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1. INTRODUCTION

Adaptive cluster sampling (ACS) is an attractive sampling design since it can perform

more efficiently than conventional designs for geographically rare and clustered populations

(Thompson, 1990). Because of its flexibility, ACS designs have been developed under different

settings by several authors. Thompson (1991) developed an ACS design in which the initial

sample is selected by stratified sampling while Salehi and Seber (1997) introduced two stage

adaptive cluster sampling. ACS in which the initial sample is selected by systematic sampling

was considered by Dryver et al. (2012). Applications of ACS include Smith et al. (1995) who

applied ACS to determine the density of Wintering Waterfowl population and Philippi (1995)

who estimated abundance of some rare plants using ACS.

Under the ACS design, the estimators usually make use of only the information provided

by the target variable. It is well known that the use of auxiliary information at the estimation

stage helps in improving the efficiency of the estimators of the population parameters when

the study variable y is highly correlated with the auxiliary variable x. Auxiliary information

could be obtained from different sources such as previous census data, satellite images and

sampling frames providing not only the unit identification labels but also the values of an

auxiliary variable such as temperature, rainfall, soil classification, habitat and community

attributes (Barabesi and Marcheselli, 2004; Salehi et al., 2013).

Estimators in this context that make use of auxiliary information are ratio and product

estimators. Ratio estimators are suitable when the correlation between y and x is highly

positive. On the other hand, if the correlation is high but negative, product estimators can

be used (Murthy, 1964).

Chao (2004) was the first to analyze the behavior of the ACS design when auxiliary

information positively correlated with the variable of interest is available. He proposed

a generalized ratio estimator based on the modified Horvitz-Thompson (HT) estimator

under the ACS design. Dryver and Chao (2007) proposed another ratio estimator under
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ACS based on the modified Hansen-Hurwitz (HH) estimator. Finally, Chao et al. (2011) and

Lin and Chao (2014) completed the view by improving the ratio estimators under adaptive

cluster sampling by making use of the Rao-Blackwell estimators.

In this paper we consider the case when the study and the auxiliary variables display

a negative correlation. In particular we present modified Horvitz-Thompson and Hansen-

Hurwitz product estimators for estimating finite population mean in adaptive cluster

sampling. Their properties are analyzed and their variance estimators are derived and

evaluated.

Product estimators are indeed useful whenever a high negative relationship between the

study and auxiliary variable is observed. In wildlife, negative correlation has been reported

between Buffalo and distance to water sources (Hopcraft et al., 2012; Bro-Jorgensen, 2003;

Winnie et al., 2008), small grazers (Grant’s and Thompson’s gazelle) and predators, middle

sized grazers (Topi and Coke’s Hartebeest) and food quality, Thompson’s gazelle and high

rainfall areas (Hopcraft et al., 2012).

In Section 2, the classical ACS designs with its corresponding estimators are presented.

Product estimation is developed in Subsection 3.1. Estimation under the ACS design for

negative correlated data is described in Subsection 3.2. Conditions under which the suggested

estimators have smaller mean square error than the HH and HT estimators under ACS and

the product estimator under SRS are derived in Section 4. An illustrative example is provided

in Section 5. A simulation study that compares the estimators under different settings is

given in Section 6. A real application on animal populations and GIS-derived environmental

variables is provided in Section 7. Discussion and conclusion are given in Section 8.
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2. ACS WITH ITS DESIGN UNBIASED ESTIMATORS

Consider a finite population ofN units in which a survey variable y takes values y1, y2, . . . , yN .

The target parameter is µy =
1
N

∑N

i=1 yi, the unknown population mean of the study variable

y. The ACS design starts with an initial sample of n units selected from a population of size N

by a conventional sampling design. If any of these initially selected units satisfies a condition

of interest, C, neighboring units are added to the sample and observed. If any other unit in

that neighborhood also satisfies C, further sampling is performed according to the defined

neighborhood. The process of adding neighborhood units continues until there are no units

in the neighborhood that satisfy C. The set of units satisfying condition C around the unit in

the initial sample form a network. In environmental surveys, the condition for extra sampling

is usually based on the count of a biological species while the neighborhood is usually defined

by spatial proximity. Thompson (1990) derived two design unbiased estimators for estimating

the population mean.

Consider a population partitioned into K distinct networks, the modified Horvitz-

Thompson estimator is given by

µ̂HT =
1

N

K∑

k=1

zky
∗

k

αk

(1)

where zk is an indicator variable which equals one if any unit of the k-th network is in the

initial sample, y∗k is the sum of y values in the k-th network while αk is the probability of

including unit i in the k-th network given by

αk = 1−

(
N−mk

n

)
(
N

n

)
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where mk is the size of the k-th network. The design variance of µ̂HT is given by

VHT =
1

N2

K∑

j=1

K∑

k=1

y∗jy
∗

k

(αjk − αjαk)

(αjαk)
(2)

where αjk is the joint probability of networks j and k being intersected by the initial sample

defined as

αjk = 1−

(
N−mj

n

)
+
(
N−mk

n

)
−
(
N−mk−mj

n

)
(
N

n

) .

The unbiased estimator of the variance of µ̂HT is given by

vHT =
1

N2

K∑

j=1

K∑

k=1

zjzky
∗

jy
∗

k

(αjk − αjαk)

(αjαkαjk)
. (3)

An alternative estimator is the modified Hansen-Hurwitz (HH) estimator given by

µ̂HH =
1

n

n∑

k=1

wyk (4)

where summation is over units sampled and wyk is the average of y values in the k-th network.

The design variance of µ̂HH is given by

VHH =
N − n

Nn

N∑

k=1

(wyk − µy)
2

N − 1
. (5)

The unbiased estimator of the variance of µ̂HH is given by

vHH =
N − n

Nn

n∑

k=1

(wyk − µ̂HH)
2

n− 1
. (6)
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3. PRODUCT METHOD OF ESTIMATION

Consider a population divided into N units and for each value yi of the study variable, there

is a value of the auxiliary variable xi, i = 1, 2, . . . , N . The aim is to estimate the population

mean µy of the variable of interest y, given that the population mean µx of the auxiliary

variable x is known. We first review the classical product estimator (Murthy, 1964) employed

quite effectively with SRS in the presence of negative correlation between study variable y

and auxiliary variable x. Then we propose two product estimators to be used with the ACS

design.

