343

subset, and so on). In this way, the observed differences are ascribable only to different344

electrode densities, and not to a different coverage of the scalp.345

2.3.2. Generation of simulated EEG recordings. Given the head model for each of346

the ten subjects and the locations of the EEG electrodes for one of the above defined347

layouts over the scalp, 5 minute EEG recordings, sampled at 500 Hz, were simulated by348
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9

Figure 1. EEG electrode layouts used in simulations. From left to right: 21
electrodes, i.e. 19 electrodes located in accordance with the International
10-20 system with the addition of the TP9 and TP10 electrodes; 34
electrodes, i.e. a selection of the electrodes from the 10-10 system; 74
electrodes, i.e. the whole 10-10 electrode system; and 128 electrodes, i.e. a
selection of the 10-5 electrode system.

first generating a set of brain sources and then by solving the EEG forward problem.349

All sources were modeled as single current dipoles randomly located and oriented in350

the brain volume. The set of sources included 2 interacting sources plus 4 uncorrelated351

sources, as described below:352

• interacting sources : 2 interacting sources of stochastic activity around 10 Hz.353

Specifically, we first generated the timecourse of a source, say s1(t), by band-pass354

filtering white Gaussian noise around 10 Hz, with 0.5 Hz bandwidth, and then355

we set the activity of a second source, say s2(t), to a time-delayed copy of s1(t),356

i.e., s2(t) = s1(t − τ). The time delay τ was 10 milliseconds. For data filtering357

we used a Butterworth filter, performing filtering in both the forward and reverse358

directions to ensure zero phase distortion.359

• noisy sources : 4 uncorrelated sources of broadband white Gaussian noise between360

0.5-100 Hz. The signal-to-noise ratio (SNR) at 10 Hz was set equal to 1, with361

the SNR being calculated as the ratio between the mean variance across channels362

of the signal generated by interacting sources and the mean variance of signal363

generated by noisy sources.364

The EEG forward problem was solved by using an analytic expansion of the EEG365

lead field for realistic volume conductors (Nolte & Dassios 2005). This approach,366

for known sources, allows calculating, in an approximate form, the theoretical EEG367

potential referenced to a point at infinity. In order to reproduce realistic experimental368

conditions, the EEG recordings were contaminated with a low level of either white369

Gaussian noise or iso-spectral noise to mimic the instrumentation noise. In particular,370

the iso-spectral noise was generated from the noiseless EEG recordings by using the371

method of Prichard & Theiler (1994) for surrogate time-series generation. The SNR of372

both white Gaussian noise and iso-spectral noise was set to 10. The EEG recordings373

generated with this procedure are thus the theoretical EEG potentials referenced to374
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10

a point at infinity that will be used as gold standard for comparison with the other375

references. In the following, the theoretical reference to a point at infinity will be376

denoted as INF, and the corresponding potentials as VINF , which actually reads as377

a N ×M matrix, with N being the number of EEG electrodes and M the number of378

time samples.379

2.3.3. Re-referencing the simulated data. Datasets for the different EEG references380

discussed above were derived for each subset of electrodes. Specifically, the datasets381

referenced to Cz, DLM and AVE were directly obtained from the recordings referenced382

to INF, VINF , i.e. by subtracting from all the electrodes, respectively, the signal at383

Cz electrode, the average between the signals at TP9 and TP10 electrodes (the latters384

being located in the proximity of the left and right mastoids), and the average signal385

over all the electrodes.386

The REST re-referencing was performed on the datasets previously referenced to387

Cz, the latter being, among the references concerned in this study, the one which388

is typically used as online reference for actual EEG measurements. It is known that389

the performance of REST depends on the accuracy of the head model used for the390

computation of the transformation matrix, with a more accurate head model resulting391

in a better potential reconstruction (Nunez 2010, Yao 2001, Yao et al. 2005, Zhai &392

Yao 2004). In order to investigate this effect, we performed the REST re-referencing393

using four different head models which deviate, to different extents, from the head394

model used for the generation of the simulated data, as explained in the following:395

• Spherical head model. The first case aims at investigating the condition where396

no knowledge of subject’s head anatomy is available (e.g., no MRI images were397

acquired) and, thus, a spherical head model is used for the computation of398

the REST transformation matrix. Specifically, we assumed a volume conductor399

consisting of three concentric spheres delimiting the brain, the skull and the scalp,400

with relative conductivities equal to 1.0 (for brain and scalp) and 0.02=1/50401

(for skull), while the ESD was constrained over a closed surface formed by a402

spherical cap and a transverse plane. The dimensions of the three concentric403

spheres and of the spherical cap were based on standard head dimensions404

provided by the MNI-152 template (Fonov et al. 2009, Fonov et al. 2011).405

The particular choice of a three-concentric-sphere model has been performed406

in analogy with previous studies investigating the effectiveness of the REST407

(Marzetti et al. 2007, Yao 2001, Yao et al. 2005). This case will be referred408

to as REST spherical.409

• Standard head model. This case is similar to the previous one, except for a410

standard realistically shaped head model used in place of the spherical model.411

Specifically, we used the head model obtained from the segmentation of the412

MNI-152 template (Fonov et al. 2009, Fonov et al. 2011). Head tissue relative413

conductivities were set equal to 1.0 for brain and scalp, and 0.02=1/50 for skull.414

This case will be referred to as REST standard.415

• Inaccurate head model. Here we assume that subject’s whole-head MRI images416

are available, and thus an individual (i.e. per subject) head model can be used for417

the computation of the REST transformation matrix, but we hypothesize that418

such a head model is corrupted by possible inaccuracies, e.g. due to finite MRI419

spatial resolution or errors in the segmentation of MRI images. This condition420

was simulated by slightly perturbing the geometry of the head model used for421

Page 10 of 33CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  JNE-101056.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

the generation of EEG simulated recordings. Specifically, each vertex of the422

meshes representing the cortex and the three-shell volume conductor were shifted423

by a fixed displacement, i.e. 3 millimetres, in random directions. Tissue relative424

conductivities were kept equal to 1.0 for brain and scalp, and 0.02=1/50 for skull.425

