Accepted version

Licence CC BY-NC-ND

Please cite as: Diuzheva, A., Carradori, S., Andruch, V., Locatelli, M., De Luca, E., Tiecco, M., Germani, R., Menghini, L., Nocentini, A., Gratteri, P., and Campestre, C. (2018) Use of Innovative (Micro)Extraction Techniques to Characterise *Harpagophytum procumbens* Root and its Commercial Food Supplements. *Phytochem. Anal.*, 29: 233–241. doi: <u>10.1002/pca.2737</u>.

Use of Innovative (Micro)Extraction Techniques to Characterise *Harpagophytum procumbens* Root and its Commercial Food Supplements

Alina Diuzheva,^a Simone Carradori,^b Vasil Andruch,^a Marcello Locatelli,^{b,c*} Elisa De Luca,^b Matteo Tiecco,^d Raimondo Germani,^d Luigi Menghini,^b Alessio Nocentini, ^e Paola Gratteri^e and Cristina Campestre^b

* Correspondence to: Marcello Locatelli, PhD, Assistant Professor, Analytical andBioanalytical Chemistry, Department of Pharmacy, University"G. d'Annunzio" of Chieti- Pescara, Chieti, Italy. Email: <u>m.locatelli@unich.it</u>

^a Department of Analytical Chemistry, Pavol JozefŠafárik University in Košice, Košice, Slovakia

^b Department of Pharmacy, University"G. D'Annunzio" of Chieti-Pescara, Chieti, Italy

° Interuniversity Consortium of Structural and Systems Biology, Rome, Italy

^d Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy

^e Department NEUROFARBA–Pharmaceutical and Nutraceutical Section, Labo-ratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Florence, Italy

Abstract

Introduction - For the determination of harpagoside and the wide phenolic pattern in *Harpagophytum procumbens* root and its commercial food supplements, dispersive liquid–liquid microextraction (DLLME), ultrasound-assisted DLLME (UA-DLLME), and sugaring-out liquid–liquid extraction (SULLE) were tested and compared.

Objectives - In order to optimise the extraction efficiency, DLLME and UA-DLLME were performed in different solvents (water and aqueous solutions of glucose, β -cyclodextrin, (2-hydroxypropyl)- β -cyclodextrin, sodium chloride, natural deep eutectic solvent, and ionic liquid).

Material and Methods - The plant material was ground and sieved to obtain a uniform granulometry before extraction. Commercial food supplements, containing *H. procumbens* are commercially available in Italy.

Results - The most effective sodium chloride-aided-DLLME was then optimised and applied for analyses followed by HPLC-PDA. For comparison, microwave-assisted extraction was performed using the same solvents and the best results were obtained using 1% of β -cyclodextrin or 15% of sodium chloride.

Conclusion - All commercial samples respected the *European Pharmacopoeia* monograph for this plant material, showing a harpagoside content \ge 1.2%.

Keywords: DLLME;Harpagophytum procumbens; IL; NADES; MAE

Introduction

Harpagophytum procumbens, also known as Devil's Claw (DC), grows in arid climate conditions in the African continent. For centuries in South Africa and later in Europe, the roots were used as a universal folk remedy for the treatment of several diseases, such as infections, fevers, skin complaints (Grant *et al.*, 2007), rheumatis ms (Brien *et al.*, 2006) and osteoporosis (Chung *et al.*, 2016). The major chemical compounds of *H. procumbens* are iridoid glycosides, sugars, triterpenoids, phytosterols, aromatic acids, and flavonoids (Mncwangi *et al.*, 2012). The most representative bioactive component of *H. procumbens* is harpagoside (Supporting Information Section S1), that has been shown to possess anti-inflammatory, analgesic (Haseeb *et al.*, 2017), anti-diabetic (Mahomed and Ojewole, 2004), and antioxidant (Grant *et al.*, 2009) effects.