3.1. Product estimator under SRS

For a simple random sample of size n drawn without replacement, let ȳ and x̄ be the sample

mean estimators of µy and µx, respectively. The usual product estimator of the population

mean µy is given by

µ̂p =
ȳx̄

µx

(7)

whose bias and mean square error (MSE) are given by

B(µ̂p) =
N − n

Nn

Sxy

µx

and

MSE(µ̂p) =
N − n

Nn

[
S2
y +R2S2

x + 2RSxy

]
, (8)

respectively, with S2
y = 1

N−1

∑N

i=1(yi − µy)
2, S2

x = 1
N−1

∑N

i=1(xi − µx)
2, Sxy =

1
N−1

∑N

i=1(xi −

µx)(yi − µy) and R = µy

µx
.
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By defining Cy =
Sy

µy
and Cx = Sx

µx
, the MSE of the product estimator can be written as

MSE(µ̂p) = µ2
y(C

2
y + C2

x + 2ρxyCyCx)

with ρxy denoting the correlation coefficient between y and x. Murthy (1964) analyzed the

relative precision of the product estimator and showed that it is more efficient than the

sample mean if

ρxy < −
1

2

Cx

Cy

. (9)

3.2. Product estimator under ACS

The product estimator µ̂p assumes simple random sampling without replacement. In many

ACS survey studies, in addition to the variable of interest y, an auxiliary variable x may be

collected to improve estimation accuracy and precision. We present two modified product

estimators in order to extend the underlying idea of product estimation to the ACS sample

selection method. We further provide their bias along with their variance estimators.

3.2.1. The HH product estimator

The product estimator in (7) can be modified by substituting the sample means ȳ and x̄

with the corresponding HH estimator given in (4). The proposed product estimator for ACS

is given by

µ̂pHH =
µ̂HHy

µ̂HHx

µx

(10)

where µ̂HHy
and µ̂HHx

are the HH estimators of µy and µx, respectively.
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To obtain the bias, the variance and MSE we write

e0 =
µ̂HHy

− µy

µy

⇒ µ̂HHy
= µy(e0 + 1)

e1 =
µ̂HHx

− µx

µx

⇒ µ̂HHx
= µx(e1 + 1)

then

E(e0) = E(e1) = 0

E(e20) =
VHHy

µ2
y

E(e21) =
VHHx

µ2
x

E(e0e1) = ρHHxy

√
VHHy

VHHx

µyµx

where VHHy
and VHHx

are the variances of the HH estimators given in (5),

ρHHxy
=

VHHxy√
VHHy

VHHx

and

VHHxy
=

N − n

Nn

1

N − 1

N∑

k=1

(wyk − µy)(wxk − µx).
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Hence, the bias is given by

B(µ̂pHH) = E(µ̂pHH − µy)

= µyE [(1 + e0)(1 + e1)− 1]

= µyE(e0 + e1 + e0e1)

= µyρHHxy

√
VHHy

VHHx

µyµx

=
VHHxy

µx

. (11)

An unbiased estimator of the bias is given by

B̂(µ̂pHH) =
vHHxy

µx

where

vHHxy
=

(
N − n

Nn

)
1

n− 1

n∑

k=1

(wyk − µ̂HHy
)(wxk − µ̂HHx

).

An approximation of the variance of µ̂pHH is given by

var(µ̂pHH) ≈

(
N − n

Nn

)
1

N − 1

N∑

k=1

(wyk +Rwxk)
2.

An estimator for this variance is obtained from

v̂ar(µ̂pHH) ≈

(
N − n

Nn

)
1

n− 1

n∑

k=1

(wyk + R̂wxk)
2. (12)
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The MSE can be obtained by writing

MSE(µ̂pHH) = E(µ̂pHH − µy)
2

= µ2
yE(e0 + e1 + e0e1)

2

= µ2
yE(e20 + e21 + 2e0e1 + 2e20e1 + 2e0e

2
1 + e20e

2
1).

The MSE to the first order approximation is thus given by

MSE(µ̂pHH) ≈ µ2
y

(
VHHy

µ2
y

+
VHHx

µ2
x

+ 2ρHHxy

√
VHHy

VHHx

µyµx

)

≈ µ2
y

(
VHHy

µ2
y

+
VHHx

µ2
x

+ 2
VHHxy

µyµx

)
(13)

which can be estimated by

M̂SE(µ̂pHH) ≈ ȳ2

(
vHHy

µ̂2
HHy

+
vHHx

µ̂2
HHx

+ 2
vHHxy

µ̂HHy
µ̂HHx

)

where vHHy
and vHHx

are the variance estimator given in (6). A useful alternative formulation

for the MSE can be obtained by noting that ACS actually represents a sampling without

replacement of n networks with inclusion probability mk

N
. Let wy1, wy2, . . . , wyN be the

population network means of the y-values with variance S2
wy

=
∑N

i=1
(wyi−µy)2

N−1
and let

wx1, wx2, . . . , wxN be the population network means of the x-values with variance S2
wx
.

Furthermore, define the covariance between these two network populations as Swxy
=

1
N−1

∑N
i=1(wyi − µy)(wxi − µx). The HH estimators µ̂HHy

and µ̂HHx
simply correspond to

the sample mean estimator applied to the transformed populations of y and x, respectively

(Thompson and Seber, 1996; Dryver and Chao, 2007).
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Then, we have that VHHy
= N−n

Nn
S2
wy
, VHHx

= N−n
Nn

S2
wx
, VHHxy

= N−n
Nn

Swxy
and by

substitution in (13) we obtain

MSE(µ̂pHH) ≈
N − n

Nn
µ2
y

(
S2
wy

µ2
y

+
S2
wx

µ2
x

+ 2
Swxy

µyµx

)

≈
N − n

Nn
µ2
y

(
C2

wy
+ C2

wx
+ 2ρwxy

Cwy
Cwx

)
(14)

where Cwy
=

Swy

µy
, Cwx

= Swx

µy
and ρwxy

is the correlation at network level between y and x.

3.2.2. The HT product estimator

From the HT estimator in (1) we can derive another product estimator for ACS as follows:

µ̂pHT =
µ̂HTy

µ̂HTx

µx

. (15)

As for the HH product estimator we can derive the bias given by

B(µ̂pHT ) =
VHTxy

µx

(16)

and, to the first degree of approximation, the MSE given by

MSE(µ̂pHT ) ≈ VHTy
+R2VHTx

+ 2RVHTxy
(17)

where VHTy
and VHTx

are the variances of the HT estimators given in (2) and VHTxy
is the

covariance between µ̂HTy
and µ̂HTx

equal to

VHTxy
=

1

N2

K∑

j=1

K∑

k=1

∆jk

y∗j

αj

x∗

k

αk

with ∆jk = αjk − αjαk.
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With a straightforward use of notation, an alternative equivalent formulation can be given

as follows

MSE(µ̂pHT ) ≈ µ2
y

(
C2

HTy
+ C2

HTx
+ 2ρHTxy

CHTy
CHTx

)
. (18)

The MSE can be estimated by

M̂SE(µ̂pHT ) ≈ vHTy
+ R̂2vHTx

+ 2R̂vHTxy

where vHTy
and vHTx

are the variance estimators given in (3) and vHTxy
is the unbiased

estimator of VHTxy
given by

vHTxy
=

1

N2

K∑

j=1

K∑

k=1

∆̌jk

zjy
∗

j

αj

zkx
∗

k

αk

with ∆̌jk =
αjk−αjαk

αjk
.