This case will be referred to as REST real perturbed.426

• Exact head model. The last case aims at investigating the condition in which an427

exact knowledge of the subject’s head model is available. This was achieved by428

considering, in the computation of the REST transformation matrix, the same429

head model used for the generation of simulated EEG recordings. This case will430

be referred to as REST real exact.431

For each head model, the REST transformation matrix was computed by assuming432

an equivalent source distribution (ESD) consisting of 4000 current dipoles randomly433

located and normally oriented over the cortical surface. Specifically, the chosen434

number of current dipoles, i.e. 4000, was the result of a preliminary simulation study435

investigating the effects of the ESD discretization on REST performance, which is436

described in section S.1 of the Supplementary Material. The computation of the437

transformation matrix required roughly 27 seconds on a desktop PC (Intelr i5 - 2400438

CPU @ 3.10 GHz; RAM 8 GB). A schematic representation of the ESD and the volume439

conductor model for all the above cases is given in figure S.3 of the Supplementary440

Material.441

In summary, for each simulated data, seven different datasets were obtained442

from the re-referencing of VINF , which were denoted as: VCz , VDLM , VAV E ,443

VREST spherical, VREST standard, VREST real perturbed and VREST real exact.444

2.3.4. Coherency analysis. The generated EEG recordings were divided into 1 second445

non-overlapping segments. Within each segment, data were Hanning windowed,446

Fourier transformed and the imaginary part of coherency at 10 Hz was estimated447

between each pair of EEG electrodes. The end result is a square N × N448

matrix, with N being the number of EEG electrodes, where the entry in the i-449

th row and j-th column reads as the value of the imaginary part of coherency450

between the recordings at electrodes i and j. Following the notation introduced451

for potentials, the imaginary part of coherency matrices resulting from different452

EEG referencing conditions were denoted as: ImCohINF , ImCohCz, ImCohDLM ,453

ImCohAVE , ImCohREST spherical, ImCohREST standard, ImCohREST real perturbed454

and ImCohREST real exact.455

2.3.5. Performance criteria. For each EEG electrode subset (i.e. 21, 34, 74 and 128456

electrodes) and for each re-referencing condition, the distortion of the EEG potentials457

induced by the reference choice was measured as the relative error (RE) between the458

re-referenced EEG recordings and the EEG recordings referenced at infinity, according459

to the following definition:460

REVX
=

||VX −VINF ||F
||VINF ||F

(14)461

where || · ||F denotes the matrix Frobenius norm and X reads, in turn, Cz, DLM, AVE,462

REST spherical, REST standard, REST real perturbed and REST real exact.463
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Similarly, the effects of different EEG references on connectivity analysis were464

evaluated by defining a relative error for the imaginary part of coherency matrices as:465

REImCohX
=

||ImCohX − ImCohINF ||F
||ImCohINF ||F

(15)466

with || · ||F and X as in (14).467

2.3.6. Simulation repetitions and statistics. In order to take into account multiple468

source configurations, the simulations were performed by randomizing source locations469

and orientations. Moreover, the shape of the realistic head model used for the470

generation of simulated EEG data was varied among the 10 different realistic shapes471

used for this simulation study (see section 2.3.1). In particular, the reason for varying472

the head shape relies on the fact that the results obtained for the REST in the event473

that a standard head model is used for the computation of the transformation matrix474

(i.e. the REST standard condition) might depend on the mismatch between subject’s475

individual anatomy and the standard MNI-152 template, i.e. the former being used for476

the EEG data generation and the latter for the EEG data recovering. One-hundred477

simulations were performed for each different head shape, for a total amount of 1000478

simulation repetitions.479

The contrast between the different EEG referencing conditions has been480

performed by looking at the distributions of the relative errors, i.e. REVX
and481

REImCohX
, from all simulation repetitions. Statistical analysis for the contrast482

between referencing conditions consisted in non-parametric paired sample statistics,483

i.e Wilcoxon signed-rank test. The statistical significance level was set at p < 0.05.484

2.4. Application to real EEG recordings485

To study the effects of the choice of the reference in actual EEG measurements, we486

analyzed EEG data recorded during eyes open resting state. Specifically, we evaluated487

the effects on connectivity patterns as revealed by the imaginary part of coherency.488

Moreover, we investigated whether network properties based on graph theoretical489

analysis, which can be calculated from coherency patterns, are influenced by the EEG490

reference choice.491

2.4.1. Data acquisition and preprocessing. Ten healthy adult subjects (gender: 2F,492

8M; age: 20-29 years) were recruited for the experiment. Written consent and local493

ethical committee agreement were obtained. Subjects were requested to sit in a quiet494

and dimly lit room and to fix a cross in front of them. Measurements consisted of 10495

min of continuous eyes-open resting state activity. The EEG signals were recorded496

using a 128-sensor HydroCel GSN net (Electrical Geodesics, Inc. - Eugene, OR, USA)497

referenced to Cz. The electrode impedance was kept below 100 kΩ. Data was sampled498

at 1 kHz. The locations of the EEG channels on the scalp and of three fiducial points499

(nasion, left and right pre-auricular point) were measured by a 3D digitizer (Polhemus,500

Colchester, VT, USA).501

High resolution whole-head anatomical images were acquired using a 3-T Philips502

Achieva MRI scanner (Philips Medical Systems, Best, The Netherlands) via a 3D503

fast field echo T1-weighted sequence (MP-RAGE; voxel size 1 mm isotropic, TR = 8.1504

ms, echo time TE = 3.7 ms; flip angle 8◦, and SENSE factor 2). The coregistration of505
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EEG electrode locations with the MRI volume was performed by aligning the fiducial506

points in the two modalities.507

A preprocessing step was carried out before proceeding with data analysis.508

The signals from electrodes located over the face and neck were taken out because509

contaminated by muscular activity. The number of available channels was thus equal510

to 110. Raw data were band-pass filtered at 0.5-100 Hz. All recordings were visually511

inspected and the segments of data containing spike artifacts were removed. An512

