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Abstract 
Explorative spatial data analysis (ESDA) is a set of tools to emphasise spatial structure in case of 
localised data and widely used for testing effects in the case of environmental data. Grey water 
indicator is considered as a reliable water pollution indicator able to show the quality of water, useful 
in agriculture and crops production. In this paper, an analysis on the presence of spatial effects in the 
grey water indicator for crops production is proposed. This analysis is carried out on four cereals 
crops (i.e., corn, barley, durum wheat and soft wheat) in Italian regions for the period 2011-2015. 
The output reveals the presence of spatial effects especially for corn which shows a high level of 
polarisation between South and North regions. ESDA analysis indicates that grey water descending 
from cereal crops production is characterised by a persistent presence of positive spatial dependence 
and spatial heterogeneity. Policy makers should take into account those effects to improve the bundle 
of policies in the field of water management. 
 
Keywords: water management, water pollution, spatial dependence and heterogeneity, Italian 
regions, grey water. 
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1. Introduction  

Agriculture is actually the main user of freshwater in the world (Rodriguez et al., 2015) and 

accounts for about 70% of water withdrawals (Chen and Chen, 2013). Our knowledge relating 

to water contamination has increased in recent years and there have been many studies focusing 

on effluent from sewage plants or combined sewer overflows (Schreiber et al., 2015). 

Agricultural water pollution is a major concern both in European than in developing countries. 

Many research papers have focused on the relationships between crop yields and water 

resources (e.g. Wang et al., 2008; Piao et al., 2010; Peng, 2011), water use efficiency (e.g. Deng 

et al., 2006; Fan et al., 2011), and agricultural management (e.g. Hu et al., 2006). Agricultural 

practices determine the level of food production but also the state of the global environment 

(Tilman et al., 2002). The theme of water regards not only the scarcity but also the quality and 

the environmental consequence in agriculture. The problems of water scarcity and water 

pollution have become increasingly severe (Zhou et al., 2016). Water resources are widely used 

for food production and, consequently, its demand is expected to increase in the future due to 

population growth (Bocchiola et al., 2013; Curmi et al., 2013). A failure to optimally manage 

many water systems represents an environmental damage; this is more evident in case where 

activities may cause the degradation of hydrological habitats (Chapagain and Orr, 2009). Ercin 

and Hoekstra (2014) support the idea that freshwater scarcity and pollution will be aggravated 

in the future and will decrease its quality. However, through changing in water management is 

possible to remain at sustainable levels even with increasing populations (Ercin and Hoekstra, 

2014).  
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Water footprint (WF) of a product is defined as the volume of freshwater used to produce 

it and should be measured over the full supply chain (Hoekstra et al., 2011). To monitor the 

unsustainable use of global freshwater resources, indicators which make water used patterns 

transparent are needed (Ridoutt and Pfister, 2010). WF is one of the most common tools used 

to analyze water management.  

Hoekstra et al. (2011) defines the concept of blue, grey, and green water footprint. Blue 

water footprint measures the amount of water available used in a certain period and so, not 

immediately returned within the same catchment. Grey water footprint of a process step is an 

indicator of the degree of freshwater pollution associated with the process step, defined as the 

volume of freshwater that is required to assimilate the load of pollutants. Green water footprint 

is an indicator of the human use and refers to the precipitation on land that does not run off or 

recharge the groundwater, but is stored in the soil or temporarily stays on top of the soil or 

vegetation. The sum of those three components constitutes WF. In the context of social 

responsibility, WF has been widely used as an indicator that contributes to a safe and 

sustainable use of water (Marano and Filippi, 2015). WF is a global tool that could be referred 

on spatially located data. In this sense, it could be affected by spatial relationships according to 

“the first law of geography” (Tobler, 1970) that states “everything is related to everything else, 

but near things are more related than distant things”. Performing spatial analysis on these 

geographically distributed data let us to investigate the spatial patterns of water usage and add 

more information to the aim of developing better strategies for water management.  

In agricultural field, many studies about the WF of different crops have been published. 

In particular, some contributions have been produced for agricultural products like tea and 
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coffee (e.g. Chapagain and Hoekstra, 2007), tomato (e.g. Chapagain and Orr, 2009), wine (e.g. 

Herath et al., 2013), rice (e.g. Chapagain and Hoekstra, 2011), and grain production (e.g. Liu 

et al., 2014). In this work, we decide to focus particularly on grey water footprint because of 

the special importance of this indicator relatively to the agriculture. Grey water footprint from 

production refers to the volume of freshwater that is required to assimilate the load of pollutants 

based on existing ambient water quality standards (Cazcarro et al., 2016). The volumes obtained 

for grey water are a measure of the pressure imposed, mostly through economic activities, on 

water resources in a region that, especially compared to the water availability in the region, 

results in a significant environmental indicator. Microbiological and chemical constituents 

(nitrates, fertilizers etc.) of grey water can pose hazards to human health and to the environment 

(Nicholson et al., 2003; Rusan et al., 2007; Rodda et al., 2010). Grey water usually contains 

high numbers of micro-organisms, some of which can cause disease for those who encounters 

the plants and irrigated crops, and also contains substances that can reduce plant growth or crop 

yield if present at sufficiently high concentration. Furthermore, grey water can change soil 

properties so that it becomes progressively less fertile (Rodda et al., 2010). Specifically, nitrate 

influences grey water level so that this effect is part of the directive 91/676/EEC included in 

the Water Framework Directive (Wall et al., 2011).  