An approximation of the variance of µ̂pHT is given by

var(µ̂pHT ) ≈
1

N2

K∑

j=1

K∑

k=1

∆jk

(y∗j +Rx∗

j )

αj

(y∗k +Rx∗

k)

αk

with variance estimate

v̂ar(µ̂pHT ) ≈
1

N2

K∑

j=1

K∑

k=1

∆̌jk

zj(y
∗

j + R̂x∗

j )

αj

zk(y
∗

k + R̂x∗

k)

αk

. (19)

4. EFFICIENCY COMPARISONS OF THE PRODUCT ESTIMATOR

The proposed product estimators for ACS will now be theoretically compared in terms of

efficiency with respect to

• standard ACS estimators with no use of auxiliary information
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• product estimator under SRS.

Since comparisons are based on the first order approximation of the MSE of the suggested

estimators, a simulation study will be provided in the next section to support the theoretical

findings.

4.1. Comparisons with ACS

Thompson (1990) derived the condition under which ACS is more efficient than SRS. We can

now analyze the condition under which it turns useful to use auxiliary information with ACS.

By means of (14) we can easily verify that MSE(µ̂pHH) < VHH , i.e. the product estimator

µ̂pHH is more efficient than the direct estimator µ̂HH when

N − n

Nn
µ2
y

(
C2

wy
+ C2

wx
+ 2ρwxy

Cwy
Cwx

)
<

N − n

Nn
S2
wy

which simplifies to

ρwxy
< −

1

2

Cwx

Cwy

. (20)

Analogously, by means of (18), we have that the product HT-type estimator µ̂pHT is more

efficient than µ̂HT , i.e. MSE(µ̂pHT ) < VHT if

ρHTxy
< −

1

2

CHTx

CHTy

. (21)

Both relations are similar to condition (9) which compares the product estimator with the

sample mean under SRS. However, conditions (20) and (9) are more easily interpretable since

they are linked to the population values of y and x. Indeed, ρwxy
measures the correlation

between y and x at the network level while ρxy is the correlation between y and x at unit

level. Similarly, Cwx
and Cwy

are the coefficient of variations of the population network values
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wxi and wyi while Cx and Cy are the coefficient of variations of the population values x and

y.

For the product HT estimator, the correlation coefficient ρHTxy
and the coefficient of

variations CHTy
and CHTx

depend on the network totals y∗j and inclusion probabilities αj .

Hence, condition (21) also relates somehow to the correlation and the variation of x and y

at the network level.

We will now focus on µ̂HH but the same considerations hold also for µ̂HT .

If at the network level, y and x have the same coefficient of variation then the product

estimator is better than the direct estimator if ρwxy
≤ −0.5. As the variability of the x

variable increases, more negative correlation ρwxy
is necessary to have the product estimator

more efficient than the direct one. As the variability of the x variable decreases, less negative

correlation ρwxy
is necessary to have the product estimator more efficient than the direct one.

When, for example, Cwx
= 2Cwy

then whatever the correlation ρwxy
, the product estimator

will always be less efficient than the direct estimator. When, for example, Cwy
= 2Cwx

, ρwxy

has to be less than −0.25 in order to have the product estimator more efficient than the

direct one.

The use of the auxiliary variable would be recommended when the correlation is present

at the network level because this will transfer to the value of ρwxy
. For rare and clustered

populations it would be difficult to find a situation in which Cwy
< Cwx

. The use of the

product estimator is recommended as long as it has a negative correlation with the y variable

and the y values are rare and clustered.

4.2. Comparison with product under SRS

Another useful comparison is with the product estimator under SRS. Let us write the MSE

of µ̂p in (8) in terms of the variances of ȳ and x̄ and the covariance between them. With a

14
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straightforward use of notation we have that

MSE(µ̂p) = Vȳ +R2Vx̄ + 2RVx̄ȳ.

By recalling (17) we have that MSE(µ̂pHT ) < MSE(µ̂p), i.e. µ̂pHT is more efficient than µ̂p

when

VHTy +R2VHTx + 2RVHTxy < Vȳ +R2Vx̄ + 2RVx̄ȳ. (22)

or, equivalently when

C2
HTy + C2

HTx + 2ρHTxyCHTyCHTx < C2
ȳ + C2

x̄ + 2ρxyCx̄Cȳ. (23)

A similar condition can be obtained for the HH product estimator µ̂pHH . By recalling (13)

we have that MSE(µ̂pHH) < MSE(µ̂p), i.e. µ̂pHH is more efficient than µ̂p when

VHHy +R2VHHx + 2RVHHxy < Vȳ +R2Vx̄ + 2RVx̄ȳ (24)

or, equivalently, by noting that ρwxy
= ρHHxy when

C2
HHy + C2

HHx + 2ρwxy
CHHyCHHx < C2

ȳ + C2
x̄ + 2ρxyCx̄Cȳ. (25)

The efficiency of the product estimators under ACS depends by the conjoint effects of three

factors:

• efficiency of ACS vs SRS for the y variable (VHTy vs Vȳ or VHHy vs Vȳ )

• efficiency of ACS vs SRS for the x variable (VHTx vs Vx̄ or VHHx vs Vx̄)

• size of the correlation at the network level, ρHTxy or ρwxy
and of the correlation at unit

level, ρxy.

These three factors interact with each other. Consider the situation in which the population
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y values are rare and clustered so to have ACS more efficient than SRS. In such a case, we

would have VHTy < Vȳ or, equivalently C2
HTy < C2

ȳ . In presence of a negative correlation

between y and x, the spread of the auxiliary variable may be such that the HT estimator

µ̂HTx is less efficient than x̄, i.e. VHTx > Vx̄. The final effect on the efficiency of µ̂pHT over µ̂p

will be positive if the efficiency gain of ACS over SRS for the y variable will overcome the

efficiency loss of ACS over SRS for the x variable.

Finally, one has to consider the values of ρHTxy and ρxy. Keeping fixed the previous two

factors, a correlation at the network level higher than a correlation at unit level will cause a

positive effect in terms of efficiency of µ̂pHT over µ̂p.