According to the *European Pharmacopoeia* (Council of Europe, 2016), harpagoside should be quantified after reflux extraction from *H. procumbens* roots and homoeopathic preparations. This procedure provides reliable extraction of harpagoside, but the main drawbacks are the time-consumption (one hour) and the use of large solvent and plant material amount (0.5 g in 100 mL). In order to reduce the extraction time and to improve its selectivity, microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) techniques were proposed, leading to extraction times being lowered to 5 and 10 min, respectively, and a four-fold reduction in the volume of solvent (Baghdikian *et al.*, 2016; Locatelli *et al.*, 2017). The development of analytical methods for food supplement control with a reduction of the amount of toxic solvents used, or the replacement with non-toxic ones, without loss of efficacy in the extraction procedure is an important aim for researchers (Płotka-Wasylka *et al.*, 2016).

Therefore, liquid phase microextraction methods have shown important innovations for the extraction and pre-concentration of analytes from different matrices. Dispersive liquid–liquid microextraction (DLLME) and its modifications, such as ultrasound-assisted DLLME (UA-DLLME), ionic liquid-based DLLME (IL-DLLME), natural deep eutectic solvent-based DLLME (NADES-DLLME), and sugaring-out assisted liquid–liquid extraction (SULLE) can offer unique benefits such as high pre-concentration factor for the target analytes, low cost, simplicity and combined use with almost every analytical measurement technique (Campillo *et al.*, 2017). To the best of our knowledge, most of these procedures have not been developed or applied for the determination of harpagoside in raw plant material and/or in derived commercial products (food supplements).

A large number of microextraction techniques including single drop microextraction, DLLME, and liquid-phase microextraction (LPME) have been reported. Carrying out such techniques can vary widely, but common features are the use of only a small amount of organic solvents

and high sample-to-acceptor volume ratio. The organic phase, which contains the target analyte(s), can be used for quantification by means of different types of instrumental configurations (Yan and Wang, 2013). LPME is usually performed to analyse aqueous solutions. Analysis of solid samples is commonly done in two steps: the solid sample is converted to an aqueous solution using the suitable pretreatment procedure, and then the LPME is applied. Direct analysis of solid samples is somewhat more exceptional than common. Several works have been reported for the determination of phenolic compounds in plant materials and food samples by using DLLME in combination with HPLC-UV/vis (Hao *et al.*, 2012; Yang *et al.*, 2017) or GC–MS (Fariña *et al.*, 2007).

Replacing hazardous solvents with ionic liquids (ILs) or natural deep eutectic solvents (NADESs) is another important aspect available in DLLME. Depending on the analytical purpose, it is possible to modify the IL properties due to the structure of the cation and the identity of the anion (Tang *et al.*, 2012), but high cost and toxicity remain the main disadvantages (Khezeli *et al.*, 2016). Recently, NADESs were rapidly developed as new types of green solvents instead of ILs. NADESs are based on primary metabolites, such as organic acids, amino acids and sugars, but limited data are available for their extraction abilities (Craveiro *et al.*, 2016; Shishov *et al.*, 2017).

The aim of this study is to develop a rapid and reproducible microextraction procedure for the determination of harpagoside in *H. procumbens* root. DLLME and UA-DLLME with auxiliary solvents as solutions of glucose, β -cyclodextrin, (2-hydroxypropyl)- β -cyclodextrin (HP- β -cyclodextrin), sodium chloride, NADESs, and ILs were tested to improve the extraction efficiency. SULLE was also studied as an extraction procedure. MAE, carried out with different solvents, was chosen for comparison. After preliminary tests, the most efficient DLLME and MAE procedures were optimised and applied for the evaluation of harpagoside content and phenolic pattern in roots of *H. procumbens* and in seven commercial food supplements.