The global imbalance in the consumption of fertilizers and pesticides inevitably has had 

great impacts on cereal production around the world, particularly in developed countries, such 

as those in Europe and including Italy, where the amount of fertilizers and pesticides used has 

also been high (Liu et al., 2014).  
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More than others economic activities, agriculture is strictly associated to the location 

characteristics so that is meaningful to understand its spatial distribution also in terms of water 

use and water management. Various elements connected to the location may influence water 

management in agriculture. Some of that are intrinsically morphological as for soil structure 

and climatic conditions (Chapagain and Hoekstra, 2007; Chapagain and Orr, 2009; Casolani et 

al., 2016), others are considered geographically located due to their connection to specific 

locations, including either common practices and area infrastructure. While dealing with 

spatially located phenomena (as water resource exploitation and use of fertilizers), discard of 

spatial effects is considerably affecting the informative potential of any statistical technique 

(Cliff and Ord, 1973). Ready and available information about location, area extension, and 

distances can usually convey additional insight and lead to the reconstruction of spatial 

dependence patterns (Anselin, 1993). Therefore, exploring more the underlying structure of 

spatial connections in water use practices can enlighten about the spread effects of local 

environmental policies, help to validate local effects of global regulation, and point out more 

accurately reasons under why some basin-control policies are ineffective. However, final 

consumers and all sorts of businesses active along the supply chains of final consumer goods 

remain out of the scope of governmental policies regarding mitigation of water scarcity and 

pollution (Aldaya and Hoekstra, 2010). 

An important toolkit to study the significant effects of spatial characteristics is the 

Explorative Spatial Data Analysis (ESDA) (Anselin and Getis, 1992). ESDA is set to analyze 

the spatial distribution of a certain phenomenon, to highlight the presence of spatial 

dependence, and to indicate the presence of spatial heterogeneity. In terms of grey water 



 6 

indicator, this means either testing for the presence of a global pattern of spatial correlation, 

such that close neighbors are expected to be similar, or verify the presence of different regimes 

due to spatial non-stationarity.  

As spatial characteristics are entitled to play a considerable role while studying the level 

of grey water, the aim of this paper is to perform an application of the ESDA to the grey water 

indicator, especially for four cereal crops (i.e., corn, barley, soft wheat, and durum wheat), to 

evaluate the presence of spatial effects in crops production in Italy. Here, the main purpose is 

to add to the existing literature a new approach to interpret information included in grey water 

indicator necessary to assess the quality of water management process at a regional level. This 

information can be used by stakeholders to define appropriate policies. In fact, different tools 

can be used to achieve the safe management of waste water. Some countries provide incentives 

for the increased use of available natural resources (including water resources) towards local 

food production; others may provide subsidies to farmers to maintain a critical human resource 

base for local agricultural production. Policy makers should create a broader strategic local 

plan, considering behavioral change and cultural factors, environmental aspects, economic and 

financial considerations and health protection measures, according to the suggestion of World 

Health Organization (2006). However, all those aspects are not expected to influence the 

phenomenon of water pollution at the same way in all context due to presence of climate, 

cultural, and economic differences in the country (i.e., spatial heterogeneity). Spatial analysis 

could facilitate to explain spatial variation and to disentangle the presence of contextual 

influences (Haining, 2003) to the aim of helping stakeholders to improve water management 

policies at regional level in the case of Italian cereal crop production. 
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The paper is organised as follows. Section 2 is devoted to the description of data and 

methodology adopted to define the indicator and perform the ESDA. Section 3 contains the 

results of the spatial explorative analysis. In Section 4 some implications on policy frames of 

spatial effects detected in the analysis are discussed. Finally, Section 5 concludes. 

 

2. Methodology 

2.1 Grey water calculation 

In this paper, grey water for different cereal crops has been calculated following the 

methodology introduced by Casolani et al. (2016) and Rodriguez et al. (2015). In the 

computation of our indicator, the values of grey virtual water content for each region were taken 

from Mekonnen and Hoekstra (2010). Grey virtual water represents the volume (m3) of water 

required to dilute pollutants produced for each unit of cereal production (t) to achieve water 

quality standards. Grey water regional impact on area (GWRIA) is calculated as: 

 

GWRIA= Grey Water regional impact on area (m3 Km-2) = [VWC Grey Region i (m3 t-1) × T.P. 