Independent Component Analysis (ICA) was also performed for instrumental and513

biological artifact removal. Specifically, ICA was performed by using the FastICA514

algorithm with deflationary orthogonalization and tanh nonlinearity (Hyvärinen &515

Oja 2000). The extracted independent components were visually inspected and516

classified as artifactual components or as components of brain origin on the basis517

of their topographies, power spectral densities and timecourses. The independent518

components classified as artifactual were rejected. Particular attention was paid to519

the rejection of artifacts from the eyes, heart and neck muscles. For a between-subjects520

comparison, the channels which were possibly missing from the set of 110 channels (i.e.,521

taken out because extremely noisy or damaged) were interpolated from clean signals522

by using spherical spline interpolation functions (Perrin et al. 1989) available in the523

FieldTrip software package (Oostenveld et al. 2011). Specifically, the interpolation was524

necessary for only one channel in three out of the ten subjects and for two channels525

in two out of the ten subjects. Interpolation ensured that, to study the effects of the526

choice of the EEG reference on connectivity analysis, the full set of 110 electrodes could527

be taken into account. Both the contrast of the imaginary part of coherency patterns528

and the contrast of two graph theoretical measures (degree and local efficiency) were529

thus based on the full square matrices of size 110×110 containing the values of the530

imaginary part of coherency between all pairs of electrodes.531

2.4.2. Re-referencing the EEG recordings. The EEG signals were acquired using532

an electrode montage referenced to Cz. Other EEG referencing, i.e., DLM, AVE533

and REST, were then obtained from the original referential montage by using534

the transformations (1), (3), (5) and (9) as already discussed in section 2.3.3 for535

the re-referencing of simulated data, with one exception in relation to the REST.536

Specifically, as still being interested in investigating the effects of the head model on the537

performance of REST, in actual experimental conditions it is not possible to contrast538

a real exact head model with a real perturbed head model, the exact knowledge of head539

geometry and conductivity being allowed only in idealized simulations. Therefore, only540

one realistic head model will be considered in the following along with the spherical and541

standard models, which is the one obtained from the segmentation of individual MRI,542

and which is presumably equivalent to the real perturbed head model hypothesized543

in simulations. Such a head model will be simply referred to as real (rather than544

real perturbed or real exact). To perform the REST re-referencing, an equivalent545

source distribution was assumed consisting of 4000 current dipoles randomly located546

and normally oriented over the cortical surface, while the relative conductivities were547

assumed equal to 1.0 for the brain and the scalp and 0.02=1/50 for the skull.548

2.4.3. Coherency analysis. For each re-referenced dataset, the signals were divided549

into 1 second non-overlapping segments. Within each segment, data were Hanning550

windowed, Fourier transformed and the imaginary part of coherency was estimated551
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between each electrode pair. The resulting frequency resolution was 1 Hz. The552

subsequent steps of the coherency analysis were restricted to the Alpha band (8-12553

Hz). In particular, we focused around the individual (per-subject) frequency within554

the Alpha band where the imaginary part of coherency showed its maximum (e.g. ∼ 10555

Hz). The analysis was performed for each subject and for each re-referenced dataset556

separately. Group level matrices for the imaginary part of coherency for the different557

references were obtained by averaging over subjects. In order to quantitatively558

evaluate the differences between the referencing conditions, a dissimilarity measure559

defined as one minus the squared Pearson correlation coefficient i.e., dr = 1 − r2,560

between the vector-like data obtained by unfolding the matrices in the different561

referencing conditions was calculated. Note that dr ranges from 0 (no dissimilarity)562

to 1 (complete dissimilarity).563

2.4.4. Computation of network properties. The application of graph theory to the564

analysis of EEG connectivity data has been extensively studied and discussed in a565

number of publications (e.g. Rubinov & Sporns 2010, Stam & Reijneveld 2007) and566

the interested reader is addressed to those references. However, for the sake of clarity,567

some basic principles and definitions of graph analysis will be recalled in the following568

for unweighted and undirected graphs.569

The first step for applying unweighted graph theoretical analysis to connectivity570

matrices is to convert the connectivity matrix into a binary graph. A binary graph571

is a mathematical representation of a network, which is essentially reduced to a set572

of nodes (e.g., the EEG electrodes) and undirected connections between them. More573

specifically, in a binary graph, the connections between nodes either exist or do not574

exist, i.e. they do not have graded values. The connection status between two nodes575

i and j is thus represented by a binary value, i.e. aij : if two nodes are connected,576

aij = 1 and the nodes are said to be neighbours, otherwise aij = 0. The construction577

of a binary graph from a connectivity matrix is often performed by thresholding the578

connectivity matrix such that only a given percentage of all the possible connections579

are retained. Following this approach, the imaginary part of coherency matrices were580

converted into the corresponding binary graphs by retaining the 25% of strongest581

(both positive and negative) connections between electrodes.582

Once the connectivity matrices have been converted into the corresponding binary583

graphs, it is possible to characterize a number of attributes, including the degree and584

the local efficiency. In the following, we will focus on these two attributes, which have585

been indicated as of primary interest for the study of local properties of functional586

networks (Rubinov & Sporns 2010). The degree of connectivity for a node, say i, is587

defined as the total number of connections to other nodes, i.e.588

ki =

N
∑

j=1

aij (16)589

with N being the number of nodes. The functional interpretation of the degree is590

fairly simple: the value of the degree reflects the importance of an individual node in591

the network and, for this reason, it is often denoted as measure of node centrality. Less592

straightforward is the interpretation of the local efficiency (Latora & Marchiori 2001),593

which is an attribute of a graph’s node based on the concept of efficiency of the594

communication between nodes. The efficiency of the communication between two595

nodes, i.e. eij , is computed from their distance, i.e. dij , which is defined as the length596
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of the shortest among all (direct or indirect) paths linking the two nodes. For a597

binary graph, the length of a path can be computed as the number of connections it598

contains. The efficiency can then be defined as the reciprocal of the shortest path,599

i.e. ei,j = 1/dij. If there is no path, the path length is infinite and, consistently, the600

efficiency of communication between nodes vanishes. Given the efficiency between two601

nodes, the local efficiency for the node i, i.e. Eloc ,i, is defined as the average over the602

efficiencies calculated between all possible pairs of nodes in the sub-graph Ai, where603