5. ILLUSTRATIVE EXAMPLE

To shed light on the computations, we consider two small populations of size N = 5 as shown

in Table A.1 where the condition to adaptively add adjacent units is C = (y : y ≥ 5). The

y values are from Thompson (1990) while the x values are such that the correlation at unit

level is equal to ρxy = −0.09 and the correlation at network level is equal to ρwxy
= −0.95.

The population means for y and x are 202.6 and 5.4 respectively.

[Table 1 about here.]

In Table A.2 are listed the
(
5
2

)
= 10 possible samples of ACS when an initial sample of size

n = 2 is selected by simple random sampling without replacement. In Table A.2, for each

sample we compute the estimators ȳ, x̄, µ̂HHy, µ̂HHx, µ̂HTy, µ̂HTx, µ̂pHH and µ̂pHT .

[Table 2 about here.]

The population values are such that condition (9) is not satisfied since ρxy = −0.09 is greater

than −
1
2
Cx

Cy
= −0.11. Product estimator is not suitable for this population under SRS. On

the other hand, due to the high value of correlation at network level product estimation turns
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out useful under ACS. Both conditions (20) and (21) are satisfied since ρwxy
= −0.95 is less

than −
1
2
Cwx
Cwy

= −0.16 and ρHTxy
= −0.69 < −

1
2

CHTx

CHTy
= −0.22. For this small example, the

most efficient estimator of µy is the product estimator µ̂HHp with an MSE equal to 13579.58.

6. SIMULATION STUDY

In this section we perform a simulation study in order to describe the situations in which the

use of an auxiliary variable together with an adaptive cluster design works most efficiently.

Artificial populations of the y variable were generated using the Poisson Cluster Process

(Diggle, 1983) with parameters λ1 and λ2. They represent the number of parents and the

number of offsprings, respectively. The offsprings are uniformly and independently allocated

around their parents at a radial distance selected from an exponential distribution with mean

equal to 0.5. The auxiliary variable x was simulated so to have a negative correlation with

the y variable at network level. The simulation setting is as follows:

• λ1 = 5, 10

• λ2 = 5, 10, 15, 50, 100

• correlation at network level: low (−0.1 < ρwxy
≤ 0), intermediate (−0.4 ≤ ρwxy

≤ −0.6),

high (ρwxy
≤ −0.8)

The combinations of the population parameters cover different degrees of rarity and

aggregation, from very rare and clustered populations (λ1 = 5, λ2 = 5) to more sparse and

less clustered populations (λ1 = 10, λ2 = 100) and different levels of network correlation

between x and y. This enabled the study of the suggested estimators to populations where

ACS or product estimation are known to perform better than the SRS mean estimator and

where ACS or product estimation are known to be less efficient relative to the SRS mean

estimator.

17



Environmetrics

ACS was set up with different values of the initial sample size n = 5, 10, 20 and 50 while

for SRS, the size of the sample was set to the empirical expectations of the sample size under

the adaptive designs. For each population we drew 50000 samples with the corresponding

sampling designs from which the values of the estimators µ̂p, µ̂HT , µ̂HH , µ̂pHH and µ̂pHT are

computed.

Detailed results of the simulation are presented in the Appendix. In particular, the relative

efficiency of each estimator computed with respect to SRS is displayed in Figures from A.1

to A.6. Relative bias of µ̂pHH and µ̂pHT is displayed in Tables A.1 and A.2 while relative bias

of the variance estimators v̂ar(µ̂pHT ) and v̂ar(µ̂pHH) are reported in Tables A.3 and A.4.

Finally, the accuracy of the MSE approximations MSE(µ̂pHH) and MSE(µ̂pHT ) is examined

in Tables A.5 and A.6.

6.1. Efficiency comparisons

With a low correlation at network level the proposed product estimators have a similar

behavior of the standard HH and HT estimators when λ1 = 5. It is observed a slight loss

of efficiency when λ2 = 10 especially with the HT product estimator. Overall, this suggests

that auxiliary information could be used with ACS without the risk of efficiency loss if

correlation is not present at network level. Under ACS, with negative correlation at network

level, product estimation becomes useful and more efficient than standard ACS estimators.

The efficiency gain of the product estimators µ̂pHH and µ̂pHT with respect to µ̂HH and µ̂HT

increases with the correlation at network level and λ2 and it is higher for λ1 = 5. Furthermore,

the efficiency gains are less pronounced with large values of the initial sample size n.

An interesting result is observed for those populations where ACS is less efficient than SRS,

i.e. REACSHH
and REACSHT

are both less than 1 (λ1 = 10, λ2 ≤ 10, λ2 = 100 and n ≤ 20).

The presence of negative correlation at network level (ρwxy
< −0.4) makes product estimation

under ACS more efficient than SRS, i.e. REACSpHH
and REACSpHT

are both greater than 1.
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In general, if the simulated populations have no correlation at unit level then the product

estimator µ̂p does not show a good performance with respect to both ACS and ACS product

estimators. However, the populations with λ1 = 10 and λ2 = 5 have same negative correlation

at unit level and µ̂p results to be the most efficient estimator. The comparison of REACSpHH

and REACSpHT
supports the general findings about the HH and HT estimators under ACS,

i.e. µ̂pHT is in general more efficient than µ̂pHH especially for high values of n.

6.2. Bias of the product estimators

The bias of µ̂HT and µ̂pHH given in (16) and (11) depends on the value of the correlation

at network level. Indeed, results of relative bias in the Tables A.1 and A.2 clearly show how

the bias is always negative and increases in absolute terms with the correlation level. The

bias becomes negligible as the initial sample size becomes large (n ≥ 20) for any value of

network correlation. It is usually found to be unimportant even in samples of small size at

any level of network correlation and for λ2 ≤ 15. It increases with λ1 and λ2. With n = 5, 10

and at intermediate and high network correlation levels, the product estimators seriously

underestimate the mean value when λ2 = 50, 100.

6.3. Bias of the variance estimators

Tables A.3 and A.4 provide relative bias of the variance estimators v̂ar(µ̂pHT ) and v̂ar(µ̂pHH)

given in (19) and (12), respectively. Results show that the variance estimators are nearly

unbiased at low network correlation level. Relative bias is a bit larger when λ1 = 5 and

tends to increase with λ2. With an initial sample size of n = 5 variance is underestimated at

intermediate and high levels of correlation. With n = 10, relative bias is almost always less

than 10%. For n > 20 it is almost always less than 5%.
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6.4. Accuracy of the MSE approximation

Results from Tables A.5 and A.6 show that the accuracy of the MSE approximations of µ̂pHT

and µ̂pHH given in (17) and (13) increases with the initial sample size n. The error is negligible

(say a relative bias less than 0.05) for any value of n when ρwxy
is low. With intermediate and

high values of the network correlation, relative bias of the MSE approximations are almost

always negligible for n ≥ 20. The approximation error increases with the correlation level

and decreases for higher values of λ2. On average, it is higher in the populations with λ1 = 5

for the HH product estimator. The opposite is observed for the HT product estimator where

the approximation error is higher when λ1 = 10. Grey cells in Tables A.1 and A.2 denote

the combinations where the conditions (20) and (21) are not coherent with the results of

the simulations in terms of relative efficiency of ACS product with respect to ACS. Some

inconsistent result is observed only at low value of network correlation where ACS product

and ACS have a similar behavior. In general, we may conclude that the theoretical results

given in (20) and (21) are confirmed by the results of the simulations.