Experimental

Chemicals

Chemical standards: gallic acid, (+)-catechin, chlorogenic acid, 4-hydroxybenzoic acid, vanillic acid, (–)-epicatechin, syringic acid, 3-hydroxybenzoic acid, 3-hydroxy-4-methoxybenzaldehyde, *p*-coumaric acid, rutin, sinapinic acid, *t*-ferulic acid, naringin, 2,3-dimethoxybenzoic acid, benzoic acid, *o*-coumaric acid, quercetin, 8-cinnamoyl harpagide (harpagoside), *t*-cinnamic acid, naringenin, and carvacrol (all purity \geq 98%) were purchased from Sigma-Aldrich (Milan, Italy).

Solvents [ethyl acetate (\geq 99%), acetonitrile (HPLC-grade), methanol (HPLC-grade), acetic acid (\geq 99%)] were obtained from Carlo Erba Reagents (Milan, Italy). *n*-Hexane (HPLCgrade) and diethyl ether (\geq 99%) were purchased from Sigma-Aldrich (Milan, Italy). Sugars [D(+)-saccharose, D(+)-glucose and D(-)-fructose] were obtained from Carlo Erba Reagents (Milan, Italy). IL (1-butyl-3-methylimidazolium bromide, purity \geq 99%) was obtained from Sigma-Aldrich (Milan, Italy). Sodium chloride (\geq 99%) was obtained from Honeywell (Seelze, Germany). NADES (glycolic acid/betaine mixture) was newly synthesised and supplied by the University of Perugia. It was chosen among differently structured novel DESs and NADESs mixtures (Cardellini *et al.*, 2014) for its suitable chemical–physical properties (low freezing point and viscosity, absence of aromatic compounds in its composition, low cost and natural source of the molecules forming it). Glycolic acid and trimethylglycine (Betaine) were purchased from Sigma-Aldrich and were used after drying under vacuum over P₂O₅. Ultra-pure water was obtained using a Millipore Milli-Q Plus water treatment system (Millipore Bedford Corp., Bedford, MA). β -Cyclodextrin (\geq 97%) and HP- β -cyclodextrin were purchased from Sigma-Aldrich (Milan, Italy).

Sample preparation

Samples of the dry root of *H. procumbens* were purchased in a local market in Namibia. The plant material was ground to a fine powder using a mixer grinder, passed through a 40 mesh sieve to obtain a uniform granulometry and stored in a vacuum box in the dark at 4°C until use. Commercial food supplements, containing *H. procumbens* plant material or its extracts, were purchased in a pharmacy in Italy.

Microwave-assisted extraction (MAE)

MAE was performed using an automatic Biotage InitiatorTM 2.0 (Uppsala, Sweden), characterised by 2.45 GHz high-frequency microwaves and power range 0–300 W. An IR sensor probe controlled the internal vial temperature. After grinding, the dry root (and commercial products) powder (100 mg) was protected from the light and held in a 10-mL vessel for an automatic single-mode microwave reactor. Then, 4 mL of each selected solvent were added to each sample thus obtaining a brown suspension. The sample was sealed and heated by the microwave source at 80°C (\pm 1°C) for 6 min, and then cooled with pressurised air, following a reported procedure previously optimised for the same plant material (Locatelli *et al.*, 2017; Ferrante *et al.*, 2017). The resulting suspension was filtered through a 0.2 µm syringe filter (Sigma-Aldrich, Milan, Italy) and the extraction solvent stored at –20°C for further analysis.

HPLC analysis

HPLC-PDA analyses were performed according to a validated method reported in the literature (Zengin *et al.*, 2016) using an HPLC Waters liquid chromatography (model 600 solvent pump, 2996 PDA). The mobile phase was directly degassed on-line using a Biotech 4CH DEGASI Compact (Onsala, Sweden). Empower v.2 Software (Waters Spa, Milford, MA) was used to collect and analyse data. The analyses were carried out using a gradient elution mode on a C18 reversed-phase column (Prodigy ODS(3), 4.6 mm × 150 mm, 5 μ m; Phenomenex, Torrance, CA), thermostated at 30°C (±1°C). The gradient elution was represented by a solution of water–acetonitrile (93:7 *v*/*v* ratio, both with 3% of acetic acid) as initial conditions, and the complete separation was achieved in 60 min (see Supporting Information Section S2for chemical standards chromatograms and for retention times and maximum wavelengths used for quantitative analyses).