Ai is the sub-graph formed only by the nodes connected to i, i.e. its neighbours, but604

not i itself. In formula, this is:605

Eloc ,i =
1

N ′(N ′ − 1)

∑

j 6=k

1

djk
(17)606

with the indices i and k running over theN ′ nodes forming the sub-graphAi. The local607

efficiency is a measure of how efficient is the communication between the neighbours608

of a given node when that node is removed (Latora & Marchiori 2001).609

For the actual analysis, the degree and the local efficiency were computed from the610

imaginary part of coherency matrices for each subject separately and for the different611

EEG referencing with the aim of evaluating possible effects of the reference electrode612

choice on graph attributes.613

The computation of the degree and local efficiency was performed by using614

the Brain Connectivity Toolbox (BCT, http://www.brain-connectivity-toolbox.net/)615

(Rubinov & Sporns 2010). The statistical comparison between the different EEG616

referencing for each graph attribute was performed with a paired sample t-tests. The617

statistical significance of the associated t-values was assessed through a non-parametric618

permutation test in which 10000 random permutation of reference labels were carried619

out. The permutation test was performed by using the FieldTrip software package620

(Oostenveld et al. 2011).621

3. Results622

3.1. Simulations623

The effects of the reference on EEG potential and connectivity estimation were624

quantitatively evaluated by measuring the relative error for potentials and for the625

imaginary part of coherency according to equations (14) and (15), respectively. The626

obtained results are presented in the following sections.627

3.1.1. Potentials. We first present the results obtained for noiseless simulated628

potentials. The respective relative errors (RE) are shown in figure 2. In each sub-629

figure, the histogram collecting the values of RE from the 1000 simulations repetitions630

is shown for a given combination of electrode number and EEG referencing condition.631

Specifically, the sub-figures on the same row correspond to the same electrode number,632

while the sub-figures on the same column correspond to the same referencing scheme.633

The mean RE value over all the simulation repetitions is indicated in the top-right634

corner of each sub-figure. In addition, in the rightmost side of figure 2, the z-values are635

shown for a non-parametric paired sample statistics, i.e. Wilcoxon signed-rank test,636

performed to contrast the RE distributions from the different referencing conditions637

(here labelled with a progressive number from 1 to 7) and for a specific electrode638

density.639
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Figure 2. Histograms of the relative error (RE) for noiseless EEG
potentials, i.e. for all combinations of number of EEG electrodes and
EEG referencing conditions. The histograms collect the data from 1000
simulation repetitions. The mean value for RE is denoted by m. For the
ease of visualization, the abscissa values for the histograms have been scaled
logarithmically. Rightmost side of each panel: z-values for non-parametric
paired sample statistics, i.e. Wilcoxon signed-rank test, performed for the
contrast of the RE distributions obtained in different EEG referencing
conditions, here labelled with a progressive number from 1 to 7, and for a
specific electrode density.

We observe that, regardless of the number of electrodes, the mean value of RE for the640

Cz reference (∼ 0.813) is much larger than those obtained for the other referencing641

conditions. Lower values for the mean RE are achieved when using the DLM reference642

(∼ 0.295), although these values are still larger if compared to those obtained for AVE643

and REST reference. Importantly, the mean value of RE for Cz and DLM reference644

does not depend on the number of EEG electrodes. The AVE reference turns out to645

be a better choice than the DLM and Cz reference, as demonstrated by the RE being646

effectively reduced. We also noticed that the RE values increase from 0.13 (on average)647

in case of 21 electrodes to 0.23 (on average) in case of 128 electrodes. Finally, the648

REST largely outperforms all the other references when the head model is accurately649

known, i.e. in the REST real exact condition. Specifically, RE ≤ 0.05 (on average)650

and decreases as the number of electrodes increases, i.e. down to RE = 0.02 (on651

average) for the 128 electrode array. If the knowledge of the head model is inaccurate,652

the performance of the REST progressively worsens, as shown by the increase of the653

RE obtained for the REST re-referencing using a real perturbed, a standard or a654

spherical head model. In any case, even when a spherical head model is used, REST655

performs better than AVE reference, while the benefits of improved electrode density656

for reducing the RE, which were observed in the real exact condition, apparently657
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diminish (i.e. for the real perturbed condition) or vanish (i.e. for the standard and658

spherical conditions).659

Statistical analysis by a Wilcoxon signed-rank test allowed to confirm that the above660

discussed results are statistically significant as shown in the rightmost side of figure661

2. Here, the z-scores for all the pairwise comparisons of the RE distributions from662

the different referencing conditions and for a specific electrode density are reported.663

A positive z-scores indicates that the reference condition listed on the vertical axis664

exhibits a RE which is larger (in a statistical sense), and thus a worse performance,665

than the one of the reference condition listed on the horizontal axis, and vice versa666

for a negative z-score. Clearly, the plotted z-score matrices are antisymmetric, while667

the different EEG references have been intentionally sorted in ascending performance668

order. All the z-scores are significant for a p-value p < 0.001, thus confirming that the669

effects of using different EEG references are significantly different.670

The above scenario changes when we turn to the case of EEG potentials corrupted671

by either white Gaussian or iso-spectral instrumentation noise (SNR=10). The672

corresponding results are summarized in figure 3. For the case of white Gaussian noise673