Region i (t)] / TRA Region i (Km-2). 

 

where: 

VWC Grey Region i = Grey Virtual Water content in Region i. 

TRA Region i= Total Regional Area of Region i (Km-2).  

T.P. Region i= Total production of Region i (t). 
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Then, grey water impact on agricultural area (GWAA) is computed as: 

 

GWAA= Grey Water impact on agricultural area (m3 ha-1) = VWC Grey Region i (m3 t-1) × Yp 

Region i (t ha−1). 

where: 

VWC Grey Region i (m3 t-1) = Virtual Grey Water content in Region i. 

Yp Region i = productivity of cereal per hectare (t ha−1) of Region i. 

 

GWRIA expresses a value of grey water emerging from the total amount of cereal crop 

cultivated in the region on the regional area. GWAA, instead, indicates a potential value of grey 

water for hectare of crop and it is a potential value linked to cereal productivity. We consider 

the GWAA indicator as the best choice to perform a spatial analysis of grey water in Italy as it 

is a value of grey water normalized on the total extensions of crop cultivated surface. 

 

2.2 The explorative spatial data analysis 

Explorative spatial data analysis (ESDA) is defined as a collection of techniques to summarise 

data property, detecting spatial patterns, and formulating hypotheses based on spatial 

distribution (Good, 1983). ESDA is considerably augmenting the potential of standard 

explorative data analysis, and it includes number of indexes (among others Moran’s I, Geary’s 

C, Global and Local G, Local Moran’s I), graphics, and extensive use of maps to visualise 

results (Anselin et al., 2006). 
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In presence of spatially located data as regional data, describing the spatial distribution 

and tracking organised spatial patterns (Upton and Fingleton, 1985) means using a set of tools 

to individuate and localise both spatial effects: spatial dependence and spatial heterogeneity 

(Anselin, 1988). 

Spatial dependence is referred to the extent of similarity (or diversity) of observed data 

in space, and it is measured by spatial autocorrelation to capture spatial trends or overall 

tendencies of similar (or dissimilar) values to be found close (Haining, 2003). Spatial 

dependence is likely to affect a large variety of localised data including agricultural data, adding 

consideration among the distribution of data and the spreading of phenomenon under 

investigation. Understanding the effects of spatial dependence is crucial to a full comprehension 

of some interdependence effects, spill-overs definition, or misspecifications effects in presence 

of a model. 

Spatial heterogeneity indicates situations of local instabilities connected to spatial effects 

and defining the presence of local regimes (Griffith, 1978; Anselin, 1990). The occurrence of 

spatial heterogeneity is also relevant while analysing geographical data. The consideration of 

effects connected to spatial heterogeneity is useful, again, to avoid model misspecification and 

to point out better definition of policies specially referred to precise spatial clusters (Postiglione 

et al., 2013). 

To the aim of detecting spatial effects, ESDA includes a collection of indicators which 

most famous is Moran’s I for spatial dependence (Moran, 1950). Moran’s I reveals the amount 

of spatial autocorrelation included into a geo-localised variable and due to spatial contiguity. 

For a variable y, Moran’s I is: 
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I=	
𝑛

∑ ∑ 𝑤!""!

∑ ∑ 𝑤!"(𝑦! − 𝑦*)(" 𝑦" − 𝑦*)!

∑ (𝑦! − 𝑦*)#!
 

 

where 𝑦! is the geo-localised variable under observation, n is the sample size, and 𝑤!" is the 

entry of contiguity matrix W expressing adjacency relations between spatial units. If the value 

of Moran’s I statistic is 𝐼 > −1/(𝑛 − 1), there is evidence of positive spatial dependence or 

negative autocorrelation in the opposite case.  

Associated with Moran’s 𝐼 statistic, a useful graph can be considered. This chart is 

denoted as Moran scatterplot, and provides supplementary information to Moran’s 𝐼. The graph 

presents a Cartesian coordinate system where the variable y is on the horizontal axis and the 

spatial lag of variable y (i.e., 𝑊𝑦) on the vertical axis. Moran’s 𝐼 is represented by the slope of 

the linear relationship between the two variables displayed on the axes of the Moran scatterplot. 

This chart is very useful to identify clusters of regions and possible outliers that are present in 

our dataset.  

Since one of the main purpose of ESDA is to recognize the source of spatial effects, we 

also decide to use Getis-Ord (1992) Global 𝐺 in order to understand if the amount of spatial 

autocorrelation is linked to the effects of higher or lower values of the variable under 

investigation (in our case grey water). Global 𝐺 is defined as:  

 

G=	
∑ ∑ 𝑤!"𝑦!𝑦""!