Molecular modelling

The molecular structures of harpagoside, sinapinic acid and vanillic acid were obtained from the PubChem database and minimised with OPLS-2005 force field (Kaminski *et al.*, 2001; Hornak *et al.*, 2006) by Macromodel (MacroModel, version 10.7, Schrödinger, LLC, New York, NY, 2015). The structure of the β -cyclodextrin was extracted from the crystal structure of the Protein Data Bank (PDB) with code 3CGT (Schmidt *et al.*, 1998) and was prepared for docking using the Schrodinger preparation wizard protocol that consists in preliminary pre-treatment by adjusting the bond orders, adding hydrogen atoms, refining loop region and energy minimisation. Grid for docking analysis was centred in the centroid of the β cyclodextrin cavity and generated maintaining the possibility of hydroxyl groups rotation. Molecular docking was carried out using Glide (Glide, version 6.6, Schrödinger, LLC, New York, NY, 2015) SP precision.

Results and discussion

Chemical multicomponent pattern

To evaluate the best extraction methods for harpagoside and phenolic pattern of *H. procumbens* extracts, DLLME, UA-DLLME, SULLE, cyclodextrin-based DLLME (both β -cyclodextrin and HP- β -cyclodextrin), salt-aided DLLME, IL-DLLME, and NADES-DLLME were carried out and compared in terms of harpagoside recovery. The DLLME starting conditions were the following: 50 mg of dry roots and 5 mL of water (or 10% solution of sodium chloride, NADES, IL, glucose or 1% solution of β -cyclodextrin, and HP- β -cyclodextrin) were placed into a 15 mL screw cap plastic centrifugation tube [solid-to-liquid (*w*/*v*) ratio 8.2]. After 30 s of gentle shaking, 600 µL of ethyl acetate (extraction solvent) and 500 µl of acetonitrile (dispersive solvent) were rapidly injected into the test tube. The solution

was vortexed for 30 s and thereafter it was left for 2 min for the complete distribution of the analytes between aqueous and organic phases. In the case of UA-DLLME, the ultrasonication was performed for 10 min. The phase separation was observed after centrifugation for 4 min at $402 \times g$ (1500 rpm). Subsequently, 350 µL of the extraction solvent was withdrawn from the top layer, transferred into a 2 mL Eppendorf tube, and dried under a gentle stream of nitrogen. The residue was redissolved in 50 µL mobile phase, and 20 µL were subjected to HPLC analysis. Schematic procedure of DLLME is shown in Supporting Information Section S3a.

For SULLE, the procedure was the following: 50 mg of dry roots were placed into 15 mL screw cap plastic centrifugation tube. Then, 1 mL of water and 2 mL of acetonitrile were added. After 30 s of gentle shaking, 1 mL of glucose solution (400 g/L) was rapidly injected [solid-to-liquid (w/v) ratio 12.5]. For the cloudy solution formation, the mixture was vortexed for 1 min. Phase separation was achieved after centrifugation for 4 min at 402×g (1500 rpm), and then 20 µL of the top acetonitrile phase were directly injected into the HPLC system. In comparison with DLLME (11184 µg/g of harpagoside), SULLE showed selective extraction of harpagoside (18793–20034 µg/g) with respect to other phenolic compounds, but the obtained chromatograms showed target analyte peak split in comparison with the standard solution (see Supporting Information Section S4 for the chromatograms that show harpagoside peak split). Probably, the presence of the sugar could influence this behaviour in the chromatogram. To prove those assumptions, three sugars (saccharose, fructose, and glucose) in the concentration range of 400 to 800 g/L were examined. The phase separation was not observed for sucrose and fructose at the concentration level 400 g/L, so the concentration of sugars was two-fold increased. After peaks comparison with fructose, glucose and saccharose, the harpagoside peak split was confirmed. This phenomenon could be attributed to a not complete sample solvent compatibility with the mobile phase used in this validated HPLC procedure, confirmed by the same effect for all tested sugars in SULLE as previously reported by Hawkins and Dolan (2004). The validated procedure required an injection volume of 20 µL and this value did not imply a peak split associated with overloading of the column, as observed for other types of analytes (Liu et al., 2008).