(panel a), we first observe an overall increase of the RE for all of the investigated674

reference conditions, except for the AVE reference, whose performance does not675

substantially change due to the addition of noise, especially for denser electrode arrays.676

In the comparison between the different reference performances, REST still remains677

the best choice, although it must be noted that the RE for the REST reference becomes678

similar to the one of the AVE reference if a spherical head model is assumed. The679

observed differences in the RE distributions are all significant at the p < 0.001 level680

(Wilcoxon signed-rank test), or at the p < 0.05 level only for the contrast between681

AVE and REST spherical when 128 EEG electrodes are used, except for the contrast682

between REST standard and REST real perturbed when 74 EEG electrodes are used683

(not significant).684

When we come to the case of iso-spectral noise (panel b), we observe small changes in685

the performances of the various EEG references due to the modified noise conditions.686

Specifically, there is an overall slight decrease in the mean value of RE in comparison687

to the case of white Gaussian noise, except for the AVE reference, for which we already688

noted negligible effects due to the addition of simulated instrumentation noise. These689

small changes, however, do not affect the contrast between the different EEG reference690

performances. Indeed, REST still remains the best choice of reference, or at least it is691

comparable to the AVE reference if a spherical head model is assumed. The observed692

differences in the RE distributions are all significant at the p < 0.001 level, or at the693

p < 0.05 level only for the contrast between REST real perturbed and REST real exact694

when 128 EEG electrodes are used.695

3.1.2. Coherency maps. We examined the RE distributions for the imaginary part696

of coherency maps at 10 Hz (which we recall to be the main frequency of the simulated697

source signals) estimated from the simulated EEG datasets. While differences were698

found for potentials in the contrast between the noiseless and the noisy case, no699

noteworthy differences emerged for the imaginary part of coherency maps. This700

is conceivably due to the fact that the contribution to coherency of the simulated701

noise, being either white Gaussian or iso-spectral noise, rapidly approaches zero as702

the average over signal segments of equation (12) is performed. Indeed, for the sake of703

completeness, in the following we will discuss the more general case of the imaginary704

part of coherency maps derived from noisy potentials.705
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Figure 3. Histograms of the relative error (RE) for EEG potentials
corrupted by either white Gaussian instrumentation noise (panel a) or iso-
spectral instrumentation noise (panel b), i.e. for all combinations of number
of EEG electrodes and EEG referencing conditions. The SNR was set
to 10. The histograms collect the data from 1000 simulation repetitions.
The mean value of RE is denoted by m. For the ease of visualization,
the abscissa values for the histograms have been scaled logarithmically.
Rightmost side of each panel: z-values for non-parametric paired sample
statistics, i.e. Wilcoxon signed-rank test, performed for the contrast of the
RE distributions obtained in different EEG referencing conditions, here
labelled with a progressive number from 1 to 7, and for a specific electrode
density.
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To illustrate the effects of the reference choice on the imaginary part of coherency,706

we first discuss an exemplary case chosen from all the simulation repetitions.707

Specifically, we consider the case in which the EEG recordings were generated by two708

interacting source dipoles of unit strength, vertically oriented and located in proximity709

of the left and right supramarginal gyri. In this example, the EEG sensor recordings710

were corrupted by white Gaussian noise. Figure 4a shows the corresponding maps of711

the imaginary part of coherency at 10 Hz, derived from VINF (INF) (see section 2.3.2)712

and for all the simulated references. For the visualization of the connections between713

all pairs of electrodes, we used the following procedure originally introduced by Nolte714

et al. (2004). The single large circle is the two-dimensional representation of the scalp.715

At the location of some electrodes (i.e. merely chosen among all the electrodes for the716

sake of visualization) small circles are placed representing the scalp and containing the717

imaginary part of coherency of the respective electrode (marked as a black dot) with all718

other 128 electrodes. These maps have been here shown only for the full 128 electrode719

set, whereas the maps for the other electrode subsets, i.e. including 21, 34 and 74720

electrodes, have not been shown. From a qualitative comparison of these maps, we721

observe that the imaginary part of coherency for all the REST referencing conditions722

show a spatial pattern which is very similar to that for INF. Small differences can be723

found for the AVE reference, while the major differences exist for the DLM and Cz724

reference.725

The above observations are supported by a quantitative comparison of the726

distributions of the RE values from all the 1000 simulations repetitions. In figure727

4(b), we show the histograms of the RE for the imaginary part of coherency estimated728

from the EEG recordings with additive white Gaussian noise. Similarly to what we729

have done in figures 2 and 3 for potentials, the histograms of the RE are shown for730

all the combinations of electrode numbers and EEG referencing conditions. Overall,731

we observe that RE for the imaginary part of coherency has the same basic features732

which were discussed in the previous section in relation to noiseless potentials. In733

particular, we are interested in the contrast of different EEG references that can be734

directly inferred from the z-score values (all significant at the p < 0.001 level) from735

pairwise comparisons of the RE distributions, which are shown in the rightmost side736

of figure 4(b). We can observe that the largest RE is obtained when Cz or DLM are737

used as a reference. Lower values were achieved for the AVE reference, although the738

REST provides superior performances than all the other EEG references in reducing739

the bias of the reference choice on the estimation of the imaginary part of coherency.740