∑ ∑ 𝑦!𝑦""!
, 𝑗 ≠ 𝑖 
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Expectation of the statistic in the case of Global 𝐺 is 𝐸(𝐺) = S/𝑛(𝑛 − 1), where S is the 

sum of linkages included into the weighting matrix 𝑊. A value above the expectation indicates 

that the spatial autocorrelation is mainly due to the high levels of the variable under 

observations (i.e., hot spots). Conversely, values under the expectation are related to the 

presence of low levels of the variable (i.e., cold spots).  

Spatial heterogeneity is likely to affect spatial data, imposing an important focus on 

situations of local instability able to confirm hypothesis of non-stationarity. Hence, situations 

of spatial heterogeneity are relevant to identify local differences, detect local effects of spatial 

autocorrelation not evident to whole map statistics, and define local regimes (Anselin, 1996; 

Wu and Babcock, 2001). 

Local indicators of spatial association (LISA) as local Moran (Anselin, 1995) are useful 

to identify presence of local spatial effects and to spread more light about the presence of spatial 

heterogeneity. 

Local Moran can be specified for each unit as i:  

 

I(i)=	
𝑛(𝑦! − 𝑦*)∑ 𝑤!"(𝑦" − 𝑦*)"

∑ (𝑦! − 𝑦*)#!
 

 

where the expectation of the local statistics is 𝐸:𝐼(𝑖); = −( $!
%&'

) and the sum of local 

neighbour’s is 𝜂! = ∑ 𝑤!"! 	. Values of the statistic above the expectation highlight local 

situations of positive spatial autocorrelation, while the statistic and the derived moments (Ord 

and Getis, 1995) can be used to test the hypothesis of local instability. 
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Local clusters can be visualised using several software allowing us to complete a frame 

in which different regimes are individuated and plotted. Clusters can be specified depending on 

the levels of the values spatially correlated, both in the case of correlation between higher values 

or lower values (e.g., high-high or low-low). The presence of clusters may be considered as 

clear evidence of spatial heterogeneity. Mapping spatial clusters individuated by LISA 

indicators highlights the presence of significant local regimes and show situation of local spatial 

dependence who influences the value of the indicator (Anselin et al., 2006).  

 

3. Results 

3.1 Grey water estimation  

The grey water indicator has been built for Italian regions, from 2011 to 2015. Data derive from 

ISTAT database. The indicators are calculated for different cereals productions following the 

same approach introduced by Casolani et al. (2016). 

Four crops were selected (i.e., corn, barley, soft wheat, and durum wheat) as 

representative of the crops production in the country. Levels of grey water indicator for four 

crops suggest that corn cultivation in North presents the highest value of GWRIA (14730 m3 km-

2). In the Centre of Italy, soft and durum wheat present higher magnitudes. In the South, the 

differences between durum and wheat production seem to be evident, with value of GWRIA ten 

times more for durum wheat. Barley in the Centre and South represents the cereal with minor 

value of GWRIA.  
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[Insert figure 1 here. Average value (2011-2015) of GWRIA on Italian area] 

 

GWRIA impact on Italian regions is very heterogeneous across different areas and crops. The 

highest values for corn are in the North regions (i.e., GWRIA in Veneto=19534 m3 Km-2; GWRIA 

in Friuli Venezia Giulia and Lombardy > 14000 m3 Km-2). Fig. 2 shows the evolution of GWRIA 

for different cereals crops in Italy: note that, except for corn, the trend of GWRIA from 2011 to 

2015 is near constant. 

 

[Insert figure 2 here. Evolution of average values of GWRIA (2011-2015) for different 
cereals crops in Italy (m3 Km-2)] 

 

 

Grey water impact on agricultural area (GWAA) is higher for corn; the value in the South is 

always lower than in other area, as showed in Fig. 3. The trend in North and Centre is similar 

for soft, durum wheat, and barley.  

 

      [Insert figure 3 here. Average value (2011-2015) of GWAA on Italian area (m3 ha-1)] 

 

The quantile maps in Fig. 4 visualises the levels of GWAA indicator localised on the Italian 

regions. The presence of spatial patterns is clear, a circumstance that justify performing a spatial 

analysis for all four crops to define appropriate policies for the stakeholders. The next step of 

our analysis is performed on GWAA indicator.    
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4.2 Explorative Spatial Data Analysis  

ESDA is performed to understand the global extent of spatial autocorrelation and spatial 

heterogeneity of grey water in Italian regions. In our analysis, the different indexes are 

calculated using a connectivity matrix that is defined in terms of 𝑘-nearest neighbour distance, 

with 𝑘 = 5. 

Studying spatial effects, circumstances in while spatial dependence and spatial 

heterogeneity are clearly distinct are far from obvious (Anselin and Bera, 1998). Spatial 

autocorrelation indicates the extent of similarity among neighbours at a global level (Cliff and 

Ord, 1973; Goodchild, 1987). Positive correlation defines similarity of neighbours; on the other 

side negative autocorrelation is a situation in which neighbours are very dissimilar.  