Similarly, MAE was chosen for comparison. Previously, the efficacy of MAE was demonstrated with water as the solvent (Locatelli *et al.*, 2017) without other salts or modifiers. In the herein reported work the same optimised conditions (solid-to-liquid ratio, temperature, and irradiation time) were further tested by adding different modifiers in order to improve MAE process efficiency. For MAE, 100 mg of dry roots were placed in a 10 mL sealed vessel suitable for an automatic single-mode microwave reactor, and 4 mL of the proper solvent (water, 10% solution of sodium chloride, NADES, IL, glucose or 1% solution of β -cyclodextrin, and HP- β -cyclodextrin) were added [solid-to-liquid (*w*/*v*) ratio 25]. MAE was carried out by microwave irradiation for 6 min at 80°C (±1°C) and then cooling the

sample with pressurised air. Afterwards, 20 μ L of the filtered solution (0.2 μ m syringe filter, Sigma-Aldrich, Milan, Italy) were directly injected into the HPLC system (Mollica *et al.*, 2016). The schematic procedure for MAE is shown in Supporting Information Section S3b. Figure 1 shows that the best extraction of harpagoside was obtained using salt-aided DLLME and MAE with sodium chloride or β -cyclodextrin solution. Accordingly, these three procedures were selected for the optimisation of the extraction conditions.

Figure 1. Dispersive liquid–liquid microextraction (DLLME), ultrasound-assisted DLLME (UA-DLLME), and microwave-assisted extraction (MAE) procedures with different extraction solvents [water, natural deep eutectic solvent (NADES), ionic liquid (IL), sodium chloride (NaCl), βcyclodextrin (β-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), glucose]. Error bars represent the standard deviation based on three independent measures. Results are related to *Harpagophytum procumbens* root samples.

Optimisation of salt-aided DLLME

Several experimental parameters could influence the extraction efficiency of a DLLME method: type and volume of extraction and dispersive solvents, concentration of salt, extraction time, and solid/liquid ratio. In DLLME, the type and volume of the extraction solvent have a strong influence on the recovery of the analytes. In this approach, when the extraction solvent showed a higher density than water, the extraction phase withdrawal was difficult due to the presence of solid and inhomogeneous roots structure. Thereby, extraction solvents with lighter density than water (ethyl acetate, *n*-hexane and diethyl ether) were tested to obtain a good extraction efficiency.

n-Hexane showed non-satisfactory results because, owing to its non-polar character, it had low extraction capacity for phenolic compounds. Two more polar solvents, ethyl acetate and

diethyl ether, showed higher efficiency. A 25-fold higher extraction efficiency was reached with the application of ethyl acetate. So, it was selected as extraction solvent for further studies (Supporting Information Section S5a). For the extraction volume optimisation, 100, 200, 500, 600, 800 and 1000 μ L were examined, but, unfortunately, the phase separation did not occur with an ethyl acetate volume lower than 600 μ L. Thus, 800 and 1000 μ L showed approximately similar recovery, but the withdrawn volume was six-fold higher with 1000 μ L (Supporting Information Section S5b).