Similar results can be observed when we turn to the case of iso-spectral noise741

corrupting signals. The corresponding histograms of the RE for the imaginary part742

of coherency have been shown in figure S.4 of the Supplementary Material. In the743

contrast between the two simulated noise conditions, no substantial differences were744

found in the RE distributions for the Cz, DLM and AVE references. We observed745

a slight increase of the RE (on average) for REST for the case of iso-spectral noise,746

regardless of the assumed head model, although the REST still remains the best choice747

of reference, in comparison to the other EEG references.748

3.2. Real EEG recordings749

The imaginary part of coherency matrices for spontaneous eyes-open resting state750

activity were estimated at the individual frequency within the Alpha band where751

the imaginary part of coherency showed its maximum. The analysis of the effects of752
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Figure 4. Panel (A): imaginary part of coherency maps at 10 Hz for one
example of simulation repetition. These maps have been shown only for the
full 128 electrode set. The map of the imaginary part of coherency for the
theoretical reference at infinity (INF) is shown, and can be compared to the
ones estimated for Cz, DLM, AVE, REST spherical, REST standard, REST
real perturbed and REST real exact reference. Panel (b): histograms of the
relative error (RE) for the imaginary part of coherency estimated from
the EEG recordings with additive white Gaussian instrumentation noise
(SNR=10). The histograms are shown for all combinations of number of
EEG electrodes and EEG referencing conditions, and collect the data from
1000 simulation repetitions. The mean value for RE is denoted by m. For
the ease of visualization, the abscissa values for the histograms have been
scaled logarithmically. In the rightmost side of the panel (b): z-values
for non-parametric paired sample statistics, i.e Wilcoxon signed-rank test,
performed for the contrast of the RE distributions obtained in different
EEG referencing conditions, here labelled with a progressive number from
1 to 7, and for a specific electrode density.
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the EEG reference choice on connectivity mapping and on the estimation of network753

properties, i.e. node degree and local efficiency, derived from graph theoretical analysis754

on the above matrices are presented below.755

3.2.1. Coherency maps. The results of coherency analysis for different EEG756

referencing conditions are summarized in figure 5. Here, we show the group average757

all-to-all connectomes based on the imaginary part of coherency between pairwise758

EEG electrodes (panel a) and the corresponding scalp maps (panel b) for the actual759

EEG measurements. Unlike simulations, where the theoretical EEG data referenced760

at infinity were available, for real data it is difficult to assess which EEG reference761

best reflects the actual brain dynamics. Here, based on simulation results, we argue762

that REST real reference provides the best approximation of the reference at infinity763

and, thus, can be chosen as golden standard for comparison with other referencing764

conditions.765

In the comparison of the connectomes from different referencing conditions (panel766

a), we observe macroscopic differences in the connectivity structures revealed by767

these matrices. In order to quantitatively evaluate these differences, we used a768

dissimilarity measure defined as one minus the squared Pearson correlation coefficient,769

i.e. dr = 1 − r2, between the unfolded imaginary part of coherency matrix obtained770

for REST real and those obtained for the other referencing conditions. Based on771

the above definition, dr ranges from 0 (no dissimilarity) to 1 (complete dissimilarity).772

The obtained values for dr are listed in the following: dr=0.80 for the Cz reference,773

dr=0.33 for the DLM reference, dr=0.26 for the AVE reference, dr=0.06 for the774

REST spherical reference, and dr=0.01 for the REST standard reference. For a775

comprehensive comparison between all the EEG referencing condition pairs, the values776

of dr resulting from the contrast of all pairwise combinations of the EEG references777

are shown in figure S.5 of the Supplementary Material.778

Greater insight into the effect of the EEG reference choice on the estimation of779

imaginary part of coherency can be obtained by looking at the differences between780

the connectivity maps which are shown in panel b of figure 5. The imaginary part of781

coherency pattern obtained for REST real reference reveals an interesting interaction782

structure: the central electrodes are mostly interacting with the frontal and occipito-783

parietal ones, and vice versa. According to our considerations, this pattern has a784

straightforward interpretation in terms of the underlying brain interaction dynamics,785

that is, it reveals an interaction occurring between brain sources located in the786

central regions with other sources located in the frontal and occipital/central regions.787

Cz reference, in its turn, provides an interaction pattern which looks substantially788

different from the one obtained for REST real, with subsequent possible difficulties789

in the interpretation of actual brain interaction dynamics. Overall, DLM reference790

provides better results than Cz reference, even though the imaginary part of coherency791

maps are slightly shifted to the right, while major differences can be observed in the792

proximity of the left and right mastoids. AVE references shows a connectivity pattern793

which is very similar to the one obtained for REST real, while no difference can be794

visually appreciated in the contrast between REST spherical, REST standard and795

REST real.796

3.2.2. Systematic differences in Node Degree and Local Efficiency. The analysis of797

the effects induced by the reference on the estimation on network properties, such as798
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Figure 5. Imaginary part of coherency at the individual (per subject)
frequency within the Alpha band where the imaginary part of coherency
shows its maximum. Data have been averaged over subjects. the group
average all-to all-connectomes based on the imaginary part of coherency
between all EEG electrodes (panel a) and the corresponding maps (panel
b, including a detailed view of the maps for the imaginary part of coherency
with respect to channels C3 and P8) are shown for Cz, DLM, AVE, REST
spherical, for REST standard and REST real reference.
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node degree and local efficiency, are presented below.799

On the main diagonal of figure 6, we show, for each of the EEG referencing800

conditions, the patterns of the average node degree over the 10 subjects. As for

Figure 6. Impact of the EEG reference choice on the computation of the
Node Degree. Main diagonal: topographical maps of the Node Degree
for the different EEG referencing conditions. Off-diagonal: topographical
maps of t-values for the contrast between the different referencing
conditions by using a paired sample t-test; the black crosses mark the
channels showing significant differences at the p < 0.05 level based on a
permutation test (10000 randomizations).

801

coherency mapping, systematic differences arise from the contrast between different802

referencing conditions, which are only due to the choice of that particular reference.803

Specifically, REST real reference reveals a higher degree of connectivity for the804

electrodes located on the central and occipital regions. A similar pattern can be805

observed when REST standard reference is adopted. On the contrary, a noteworthy806

increase of connectivity on the occipital electrodes arises when REST spherical or807

AVE references are chosen, whereas more widespread differences can be observed for808
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DLM and Cz references. On the off-diagonals of figure 6, we show the maps of t-values809

for the contrast between the different referencing conditions by using a paired sample810

t-test. Here, we marked with a cross the channels showing significant differences at811

the p < 0.05 level based on a random permutation test. Statistical analysis confirmed812

the existence of systematic differences in the node degree value among the different813

referencing condition, with differences revealing specific spatial topographies.814

Similar considerations apply to the analysis of the local efficiency. Indeed, also815

in this case, significant differences can be observed by contrasting the patterns of the816

local efficiency for different referencing conditions, as illustrated in figure 7. These817

differences are also characterized by specific spatial topographies.