As shown in the quantile maps (see Fig. 4), GWAA concentrations highlight some 

persistent spatial patterns for all studied cereal crops. The situation, as expected for other 

environmental indicators, is very different across the crops. However, widespread presence of 

global spatial autocorrelation at the regional level is a clear evidence of spatial dependence for 

the considered phenomena. 

 

[Insert figure 4 here. Levels of grey water GWAA for four crops. Corn (high-left), 
Barley (low-left), Soft (high-right), Durum (low-left). Average values of period 2011-
2015] 

 

Corn plantation is largely characterised by a persistent spatial trend from South to North (see 

Fig. 4). In this case, Moran’s I values showcase large evidence of significant spatial 

autocorrelation in the period under observation (see Tab. 1). The spatial autocorrelation is 

positive and, intuitively, is strictly connected to the spatial geographical dichotomy between 
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North and South. Largest values of the indicator are gathered in the Po Valley, especially on 

the Northern side, while concentration declines moving to the South of the country.  

For barley, spatial autocorrelation is statistically significant so that we can assume that 

spatial dependence is relevant for the phenomenon of GWAA production over all period under 

investigation. Hypotheses of the presence of global spatial autocorrelation are also confirmed 

for durum and soft wheat. In both cases the magnitude of spatial dependence is generally lower 

than obtained for the other crops (see Tab. 1). 

 

[Insert table 1 here] 

 

One of the main objective of ESDA is to recover an organised spatial pattern (Upton and 

Fingleton, 1985) which assumes focusing also on the presence of local instabilities. Moran’s 𝐼 

does not give any information about the source of spatial patterns. Global 𝐺 index (Getis and 

Ord, 1992) can identify this source and can individuate whether spatial structure is generated 

due to dependence either in the highest (i.e., hot spots) or lowest (i.e., cold spots) values of the 

phenomenon under investigation.  

Tab. 2 reports values for the global 𝐺 statistic across different years and for all four crops. 

The four crops display values of 𝐺 above average, a signal that dependence tend to be originated 

at the highest levels of GWAA indicator. Not significant values appear only in the case of corn 

in 2012 and 2013.  

Global 𝐺 suggests more precise information about the spatial distribution of soft wheat 

grey water management. The values are positive and significant indicating that spatial 
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dependence is characterised by the association between regions with the high level of the 

indicator. Levels of global 𝐺 for durum wheat are similar to those of soft wheat, while the value 

of the index for the 2013 is not significant. 

Since global 𝐺 suggests the presence of hot spots, it is needed to move a step ahead to 

identify possible situations of local instability. In fact, high or low levels of grey water are likely 

to produce spatial effects whose spreading should be traced in the sense of local clusters. This 

is a key point to recognize situations of structural differences to the aim of a better ad hoc 

regulation and policy implementation. To this end, in this paper we use local Moran’s 𝐼 

(Anselin, 1995) that is a local indicator of spatial association (LISA) useful for exploratory 

analysis of local instabilities. 

 

[Insert table 2 here] 

 

The results unveil a picture (see Fig. 3) in which North-South polarisation is still a more 

explicative and synthetic evidence. Values of grey water indicator are taken in means through 

the period 2011-2015, as in Casolani et al. (2016).  

In the case of corn, high level of the local 𝐼 indicates the presence of significant positive 

spatial autocorrelation (regions in red) in Piedmont, Lombardy, and Veneto; as spatial effects 

decrease moving to the South of the country and autocorrelation is generated by low values of 

the indicators (blue region).  

According to the cluster map, the evidence of barley is similar to that of corn. LISA 

indicates higher levels in the Northern and Central regions of Lombardy, Piedmont, Veneto, 
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Friuli-Venezia Giulia, and Emilia-Romagna, while correlation between lower levels of the 

phenomenon affects the region of Molise, Apulia, Basilicata, Calabria, and Sicily. 

In the case of wheat, the typical North-South polarisation is again evident. Both durum 

and soft wheat show a frame in which the North is characterised by higher level of 

autocorrelation connected to the critical raise of the levels of the GWAA used, while in the South 

lower levels of grey water are responsible of positive levels of autocorrelation. For durum 

wheat, the presence of polarisation due to high values of GWAA involves only the North regions 

of Piedmont and Emilia-Romagna, while low levels of autocorrelation involve significantly 

several regions of south (particularly, Apulia).  

Finally, LISA analysis was performed for each year and the tables including LISA 

indicators are reported in Annex 1 for the four crops. We observe that the levels of local spatial 

correlations and significance tend to change slightly from year to year due to possible 

differences in climate and soil conditions that influences the use of water through the five years. 

However, we observe that the spatial patterns maintain sufficiently steady in the whole period 

especially in the case of barley and soft wheat. The pattern of LISA coefficients for corn is less 

stable across the time and the spatial configuration is more sensitive to the different conditions 

of the year. Additionally, in all four crops the central part of Italy screens lower and no 

significant levels of local autocorrelation.  