The dispersive solvent should also meet the requirement of good miscibility in both aqueous phase and extraction solvent, then enabling the dispersion of fine droplets of the extractant into the aqueous phase containing the analytes. Based on the earlier considerations, methanol, acetonitrile and acetone were examined. The results showed that the maximum extraction of harpagoside was achieved by using acetonitrile as dispersive solvent (Supporting Information Section S5c). Additionally, to study the effect of dispersive solvent volume, the experiments were carried out using different volumes of acetonitrile (250, 500 and 1000 μ L) (Supporting Information Section S5d). A volume of 500 μ L of acetonitrile was chosen for the future analysis due to its higher target analyte recovery.

The influence of the solution ionic strength was evaluated by adding 5%, 10%, 15% solution of sodium chloride, while keeping other experimental parameters constant. The results revealed that the maximum harpagoside recovery was obtained by using 10% sodium chloride, whereas no differences were observed on increasing the amount of sodium chloride (Supporting Information Section S5e). Based on the results obtained, 10% solution of sodium chloride was selected for further experiments. In order to increase the extraction efficiency and reduce the extraction time, different intervals for the analyte distribution in extraction phase were checked (1, 2, 5 and 10 min). It was established that the harpagoside extraction efficiency decreased with the extraction time, thus 2 min of distribution time were selected as the optimal value (Supporting Information Section S5f). Finally, the extractions were conducted with a series of different solid/liquid ratios (5:1, 10:1, 20:1, w/v). The extraction efficiency reached its maximum with a 10:1 (w/v) ratio and slightly decreased while increasing the sample weight, probably due to a saturation phenomenon related to other phytochemicals. So, the ratio 10:1 was chosen for further experiments (Supporting Information Section S5g).

From the optimisation studies, the final DLLME conditions to achieve the best performance of extraction of harpagoside consisted of the following steps: (i) amount of plant material – 50 mg, (ii) extraction solvent – 1000 μ L of ethyl acetate, (iii) dispersive solvent – 500 μ L of acetonitrile, (iv) 10% solution of sodium chloride and extraction time of 2 min, (v) withdrawn volume – 350 μ L, dryness under nitrogen atmosphere, then solubilisation of the dry residue with 50 μ L of mobile phase.

Optimisation of MAE

For the optimisation of the MAE, different percentages and types of modifiers were evaluated (5%, 10%, 15% solutions of sodium chloride and 0.5%, 1%, 1.5% solutions of β -cyclodextrin) under previously described conditions. Sodium chloride addition increased the harpagoside recovery in the sample solution with respect to reported analyses (Locatelli *et al.*, 2017), and improved the extraction efficiency with respect to harpagoside recovery. Conversely, β -cyclodextrin could improve this process due to a direct harpagoside inclusion within its conical cavity, as also demonstrated by a molecular modelling approach. The highest concentration value of harpagoside was obtained using 15% sodium chloride or 1% β -cyclodextrin solution (Supporting Information Section S6).

Molecular docking of β-cyclodextrin/metabolites

To further understand the better recovery of specific metabolites (harpagoside, sinapic acid, and vanillic acid) after MAE, with or without the use of a solution of β -cyclodextrin as solvent, a computational approach was applied. Primarily, the recovery enhancement of harpagoside associated with the use of β -cyclodextrin was rationalised by docking simulations which were carried out with the target kept fixed in the original conformations throughout the docking procedures, apart from the hydroxyl groups. Indeed, it makes sense treating such groups in the β -cyclodextrin structure as flexible (left free to move), allowing them to assume different orientations during the docking to produce the most favourable interactions with ligands. Multiple iso-energetic inclusion modes of the harpagoside within the β -cyclodextrin cavity were obtained (Fig. 2). The glycosidic and cyclopenta[c]pyranyl moieties were located at the larger opening of the toroid, exposed to the solvent, and established a wide network of conventional O-H···O hydrogen bonds with the hydroxyl groups of the glucose units placed at the rim. The cinnamoyl moiety was always found to accommodate within the apolar cavity of the oligosaccharide, where it formed C-H··· π interactions with the cavity lining. Such interactions involved both the phenyl and the olefinic moieties of the harpagoside.