Figure 7. Impact of the EEG reference choice on the computation of
the Local Efficiency. Main diagonal: topographical maps of the Local
Efficiency for the different EEG referencing conditions. Off-diagonal:
topographical maps of t-values for the contrast between the different
referencing conditions by using a paired sample t-test; the black crosses
mark the channels showing significant differences at the p < 0.05 level
based on a permutation test (10000 randomizations).

818
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4. Discussion819

The aim of this study was to investigate the effects of the reference choice on scalp EEG820

connectivity estimation, including the analysis of the imaginary part of coherency and821

the characterization of functional network topology based on graph analysis applied to822

the data. This was first assessed in simulations, where four commonly used reference823

schemes, i.e. the Cz, the DLM, the AVE and the REST reference, were compared824

to the case of the reference to a point located at infinity, which behaves as the ideal825

EEG reference (Yao 2001, Nunez & Srinivasan 2006). Specifically, we evaluated the826

distortion induced in the values of imaginary part of coherency due to the use of827

the above references, and we examined the effects of the electrode density, sensor828

noise and, of specific interest for REST, of the head model accuracy. For a direct829

comparison with previous studies, the effects on EEG potentials were considered as830

well in simulations.831

We found that the Cz reference substantially alters EEG potentials and imaginary832

part of coherency values in comparison to all the other references. This is essentially833

due to the influence of the electrical activity at the reference site which, as expected,834

is non-neutral, thus resulting into a mismatch between the potential and connectivity835

values referenced to Cz and the respective values referenced to infinity. It is reasonable836

to expect that similar considerations apply to other cephalic references, e.g. the nose837

reference, which have not been explicitly addressed in this study but are potentially838

affected by the same issue. Although it has been sometimes argued that the839

mastoids are relatively inactive and, thus, the DLM might be a suitable choice for840

the reference, this was shown to be false (Dien 1998, Hagemann et al. 2001, Nunez841

& Srinivasan 2006), and also the findings of the present study do not support this842

view. Indeed, the DLM reference, while showing a better performance than the Cz843

reference, induces significantly larger distortions on EEG potential and imaginary844

part of coherency if compared to the AVE and REST references. We found that845

the electrode density does not affect the performances of Cz and DLM reference,846

which is reasonably due to all the electrodes being equally influenced by the reference847

activity. Moreover, the distortion of EEG potentials is enhanced by additional either848

white Gaussian or iso-spectral sensor noise. This can be regarded to as the effect of849

additional noisy activity on the reference signal.850

Although the AVE reference is often acknowledged as a quite neutral reference851

if used with a large number of electrodes, our findings showed that also the AVE852

reference is not completely free of biases, mainly due to the due to potential sampling853

being limited to the upper part of the head. Indeed, we found that the relative error854

for EEG potentials and imaginary part of coherency increases for increasing sensor855

density, reasonably due to the scalp coverage being still inadequate. These findings856

are in line with those of previous studies (Dien 1998, Nunez & Srinivasan 2006).857

Interestingly, the AVE reference performance is not changed by adding noise, especially858

for denser electrode arrays. This can be motivated by the fact that the contribution859

of the simulated noise to the average over signals rapidly decrease as the number of860

averaging signals increases.861

Our simulations demonstrated that the off-line transformation of EEG recordings862

performed by REST, in the attempt to estimate the scalp potentials with respect863

to infinity, substantially reduces the above reference effects. Since it has been argued864

that the REST reference performance might depend on the electrode density and head865

model uncertainty, we have demonstrated that, for a number of electrodes ranging from866
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21 to 128 and for various levels of accuracy in the knowledge of the head model, REST867

successfully reduces the bias introduced by other references. In particular, we showed868

that the availability of high-density EEG systems and an accurate knowledge of the869

head model are crucial elements to improve REST performance, in agreement with870

the findings of previous studies (Zhai & Yao 2004, Liu et al. 2015). In addition, we871

showed that a realistic head model based on the individual head anatomy is preferable872

to the one based on a standard head anatomy, especially when high density EEG is873

available. We also found that REST is sensitive to additional white Gaussian or874

iso-spectral sensor noise. This is essentially due to REST assuming the sources of875

the EEG recordings lying inside the equivalent source distribution (ESD). Since the876

instrumental noise is not generated by sources inside the ESD, the effectiveness of the877

standardization to a reference point at infinity becomes less accurate in comparison878

to the noiseless case (Zhai & Yao 2004). However, it must be noted that REST879

performs better than AVE reference even in presence of noise, except when a non-880

realistic three-shell spherical head model is used, for which the performances of REST881

and AVE reference were found to be similar.882

In this work, a particular emphasis has been placed on the comparison between883

REST and AVE reference, the superiority of one method over the other having been884

argument of some debates (Kayser & Tenke 2010, Nunez 2010). Based on the findings885

of our simulations, we concluded that REST can provide superior performances than886

AVE reference in reducing the reference bias if a head model based on either a standard887

or individual head anatomy is assumed, or even if an idealized (three-concentric sphere)888

head model is assumed and the noise is adequately suppressed.889

The analysis performed on real EEG data recorded during eyes-open resting890

state confirmed that the choice of the reference has a non-negligible effects on EEG891

connectivity analysis performed at sensor level. Since in actual experiments the892