7. APPLICATION TO REAL DATA

The same estimators have been used in a case study. The data was obtained

from an aerial survey conducted in 2010 at the Amboseli-West Kilimanjaro/ Magadi-

Natron region. The region covers parts of Kenya and Tanzania between 1◦37’ S

and 3◦13’ S and between 35◦49’ E and 38◦00’ E . The survey was conducted

by Kenya Wildlife Service and Tanzania Wildlife Research Institute with other

partners and covered a region of 24,108km2. Details on the survey can be found

at http://www.kws.org/info/news/2013/24april2013tanzania.html. The data was

slightly modified by adding extra zeros to create a rectangular region that was divided

into, 17 rows and 23 columns, N = 391 quadrats. The study variables of interest considered
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were counts of African Buffalo and Hartebeest. GIS-derived environmental variables were

used as auxiliary information. In particular, values of the Minimum temperature (C) and

Altitude (Km) for each quadrat over the study area were taken from the ”WorldClim” data

base freely available for download from http://www.worldclim.org (Hijmans et al., 2005).

Values of the variables are provided in Figure 1.

[Figure 1 about here.]

Table 3 reports population parameters of the study variables and auxiliary variables. Buffalo

and Minimum temperature show a weak negative correlation at unit level, ρxy = −0.087. At

network level the negative correlation increases up to ρwxy
= −0.1845. At network level,

variability of Minimum temperature (Cwx
= 0.1512) is much smaller than variability of

Buffalo (Cwx
= 5.740). Consequently, both conditions (20) and (21) are satisfied meaning

that we should expect the product estimators to be more efficient than the direct estimators

under ACS. The same holds for Hartebeest and Altitude even if correlations at unit and

network level are more similar (being equal to ρxy = −0.0973 and ρwxy
= −0.1187). This

would lower the efficiency gain of the product estimator over the direct estimator under

ACS.

[Table 3 about here.]

All the above considerations are supported by the analysis of the real data. We implement

the simulation study of Section 6 with study variables Buffalo and Hartebeest and auxiliary

variables Minimum temperature and Altitude, respectively. Results of relative efficiencies

shown in Table 4 confirm the ones obtained in the simulation study. The proposed product

estimators µ̂pHH and µ̂pHT are better than the competing estimators. The efficiency gain over

direct estimators under ACS decreases as the initial sample size increases. More pronounced

efficiency gains are observed over the product estimator under SRS. As expected, efficiency

gains are lower for the Hartebeest population than for the Buffalo population. Relative bias

of the product estimators µ̂pHH and µ̂pHT and the proposed variance estimators v̂ar(µ̂pHH)
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and v̂ar(µ̂pHT ) are also reported in Table 4. As already seen in the simulation with low

negative correlation, product estimators and variance estimators are nearly unbiased with

relative bias almost always less than 1%.

[Table 4 about here.]

8. DISCUSSION

For a researcher generally the first question would be what sampling design to use. When

studying rare and clustered populations, ACS is often the best option for obtaining the most

number of units of interest and is more efficient given the same final sample size. Even if there

exist SRS estimators that are more efficient given the same expected final sample size ACS

may still be the preferred option when desiring the maximum number of units of interest in

the final sample. Thus if the researcher selects ACS the next question is what is the best

estimator to use given the sampling design chosen.

The simulations results are based on simulated data assuming varying network level

correlations. Network level correlation doesn’t guarantee unit level correlation, nor is unit

level negative correlation required for the product estimator under ACS. Thus if unit level

correlation is very close to zero and this is not the case on a network level then ACS product

estimators may be appropriate whereas SRS product estimators are not even appropriate to

use. On the other hand if there exists a negative unit level correlation and a positive network

correlation then the ACS product estimator is not appropriate and the researcher should not

use the product estimator. For example if the auxiliary variable is rare and clustered and

often found together with the variable of interest. In this case it could be possible for the two

variables to be negatively correlated on a unit level but be positively correlated on a network

level. The researcher should be cautious of this scenario even if it is unlikely to occur.
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Temperature is a good example of an auxiliary variable in which a researcher would not

expect positive/negative unit level correlation but might expect correlation on a network

level. For example, there might be various reasons why a species might tend to live in cooler

regions. Expecting a species to live in cooler regions though is different than expecting counts

of the species to correlate on a unit level. That is within the cooler regions there may not

be a pattern on a unit level. The difference is subtle but significant. It is the difference

between expecting unit level correlation and network level correlation. This is the case with

the African Buffalo where there is a larger negative correlation on a network level than on an

unit level. This is also seen to a lesser extent with the Hartebeest and altitude. In both cases

ACS product estimators were more efficient than their SRS product estimator counterpart.

In addition, the SRS product estimator was actually less efficient at times compared to the

sample mean. The real data findings support the findings in the simulation study in Section

6 given further evidence to the preference of ACS product estimation when there exists a

network level correlation.

Ideally, the researcher would have an estimate or at least a concept for the network level

correlation from a prior study on the same attributes of interest to determine if the ACS

product estimator is the best estimator to use. Generally in the simulation as long as the

initial sample size is greater than or equal to 20 the bias of the estimators proposed is small.

In summary, once you’ve chosen ACS then as long as you believe there is a negative network

level correlation, a sample size of 20 or more, and the auxiliary population mean is known

then ACS product estimator would be preferable.

REFERENCES

Barabesi L, Marcheselli M, 2004. Design-based ranked set sampling using auxiliary variables. Environmental

and Ecological Statistics 11: 415–430.

23



Environmetrics

Bro-Jorgensen J, 2003. The significance of hotslpots to lekking topi antelopes. Behavioral Ecology and

Sociobiology 53: 324–331.

Chao C, 2004. Ratio estimation on adaptive cluster sampling. Journal of Chinese Statistical Association

42(3): 307–327.

Chao C, Dryver A, Chiang T, 2011. Leveraging the raoblackwell theorem to improve ratio estimators in

adaptive cluster sampling. Environmental and Ecological Statistics 18(3): 543–568.