Figure 2. Inclusion complexes of harpagoside within β -cyclodextrin. Hydrogen bonds are represented as yellow dash lines.

Enhancements in the extraction recoveries were also found in the case of vanillic and sinapinic acids. The inclusion complexes of these two carboxylic acids predicted by docking simulations showed a pattern of weak and moderate C-H···O and C-H··· π interactions. Moreover, the 4-OH moiety of vanillic acid was engaged in conventional O-H···O interactions with one of the oxygen atoms linking the glucose units of the β -cyclodextrin. Likewise, the O-H···O hydrogen bond involved the carboxylic functions of both acids (Fig. 3). In addition to those pointed out by docking, it is likely that further stabilising interactions might be formed in aqueous solution, involving hydrogen bonds with water molecules. Compared to the poses found for the harpagoside, none of the two carboxylic acids could establish wide hydrogen-bond interactions with the hydroxyl groups at the wide rim of the β cyclodextrin toroid. It is important to highlight that previous studies also demonstrated that metabolites such as the chlorogenic, vanillic, and sinapinic acids were able to effectively fit and interact with the β-cyclodextrin (Górnas *et al.*, 2009; Rajendiran *et al.*, 2017; Xiong *et* al., 2014). It is likely that the great predominance of harpagoside into the mixture elicited a β-cyclodextrin saturation, thus interfering with the recovery of other components associated with the use of β -cyclodextrin.

Figure 3. Inclusion complexes of β -cyclodextrin and (a) sinapinic acid and (b) vanillic acid. O–H···O and C–H···O hydrogen bonds are drawn as yellow and blue dashed lines, respectively.

Application to real samples: harpagoside content and phenolic pattern

To evaluate the applicability of the optimised extraction methods, the procedures were then applied to *H. procumbens* root and to its seven food supplements, commercially available in Italy. Table 1 reports the quantitative determination of harpagoside and phenolic pattern of *H. procumbens*-containing samples using salt-aided DLLME, while Tables 2 and 3 show the quantitative results obtained with MAE-sodium chloride and MAE- β -cyclodextrin, respectively. For the standard deviation calculation, the analysis of each sample was performed in triplicate.