 

5. Discussion  

The indicator of GWAA from 2011 to 2015 reveals higher levels of water pollution derived from 

crop cultivation for corn, especially in the North. Intensive crop production in Northern Italy is 



 18 

associated to high risk of nitrate leaching (Perego et al., 2012). In the Centre, soft and durum 

wheat are responsible of major value of grey water indicator. The Centre of Italy, on the other 

side, is heterogenous in terms of climate and soil conditions, and this influences the lack of a 

local cluster in the area for all cereal crops. In this sense, climate change has a strong influence 

on water used, as underlined by Bocchiola et al. (2013). 

 

[Insert figure 5 here. LISA cluster and Moran scatterplot (from the top) of corn, barley, soft 
wheat, and durum wheat. In the LISA red indicates high-high clusters, light red high-low clusters, blue 
low-low clusters, and light blue indicates low-high clusters.] 

 

Conversely, the results from ESDA open to some considerations about policies and practices 

concerning water pollution and grey water.  

Grey water of crops is largely determined by agricultural management (Rockström et al., 

2007; Mekonnen and Hoekstra, 2011). Several strategies to reduce grey water of crops are, for 

examples: increasing yield (soil nutrients management, optimizing crop rotation, the use of crop 

residues, erosion control, appropriate tillage, proper application and timing of manure or 

artificial fertilizer), improving irrigation techniques, proper tillage, and biological pest control 

(Sadras et al., 2003; Hoekstra et al., 2011). A policy for controlling water pollution in 

agriculture firstly needs to specify the level of water quality desired and what measures should 

be adopted to achieve this goal. Protecting water quality is a one of the main important issue of 

the Common Agricultural Policy (CAP) of the European Union. The main CAP instruments to 

promote sustainable water management are measures that support investments for improving 

water quality. One of the tool to achieve this objective is the sustainable use of pesticides and 

fertilizers for avoiding, in particular, nitrate pollution. Newell Price et al. (2011) presented an 
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inventory of mitigation methods related to water pollution, greenhouse gas emissions, and 

ammonia emissions from agriculture and the strategy to control these phenomena.  

Greater attention from the farmers could reduce significantly this type of pollution and 

helps the groundwater conditions, according to the groundwater directive 2006/118/EC, that 

introduces a regime of quality standards and measures to limit inputs of pollutants into 

groundwater.  

However, most of the existing literature on environmental policy regarding water 

pollution does not consider aspects related to the presence of spatial effects. To the state of our 

knowledge, this is the first study focusing on the need of including spatial effects in grey water 

policies, suggesting the necessity of policy integration as a prerequisite for sustainable 

development.  

From our results, we deduce that paying more attention to the presence of spatial 

autocorrelation and of local regimes help to shape more appropriate policies. In fact, an increase 

in the level of grey water in a single region of Italy may produce consequences on the levels of 

grey water in the contiguous regions as effect of spatial spill-overs (LeSage and Pace, 2009). 

In this sense, from our analysis we point out that critical levels of grey water may be 

caused not only by an inefficient water management in a single region, but also affected by 

inadequate practices performed in the neighbour region as effect of the interdependence. For 

example, the levels of grey water of regions located on the Po Valley are similar, so that regions 

tend to influence each other because of their proximity to the water-basin. This is an important 

reason for which local policies must consider levels of the water pollution in the neighbours 
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and definition of the area of intervention should broadly consider relationship between 

neighbours.  

Hence, policies should take into account measures that consider the effect of spill-overs 

while choosing a reliable indicator for grey water. In our case, spatial interdependence is likely 

to affect Italy so that levels of indicators are highly correlated, an aspect which is remarkable 

for policy makers while evaluating the magnitude of subsides or incentives for improving water 

efficiency.  

Moreover, spatial heterogeneity in crops production individuates two significant clusters, 

especially for corn, characterized by different level of correlation of grey water level. 

Heterogeneity of grey water indicators in Italy may be generally linked to relevant features 

strictly connected to the geographical location, climate, soil conditions, and agricultural 

management. Agricultural management, particularly includes the real practices, especially in 

the use of pesticides that strongly depends on climate conditions (Delcour et al., 2015) and 

impacts deeply on the level of grey water. In our applications, those factors are likely to 

contribute to a certain level of polarization between North (high-high) and South (low-low) for 

corn as well for other crops. For those reasons, the presence of dualism between North and 

South requires a major attention while setting policies. While considering the differences in 

water management, the use of economic incentives and subsides may represent a valid choice 

in the South area of Italy. Training programs for agriculture, instead, may be an alternative to 

disseminate a better accuracy of water management in the North part of Italy. In any case, from 

our analysis emerges that policy makers should examine a wide set of reasons that contributes 
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to the presence of significant heterogeneity, including the level of diversity in economic 

conditions (Panzera and Postiglione, 2014). 