Diggle P, 1983. Statistical analysis of spatial point patterns. Academic Press, London.

Dryver A, Chao C, 2007. Ratio estimators in adaptive cluster sampling. Environmetrics 18: 607–620.

Dryver A, Netharn U, Smith D, 2012. Partial systematic adaptive cluster sampling. Environmetrics 23:

306–316.

Hijmans R, Cameron E, Parra J, Jones P, Jarvis A, 2005. Very high resolution interpolated climate surfaces

for global land areas. International Journal of Climatology 25: 1965–1978.

Hopcraft J, Anderson T, Perez-vila S, Mayembe E, 2012. Body size and the division of niche space: food

and predation differentially shape the distribution of serengeti grazers. Ecology 81: 201–213.

Lin F, Chao C, 2014. Variances and variance estimators of the improved ratio estimators under adaptive

cluster sampling. Environmental and Ecological Statistics 21: 285–311.

Murthy M, 1964. Product method of estimation. Sankhya, A 74: 69–74.

Philippi T, 1995. Adaptive cluster sampling for estimation of abundances within local populations of low-

abundance plants. Ecology 86: 1091–1100.

Salehi M, Panahbehagh B, Parvardeh A, Smith D, Lei Y, 2013. Regression-type estimators for adaptive

two-stage sequential sampling. Environmental and Ecological Statistics 20: 571–590.

Salehi M, Seber G, 1997. Two-stage adaptive cluster sampling. Biometrics 53: 959–970.

Smith D, Conroy M, Brakhage D, 1995. Efficiency of adaptive cluster sampling for estimating density of

wintering waterfowl. Biometrics 51: 777–788.

Thompson S, 1990. Adaptive cluster sampling. Journal of the American Statistical Association 85: 1050–

1059.

Thompson S, 1991. Stratified adaptive cluster sampling. Biometrics 78: 389–397.

Thompson S, Seber G, 1996. Adaptive Sampling. Wiley, New York.

Winnie J, Cross P, Getz W, 2008. Habitat quality and heterogeneity influence distribution and behaviour in

african buffalo. Ecology 89: 1458–1468.

24



Environmetrics

APPENDIX

To evaluate the empirical efficiency of the proposed estimators we compute for each

population:

• relative efficiency of the product estimators under ACS

REACSpHH
= MSE(ȳ)

MSE(µ̂pHH)
and REACSpHT

= MSE(ȳ)
MSE(µ̂pHT )

• relative efficiency of standard ACS estimators

REACSHH
= MSE(ȳ)

MSE(µ̂HH)
and REACSHT

= MSE(ȳ)
MSE(µ̂HT )

• relative efficiency of the product estimator under SRS

RESRSp
= MSE(ȳ)

MSE(µ̂p)
.

Results of relative efficiency are displayed in Figures from A.1 to A.6.

To evaluate the bias of the proposed estimators we compute for each population:

• RBACSpHH
= 1

50000

∑50000
b=1

µ̂HHb−µy

µy

• RBACSpHT
= 1

50000

∑50000
b=1

µ̂HTb−µy

µy
.

Results of relative bias are displayed in Tables A.1 and A.2.

Analogously, we compute relative bias of the variance estimators v̂ar(µ̂pHH) and v̂ar(µ̂pHT )

displayed in Web Tables A.3 and A.4.

Finally, to assess the accuracy of the MSE approximations, MSE(µ̂pHH) and MSE(µ̂pHT )

are computed and compared to the true MSE. Results of relative error of the MSE first order

approximations are presented in Tables A.5 and A.6.

[Figure A.1 about here.]

[Figure A.2 about here.]

[Figure A.3 about here.]

[Figure A.4 about here.]
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[Figure A.5 about here.]

[Figure A.6 about here.]

[Table A.1 about here.]

[Table A.2 about here.]

[Table A.3 about here.]

[Table A.4 about here.]

[Table A.5 about here.]

[Table A.6 about here.]
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Figure 1.Top panel: values of Minimum temperature over the study area and Buffalo abundances. Bottom panel: values of Altitude

over the study area and Hartebeest abundances.
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Figure A.1.Relative efficiency of µ̂pHH , µ̂HH and µ̂p. Network level correlation: low.
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Figure A.2.Relative efficiency of µ̂pHH , µ̂HH and µ̂p. Network level correlation: intermediate.
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Figure A.3.Relative efficiency of µ̂pHH , µ̂HH and µ̂p. Network level correlation: high.
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Figure A.4.Relative efficiency of µ̂pHT , µ̂HT and µ̂p. Network level correlation: low.

31



Environmetrics FIGURES

5 10 15 50 100
0

1

2

3
number of parents=5

n=
5

5 10 15 50 100
0

1

2

3

n=
5

number of parents=10

5 10 15 50 100
0

1

2

3

n=
10

5 10 15 50 100
0

1

2

3

n=
10

5 10 15 50 100
0

1

2

3

n=
20

5 10 15 50 100
0

1

2

3

n=
20

5 10 15 50 100
0

2

4

n=
50

number of offsprings
5 10 15 50 100

0

2

4

n=
50

number of offsprings

 

 

RE
ACS

HT

RE
ACS

pHT

RE
SRS

p

Figure A.5.Relative efficiency of µ̂pHT , µ̂HT and µ̂p. Network level correlation: intermediate.
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Figure A.6.Relative efficiency of µ̂pHT , µ̂HT and µ̂p. Network level correlation: high.
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TABLES

Unit i Network i αk yi wyk y∗k xi wxk x∗

k

1 1 0.4 1 1 1 7 7 7
2 2 0.4 0 0 0 8 8 8
3 3 0.4 2 2 2 6 6 6
4 4 0.7 10 505 1010 1 3 6
5 4 0.7 1000 505 1010 5 3 6

Table 1. y and x populations and quantities to compute the ACS estimators
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Samples ȳ µ̂HHy µ̂HTy x̄ µ̂HHx µ̂HTx µ̂p µ̂pHH µ̂pHT

1, 2 0.50 0.50 0.50 7.50 7.50 7.50 0.69 0.69 0.69
1, 3 1.50 1.50 1.50 6.50 6.50 6.50 1.81 1.81 1.81
1, 4; 3, 5 5.50 253.00 289.07 4.00 5.00 5.21 4.07 234.26 279.13
1, 5; 4, 2 500.50 253.00 289.07 6.00 5.00 5.21 556.11 234.26 279.13
2, 3 1.00 1.00 1.00 7.00 7.00 7.00 1.30 1.30 1.30
2, 4; 3, 5 5.00 252.50 288.57 4.50 5.50 5.71 4.17 257.18 305.37
2, 5; 4, 3 500.00 252.50 288.57 6.50 5.50 5.71 601.85 257.18 305.37
3, 4; 5 6.00 253.50 289.57 3.50 4.50 4.71 3.89 211.25 252.80
3, 5; 4 501.00 253.50 289.57 5.50 4.50 4.71 510.28 211.25 252.80
4, 5; 3 505.00 505.00 288.57 3.00 3.00 1.71 280.56 280.56 91.61