EEG potentials referenced to infinity are not available, we evaluated the reference893

effects in comparison to the REST performed by using a realistic head model based894

on subject’s anatomy. Our findings highlighted a systematic change of the spatial895

pattern of functional connections estimated between scalp EEG electrodes depending896

on the chosen reference, consistently with the results from previous studies (Marzetti897

et al. 2007). The distortion of connectivity patterns was larger for the Cz reference, and898

progressively decreases when using, in turn, the DLM, the AVE, the REST spherical899

and the REST standard references. Strikingly, we also showed that the network900

attributes that rely on local graph properties, i.e. node degree and local efficiency,901

are significantly influenced by the EEG reference choice. This result extends previous902

findings on the dependence of network pattern and weighted density on the chosen903

reference (Qin et al. 2010). Overall, the above results raise non-trivial issues for904

the interpretation of scalp connectivity measures in terms of the underlying brain905

interaction dynamics. Especially, it must be noted that one should not treat the906

findings of different reference schemes as interchangeable, inasmuch as the choice of a907

particular reference induces significant and systematic changes in data analysis results.908

4.1. General comments on reference-free approaches909

Besides the methods concerned in this paper, when dealing with the issue of the EEG910

reference, the availability of reference-free techniques should also be considered. For911

instance, the Surface Laplacian (SL) (Hjorth 1975, Kayser & Tenke 2015, Nunez &912

Srinivasan 2006) is a mathematical transformation applied to the EEG scalp potentials913
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which is not biased by the reference effects. Indeed, the SL relies on the estimation of914

the spatial second derivatives of scalp EEG potentials, i.e. through either a nearest-915

neighbour approach (Hjorth 1975, Hjorth 1980) or a more accurate spline interpolation916

approach (Perrin et al. 1989). As a consequence, the SL is not affected by the917

addition (or subtraction) of a constant value to the potentials measured by all the918

EEG electrodes, which is, by itself, the act of referencing potentials. Despite of this919

advantage, however, the SL has the limitation of suppressing the activity of deep and920

distributed brain sources. This is essentially due to the spatial derivative acting as921

a high-pass spatial filter, which tends to isolate effects due to shallow and localized922

sources rather than to deep and distributed sources. Similar arguments apply to the923

Current Source Density approach (Nunez & Srinivasan 2006), which also relies on the924

estimation of the second derivatives of scalp potentials, and thus has the inherent925

limitation of suppressing broad scalp activities, which are actually very common in926

EEG.927

A different approach consists in the so-called bipolar EEG recordings. This928

approach is more popular in clinical work than in cognitive studies, and is routinely929

employed in the interpretation of scalp as well as intracranial EEG (Niedermeyer &930

Lopes da Silva 2005, Zaveri et al. 2006). Bipolar recordings consist in the measurement931

of the potential difference between pairs of closely spaced electrodes. The more the932

electrodes of any pair are close to each other, the better the recorded potential933

difference approximates the local gradient of the electric potential in the direction934

between the electrodes, which is roughly proportional to the current density tangential935

to the scalp (Srinivasan et al. 1996). In conventional bipolar schemes (or montages),936

e.g. the “double banana”, the electrode pairs are chosen in a sequential manner, i.e. the937

second electrode of the first pair is also the first electrode in the next pair (e.g., Fp1-938

F3, F3-C3, C3-P3, P3-O1, and so on). This strategy implicitly overcomes the issue939

of the EEG reference, since the contribution of the reference electrode is removed940

when computing the difference between the potentials of any pair of electrodes. In941

contrast to referential recordings, on which we specifically focused in this study,942

bipolar recordings can be a more effective strategy to remove artifact contamination,943

identify local activations, and provide a reference-free representation of phenomena944

under observation (Zaveri et al. 2006). However, similarly to the SL, this results in a945

suppression of large and distributed activations, due to the effect of spatial derivatives946

which is equivalent to a high pass spatial filter.947

Another strategy to get rid of the reference effects is to perform the connectivity948

analysis at the source level. Indeed, it has been shown that the choice of the EEG949

reference does not affect the inverse localization of neural active sources, at least for950

noiseless potentials (Geselowitz 1998, Pascual-Marqui & Lehamann 1993). Thus, once951

provided a solution to the EEG inverse problem, connectivity can be directly estimated952

between the activities of localized brain sources. This approach, however, raises the953

question of how accurate is the brain source reconstruction. It is well known, for954

instance, that high density EEG should be preferred over low density EEG to perform955

a reliable source reconstruction. The advantages and limitation of this approach will956

not be addressed here, as they go beyond the scope of this paper. Our aim was here957

to highlight how the choice of the reference affects the estimation brain connectivity958

inferred from scalp EEG, which still remains a standard practice for many research or959

clinical applications (e.g., Carlino et al. 2015, Herrera-Dı́az et al. 2015, van Straaten960

et al. 2015, Ligeza et al. 2016, Naro et al. 2016, Wang et al. 2016, Yuvaraj et al. 2016).961
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5. Conclusions962

In conclusion, the results of the present study have demonstrated that different963

references significantly alter the topography of EEG connectivity patterns.964

Accordingly, the choice of the EEG reference introduces a bias on the interpretation965

of these patterns in terms of brain interactions, as well as the characterization of966

network topology which can be derived from graph theoretical analysis applied to967

these data. These findings, which have been obtained by analysing the imaginary968

part of coherency estimated from the whole signal length, can be generalized to other969

connectivity metrics relying on either temporal or spectral properties of the data. This970

includes the study dynamic functional connectivity, i.e. functional connectivity varying971

as a function of time. In this case, we expect significant changes in the connectivity972

measures for each time interval in which the connectivity is observed, with subsequent973

difficulties in interpreting the results in terms of the time-varying properties of brain974

interactions.975

In order to reduce the effects of the reference choice on the analysis of EEG976

connectivity, we recommend the use of the REST reference. This approach will not977

only allow for an unbiased (or at least a less biased) analysis of the EEG data, but978

also facilitate the comparison of results obtained from different laboratories or stored979

with different references in databases collected over time, which is of fundamental980

importance for cross-laboratory studies and in clinical practice.981
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