The presence of significant results of spatial analysis are relevant for the interpretation of 

water management policies in the frame of agriculture and water management. As for other 

studies (Irwin and Geoghegan, 2001; Sexton et al., 2002; Bivand and Brusntad, 2003), many 

actions may be broadly assessed and modified under a better knowledge of the spatial effects 

as emerged in our analysis. The reason is that some special policies may be particularly 

influenced by a spatial specification or definition of the levels of grey water, which are sensitive 

to spatial effects. More actions in the direction of sustainable agriculture that consider spatial 

effects can be individuated in local practice for controlling water pollution, incentive through 

specific policies that take into account spill-overs produced by migration and investments, local 

and peculiar technical assistance and training.    

 

6. Conclusions 

In this paper, we performed a spatial analysis on four different cereal crops for Italy across the 

years 2011-2015. ESDA shows the significant and relevant presence of both positive spatial 

dependence and local differences (i.e. spatial heterogeneity) which is detected singularly for 

each crop. This study demonstrates that the complex patterns of water use cannot be solely 

explained by economic development but other biophysical factors should be considered by 

focusing on spatial effects. Hence, those patterns may be explicated by referring to climate and 

soil conditions which are largely influenced by geographical location. The geography generally 

has a strong influence on real practices that affect the level of grey water. In this sense, the 
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performed analysis might serve as a useful guideline for better understanding the phenomenon 

of water pollution in Italian cereals production.  

The presence of significant spatial effects points out that more attention should be payed 

to the selection of the appropriate spill-over specification (LeSage and Pace, 2009) and to the 

critical interpretation of spatial regimes (Panzera and Postiglione, 2014). Moreover, our results 

obtained on spatial analysis of grey water could be considered in a wider framework that helps 

policy-makers to improve water management in Italian cereal crops production. Policy makers 

should consider all the interconnections and diversities revealed by the presence of spatial 

effects as behavioral change and cultural factors, environmental aspects, and economic 

connections. 

Maintaining some compromise between agriculture and human food supply and 

conserving aquatic systems will be one of the most important future mission of European policy 

on agriculture: policy makers need to find a balance between what is needed by humans and 

what is needed in the environment in terms of sustainability of water resources. In this sense, 

the field of water resources management, especially in terms of water pollution, should continue 

to adapt to the current and future issues facing the allocation of water and considering several 

aspects as well as the presence of significant spatial effects.   
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Table 1. Moran’s I statistic results for 4 crops in the period 2011-2015. p-values in bracket. 
 

  2011 2012 2013 2014 2015 

Corn 
0.338 0.224 0.304 0.353 0.399 

(0.000) (0.004) (0.000) (0.000) (0.000) 

Barley 
0.339 0.319 0.259 0.306 0.321 

(0.000) (0.000) (0.001) (0.000) (0.000) 

Soft wheat 
0.127 0.310 0.239 0.300 0.357 

(0.034) (0.000) (0.002) (0.000) (0.000) 

Durum wheat 
0.230 0.086 0.031 0.312 0.253 

(0.003) (0.087) (0.187) (0.000) (0.001) 
Expectation =-0.0625 

 

 
Table 2.  Global G for four crops in the period 2011-2015. p-values in brackets. 

 
  2011 2012 2013 2014 2015 

Corn 
0.417 0.395 0.411 0.413 0.406 

(0.016) (0.562) (0.032) (0.058) (0.130) 

Barley 
0.421 0.419 0.416 0.411 0.420 

(0.004) (0.009) (0.027) (0.063) (0.014) 

Soft wheat 
0.432 0.443 0.438 0.436 0.436 

(0.001) (0.001) (0.003) (0.004) (0.000) 

Durum wheat 
0.420 0.421 0.407 0.417 0.417 

(0.004) (0.013) (0.125) (0.015) (0.009) 
Expectation = 0.397 
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Annex 

Results for LISA analysis of four crops yearly in the interval 2011-2015. P-values: 0.10 (*), 0.05 (**), 0.01 
(***). 

 

Corn 

    Exp = -0.0625                                                     2011 2012 2013 2014 2015 
Piedmont -0.181 0.535* 0.306 0.970*** 0.314 
Lombardy 0.914*** 0.666** 0.281 0.890*** 0.483* 
Veneto 0.626*** -0.429 0.341* 0.612*** 0.402* 
Friuli-Venezia Giulia 0.219 0.193 0.184 -0.529 0.667** 
Emilia-Romagna 0.614*** -0.284 0.127 0.468 0.277 
Tuscany 0.211 0.216 0.242 -0.007 -0.109 
Umbria 0.432 0.071 0.619*** -0.027 0.351* 
Marche -0.113 -0.097 -0.239 -0.128 -0.032 
Lazio -0.014 0.011 0.092 -0.061 -0.078 
Abruzzo -0.227 0.011 -0.320 -0.133 -0.001 
Molise 0.871*** 0.702*** 0.678*** 0.771*** 0.918*** 
Campania -0.159 -0.583 -0.331 -0.261 -0.282 
Apulia 0.531 0.392 0.481* 0.448* 0.568** 
Basilicata 0.962*** 0.813*** 0.927*** 0.958*** 1.303*** 
Calabria 1.074*** 0.896*** 1.292*** 1.148*** 1.507*** 
Sicily 0.197 0.377 0.555** 0.593** 0.111 
Sardinia -0.207 0.323 -0.059 0.301 0.387 