Mean 202.60 202.60 202.60 5.40 5.40 5.40 196.47 168.97 177.00

Bias 0.00 0.00 0.00 0.00 0.00 0.00 -6.13 -33.63 -25.60

MSE 59615.30 22861.59 17418.40 2.19 1.60 2.30 62499.67 13579.58 17180.20

Table 2.All possible adaptive cluster samples and the corresponding estimators
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V ariables µ C Cw ρxy ρwxy

Buffalo 0.8542 8.4361 5.8740
-0.087 -0.1845

Minimum Temperature 14.4904 0.1529 0.1512
Hartebeest 1.1279 6.2215 4.0991

-0.0973 -0.1187
Altitude 1.3561 0.3041 0.3026

Table 3.Mean (µ), Coefficient of variation at unit level (C) and at network level (Cw ),
correlation at unit level (ρxy) and at network level (ρwxy

).
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Relative efficiency Relative bias
n µ̂p µ̂pHH µ̂pHT µ̂HH µ̂HT µ̂pHH µ̂pHT v̂ar(µ̂pHH) v̂ar(µ̂pHT )

Buffalo

5 1.05 1.62 1.64 1.48 1.51 −0.036 −0.004 −0.012 −0.012
10 0.99 1.56 1.62 1.47 1.54 −0.016 −0.015 −0.003 −0.007
20 0.99 1.54 1.70 1.48 1.65 −0.017 −0.018 −0.017 −0.015
50 0.99 1.54 2.03 1.49 1.99 −0.001 −0.005 −0.018 −0.008

Hartebeest

5 1.03 1.30 1.29 1.20 1.20 −0.043 −0.038 0.015 −0.001
10 0.99 1.23 1.25 1.19 1.21 −0.005 −0.001 0.003 −0.008
20 1.05 1.25 1.33 1.22 1.30 −0.004 −0.005 0.010 0.008
50 0.98 1.26 1.48 1.24 1.47 −0.011 −0.008 −0.001 −0.014

Table 4. Relative efficiency and relative bias of different estimators for Buffalo data
(auxiliary variable is Minimum temperature) and Hartebeest data (auxiliary variable is

Altitude)
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ρwxy
λ2 5 10 15 50 100

n

λ1 = 5

low

5 -0.001 -0.004 -0.004 -0.018 -0.013
10 -0.001 -0.002 -0.003 -0.007 -0.007
20 0.000 -0.001 0.000 -0.002 0.002
50 -0.001 -0.001 -0.001 0.000 0.001

intermediate

5 -0.008 -0.019 -0.029 -0.107 -0.153
10 -0.004 -0.009 -0.015 -0.051 -0.070
20 -0.002 -0.004 -0.006 -0.021 -0.025
50 -0.001 -0.002 -0.003 -0.006 -0.010

high

5 -0.009 -0.019 -0.032 -0.117 -0.250
10 -0.004 -0.009 -0.016 -0.055 -0.116
20 -0.002 -0.004 -0.007 -0.023 -0.045
50 -0.001 -0.002 -0.003 -0.006 -0.010

n

λ1 = 10

low

5 -0.004 -0.008 -0.001 -0.023 -0.044
10 -0.001 -0.002 -0.003 -0.006 -0.010
20 -0.001 -0.001 -0.002 -0.002 0.000
50 0.000 0.000 -0.001 -0.007 -0.004

intermediate

5 -0.020 -0.037 -0.056 -0.147 -0.243
10 -0.008 -0.016 -0.026 -0.068 -0.106
20 -0.004 -0.008 -0.012 -0.029 -0.041
50 -0.002 -0.002 -0.004 -0.014 -0.015

high

5 -0.019 -0.038 -0.067 -0.233 -0.476
10 -0.008 -0.017 -0.031 -0.109 -0.217
20 -0.004 -0.008 -0.015 -0.048 -0.092
50 -0.001 -0.003 -0.005 -0.018 -0.027

Table A.1. Relative bias of µ̂pHT
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ρwxy
λ2 5 10 15 50 100

n

λ1 = 5

low

5 -0.001 -0.004 -0.004 -0.018 -0.015
10 -0.001 -0.002 -0.003 -0.011 -0.018
20 0.000 -0.001 -0.001 -0.010 -0.010
50 0.000 -0.001 -0.001 -0.001 -0.001

intermediate

5 -0.008 -0.019 -0.030 -0.111 -0.162
10 -0.004 -0.009 -0.016 -0.059 -0.088
20 -0.002 -0.004 -0.007 -0.033 -0.044
50 -0.001 -0.002 -0.004 -0.010 -0.015

high

5 -0.009 -0.019 -0.032 -0.121 -0.264
10 -0.004 -0.009 -0.017 -0.062 -0.139
20 -0.002 -0.004 -0.008 -0.034 -0.069
50 -0.001 -0.002 -0.004 -0.010 -0.024

n

λ1 = 10

low

5 -0.004 -0.008 -0.010 -0.024 -0.046
10 -0.001 -0.003 -0.003 -0.011 -0.021
20 -0.002 -0.001 -0.003 -0.012 -0.013
50 0.000 -0.001 -0.001 -0.009 -0.004

intermediate

5 -0.020 -0.037 -0.057 -0.152 -0.253
10 -0.009 -0.017 -0.027 -0.077 -0.128
20 -0.005 -0.009 -0.014 -0.041 -0.060
50 -0.002 -0.003 -0.005 -0.020 -0.022

high

5 -0.019 -0.039 -0.068 -0.240 -0.496
10 -0.009 -0.018 -0.032 -0.120 -0.245
20 -0.005 -0.009 -0.017 -0.061 -0.119
50 -0.001 -0.003 -0.006 -0.026 -0.044

Table A.2. Relative bias of µ̂pHH
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Environmetrics TABLES