 

 

Barley 
    Exp = -0.0625                                                     2011 2012 2013 2014 2015 
Piedmont 0.092 0.166 ** 0.259 0.272 0.245  
Lombardy 0.572** 0.613*** 0.317*** 0.927**  0.292***  
Veneto 0.885*** 0.968** 1.162*** 0.525**    1.144** 
Friuli-Venezia Giulia 0.942*** 0.694** 0.820*** 0.949***  0.729*** 
Emilia-Romagna 0.522** 0.684 0.544 0.711***  0.654*** 
Tuscany -0.153 -0.348 -0.401 -0.339 -0.536 
Umbria 0.421** 0.211 0.159 0.040    0.239 
Marche 0.452** 0.522** 0.154 0.254    0.401 
Lazio -0.006 0.035 0.157 0.219    0.070 
Abruzzo -0.112 0.017 -0.006 -0.009   -0.033 
Molise 0.417** 0.596** 0.431* 0.520**   0.592** 
Campania 0.059 -0.289 -0.204 0.087 0.106 
Apulia 0.540** 0.539* 0.368 * 0.489**   0.611** 
Basilicata 0.719*** 0.571** 0.532 ** 0.520**   0.650** 
Calabria 0.796** 0.607** 0.438* 0.486*   0.557* 
Sicily 0.672** 0.488* 0.474* 0.320   0.501* 
Sardinia -0.940 -0.652 -0.789 -0.773 -0.623 
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Soft Wheat 
    Exp = -0.0625                                                     2011 2012 2013 2014 2015 
Piedmont -0.004 0.092 0.091   0.114  -0.017 
Lombardy 0.147 0.475* 0.104    0.501*   0.210 
Veneto 0.627*** 0.975*** 0.924***    0.930***    0.752*** 
Friuli-Venezia Giulia -0.353 0.691* 0.590**    0.690**    0.339 
Emilia-Romagna 0.392** 0.612*** 0.452**    0.469**    0.596*** 
Tuscany -0.152 -0.144 -0.092   -0.071   -0.134 
Umbria 0.350** 0.384** 0.424**  0.399**  0.785*** 
Marche 0.492 0.458** 0.347*    0.399*    0.659*** 
Lazio -0.023 0.084 0.055   0.065    0.001 
Abruzzo 0.045 -0.040 -0.103  -0.131  -0.067 
Molise 0.240 0.782*** 0.651   0.747***  0.874 
Campania 0.150 0.020 0.016   0.239   0.013 
Apulia 0.244 0.473** 0.308   0.455*   0.684** 
Basilicata 0.319 0.376* 0.314   0.368*   0.579** 
Calabria 0.454* 0.458* 0.260   0.226   0.440* 
Sicily 0.535* 0.534** 0.768**   0.741**   0.897*** 
Sardinia -1.300 -0.963 -1.035 -1.041 - 0.538 

 

 
 
 

Durum Wheat 
    Exp = -0.0625                                                     2011 2012 2013 2014 2015 
Piedmont 0.082 -0.829 -0.239 0.330 -0.198 
Lombardy 0.555** 0.198 0.189 0.869*** 0.538* 
Veneto 0.896*** 0.645*** 0.429** 1.166*** 1.129*** 
Friuli-Venezia Giulia 0.078 - 0.085 0.010 -0.009 -0.162 
Emilia-Romagna 0.560*** 0.321* 0.270* 0.649*** 0.602*** 
Tuscany -0.272 -0.233 -0.246 -0.206 -0.518 
Umbria 0.309* 0.271 -0.253 0.156 0.356* 
Marche 0.166 0.294 -0.045 0.048 0.225 
Lazio 0.035 -0.001 0.095 0.250 0.086 
Abruzzo -0.026 0.011 -0.106 -0.102 0.001 
Molise 0.258 0.261 0.315* 0.459 0.497** 
Campania 0.465* 0.062 0.161 0.722** 0.298 
Apulia 0.313 0.214 0.130 0.239*** 0.426* 
Basilicata 0.340 -0.242* 0.153 0.245 0.329 
Calabria 0.736** 0.325 0.351 0.548* 0.513* 
Sicily 0.573** 0.258 0.488* 0.548* 0.487* 
Sardinia -1.156 0.002 - 1.176 -0.610 -0.306 
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