ρwxy
λ2 5 10 15 50 100

n

λ1 = 5

low

5 0.00 0.00 0.012 0.020 0.018
10 -0.010 0.00 0.005 0.001 0.00
20 -0.010 0.00 0.00 -0.001 0.008
50 -0.010 0.020 0.007 0.001 -0.002

intermediate

5 -0.07 -0.012 -0.106 -0.102 -0.041
10 -0.030 -0.040 -0.049 -0.060 -0.044
20 -0.020 -0.020 -0.029 -0.043 -0.028
50 -0.020 0.00 -0.014 -0.022 -0.030

high

5 -0.080 -0.012 -0.147 -0.184 -0.165
10 -0.040 -0.040 -0.061 -0.094 -0.136
20 -0.020 -0.020 -0.035 -0.058 -0.080
50 -0.020 0.00 -0.017 -0.039 -0.062

n

λ1 = 10

low

5 -0.006 0.013 0.000 0.010 0.020
10 -0.007 0.011 0.001 -0.003 0.010
20 0.006 -0.002 0.005 0.003 -0.006
50 0.025 0.024 0.029 -0.008 -0.003

intermediate

5 -0.100 -0.074 -0.072 -0.043 -0.021
10 -0.042 -0.037 -0.036 -0.032 -0.021
20 -0.008 -0.022 -0.020 -0.019 -0.021
50 0.013 0.006 0.008 -0.0029 -0.016

high

5 -0.093 -0.115 -0.158 -0.133 0.015
10 -0.039 -0.045 -0.079 -0.114 -0.096
20 -0.008 -0.027 -0.038 -0.064 -0.078
50 0.001 0.006 0.003 -0.053 -0.038

Table A.3. Relative bias of the variance estimator v̂ar(µ̂pHT )
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TABLES Environmetrics

ρwxy
λ2 5 10 15 50 100

n

λ1 = 5

low

5 0.001 0.001 0.013 0.021 0.011
10 -0.005 0.003 0.003 -0.002 -0.004
20 0.009 -0.002 0.002 -0.014 0.011
50 -0.015 0.017 -0.028 0.001 -0.019

intermediate

5 -0.062 -0.110 -0.099 -0.086 -0.031
10 -0.029 -0.035 -0.041 -0.039 -0.028
20 -0.015 -0.013 -0.017 -0.033 0.006
50 -0.018 0.007 -0.025 -0.006 -0.023

high

5 -0.075 -0.119 -0.139 -0.169 -0.127
10 -0.033 -0.035 -0.053 -0.080 -0.108
20 -0.018 -0.014 -0.023 -0.049 -0.032
50 -0.018 0.006 -0.027 -0.016 -0.042

n

λ1 = 10

low

5 -0.008 0.010 -0.005 0.006 -0.002
10 -0.001 -0.003 0.003 0.008 -0.021
20 0.023 0.016 0.019 0.014 -0.016
50 0.023 0.036 0.022 0.002 -0.003

intermediate

5 -0.020 -0.037 -0.057 -0.152 -0.253
10 -0.098 -0.071 -0.070 -0.042 -0.0.041
20 0.008 -0.006 -0.007 0.002 0.003
50 0.012 0.024 0.010 -0.006 -0.016

high

5 -0.092 -0.112 -0.154 -0.120 0.022
10 -0.031 -0.048 -0.067 -0.111 -0.016
20 0.005 -0.009 -0.016 -0.041 -0.053
50 0.011 0.024 0.006 -0.025 -0.034

Table A.4. Relative bias of the variance estimator v̂ar(µ̂pHH)
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Environmetrics TABLES

ρwxy
λ2 5 10 15 50 100

n

λ1 = 5

low

5 0.020 -0.044 0.017 0.003 0.019
10 0.019 -0.018 0.003 0.014 0.02
20 0.019 -0.004 0.013 0.012 0.010
50 0.009 -0.026 -0.007 0.005 0.010

intermediate

5 -0.230 -0.285 -0.255 -0.201 -0.095
10 -0.106 -0.137 -0.120 -0.078 -0.015
20 -0.043 -0.061 -0.040 -0.013 0.015
50 -0.007 -0.035 -0.012 0.011 0.035

high

5 -0.253 -0.299 -0.289 -0.256 -0.176
10 -0.118 -0.146 -0.138 -0.104 -0.040
20 -0.047 -0.064 -0.049 -0.024 0.018
50 -0.008 -0.036 -0.012 0.021 0.058

n

λ1 = 10

low

5 0.015 -0.048 0.012 -0.005 0.011
10 0.016 -0.023 0.003 0.005 0.004
20 0.017 -0.009 0.007 0.008 -0.010
50 0.011 -0.025 0.015 0.002 0.019

intermediate

5 -0.236 -0.292 -0.268 -0.229 -0.134
10 -0.112 -0.146 -0.135 -0.119 -0.062
20 -0.050 -0.073 -0.061 -0.049 -0.047
50 -0.011 -0.041 -0.006 -0.020 0.007

high

5 -0.259 -0.307 -0.301 -0.284 -0.225
10 -0.124 -0.156 -0.154 -0.141 -0.110
20 -0.055 -0.075 -0.070 -0.061 -0.070
50 -0.014 -0.041 -0.009 -0.020 0.001

Table A.5. Relative error of the MSE first order approximation of µ̂pHT
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TABLES Environmetrics

ρwxy
λ2 5 10 15 50 100

n

λ1 = 5

low

5 0.015 -0.048 0.012 -0.005 0.011
10 0.016 -0.023 0.003 0.005 0.004
20 0.017 -0.009 0.007 0.008 -0.010
50 0.011 -0.025 0.015 0.002 0.019

intermediate

5 -0.236 -0.292 -0.268 -0.229 -0.134
10 -0.112 -0.146 -0.135 -0.119 -0.062
20 -0.050 -0.073 -0.061 -0.049 -0.047
50 -0.011 -0.041 -0.006 -0.020 0.007

high

5 -0.259 -0.30 -0.289 -0.256 -0.176
10 -0.118 -0.146 -0.138 -0.104 -0.040
20 -0.047 -0.064 -0.049 -0.024 0.018
50 -0.008 -0.036 -0.012 0.021 0.058

n

λ1 = 10

low

5 0.036 0.049 0.013 0.031 0.044
10 0.033 0.033 0.011 0.026 0.029
20 -0.001 0.020 0.000 0.013 0.034
50 -0.013 -0.016 -0.024 0.013 0.015

intermediate

5 -0.252 -0.215 -0.182 -0.087 -0.033
10 -0.114 -0.091 -0.083 -0.025 -0.005
20 -0.067 -0.040 -0.035 -0.002 0.026
50 -0.030 -0.025 -0.023 0.026 0.026

high

5 -0.247 -0.241 -0.253 -0.158 -0.015
10 -0.112 -0.111 -0.117 -0.058 0.014
20 -0.066 -0.047 -0.050 -0.010 0.049
50 -0.027 -0.029 -0.028 0.038 0.044

Table A.6. Relative error of the MSE first order approximation of µ̂pHH
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