std std Dev Mean Std Dev Mea			Food Sup	plements						
Mean Sid Dev Mean Sid Dev Mean Sid Dev Mean Sid Dev Galite acid 3.7 1.9 1.9 4.7 1.1 Catachin 240.4 33.7 16.2 4.0 125.8 65. Catachin 240.4 33.7 16.2 4.0 125.8 65. Chorogenic acid 13.5 4.2 4.2 4.2 4.1 1.1 27.0 7 1.1 Syringic acid 2.3 0.9 15.2 1.1 27.0 7 3 <td< th=""><th></th><th>S4</th><th>s</th><th>5</th><th>S</th><th></th><th>S</th><th>A</th><th>S</th><th></th></td<>		S4	s	5	S		S	A	S	
Galitic acid 3.7 1.9 4.7 1.1 Catechian 240.4 33.7 16.2 4.0 125.8 65.1 Chlorogenic acid 135 4.2 4.0 125.8 65.1 Chlorogenic acid 135 4.2 4.0 125.8 65.1 Vanilic acid 54.9 15.5 15.2 4.0 125.8 65.1 Syringic acid 2.3 0.9 2.3 0.9 7.0 7.1 27.0 7.1 J-OH-H-MeO 92.3 23.0 15.2 1.1 27.0 7.1 J-OH-H-MeO 92.3 23.0 15.2 1.1 27.0 7.1 J-OH-H-MeO 92.3 23.0 15.2 1.1 27.0 7.1 Benzoic acid 1.3 0.7 0.2 8.8 0 Percournaric acid 2.1 1.5 1.1 27.0 7.0 Sinaprinic acid 2.1 1.5 1.7 0.2 8.8 0	Std Dev Mean	1 Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Catachin 2404 33.7 16.2 4.0 125.8 65. Chlorogenk acid 13.5 4.2 4.0 13.5 4.2 Chlorogenk acid 54.9 15.5 4.2 7 9.0 13.5 6.5 Vanilic acid 54.9 15.5 1.1 2.1 0.7 9.0 Syringk acid 2.3 0.1 3.1 1.5 1.1 27.0 7 Syringk acid 2.3 0.7 0.1 3.0 15.2 1.1 27.0 7 J-OH bencoic acid 1.3 0.7 0.7 9.0 1.1 27.0 7 J-OH bencoic acid 1.3 0.7 9.0 9.1 27.0 7 Percourance acid 2.1 1.5 1.1 27.0 7 0 Rutin 56.9 20.8 108.9 17.3 266.4 68 Naringin 56.9 20.8 108.9 17.3 242.0 70	12		1000	1000	253	3.6		0.000	No.	100
Chicrospenk acid 135 4.2 4-OH berreoic acid 549 155 Vanilic acid 549 155 Epicatechin 549 155 Syringic acid 23 0.9 3-OH berreoic acid 23 0.9 3-OH berreoic acid 23 0.1 3-OH berreoic acid 1.3 0.7 3-OH berreoic acid 1.3 0.7 Berizaldehyde 1.3 0.7 P-Cournaric acid 3.1 1.5 Rutin 56.9 20.8 108.9 Strappinic acid 51 1.5 40.20 Autin 56.9 20.8 107.3 Strappinic acid 53.3 11.2 0.7 Varingin 56.9 20.8 70.0 Denrocic acid 53.3 11.2 402.0 70 Denrocic acid 53.3 11.2 402.0 70 Denrocic acid 53.3 815 402.0 70 Denrocic acid<	65.4		326	37.9			56.1	27.4	203	58
4-OH bereoic acid 135 4.2 Vanilic acid 549 155 Epicatechin 549 155 Syringk acid 23 0.9 Syringk acid 23 0.9 3-OH berrooic acid 7.0 0.1 3-OH berrooic acid 7.0 0.1 3-OH berrooic acid 1.3 0.7 Berizaldehyde 1.3 0.7 P-Cournaric acid 51 1.5 P-Cournaric acid 2.4 1.5 Rutin 56.9 20.8 107.9 Sinaprinic acid 2.4 1.5 1.7 Varingin 56.9 20.8 17.3 240.0 Varingin 56.9 20.8 17.3 240.0 70. Dencord 51.1 0.7 402.0 70. Bercord 23.5 8.5 402.0 70. Ouecetin 55.3 8.5 31.759 Varinoentin 6.4 2.6 2.1 5.2					1395	107.0	15.6	22		
Vanilic acid 549 155 Epicatechin 549 153 0.9 Syringk acid 2.3 0.9 3-0H berrooic acid 7.0 0.1 3-0H berrooic acid 7.0 0.1 3-0 92.3 23.0 15.2 1.1 27.0 7. 3-0H 4-MeO 92.3 23.0 15.2 1.1 27.0 7. berraidehyte 1.3 0.7 9.1 2.0 9.1 2.0 7. P-Cournaric acid 51 1.5 1.7 0.2 8.8 0 P-Cournaric acid 2.4 1.5 1.7 0.2 8.8 0 Naringin 56.9 20.8 108.9 17.3 2.45.0 70 Demoxic acid 53.3 11.2 0.2 402.0 70 Demoxic acid 53.3 11.2 0.2 403.0 70 Demoxic acid 53.3 8.5 48.35 815.4.3 1759 Ouercetin										
Epicentechin 59 Syringic acid 23 0.9 3-OH berrook acid 7.0 0.1 3-OH berrook acid 7.0 0.1 3-OH berrook acid 7.0 0.1 3-OH berrook acid 1.3 0.7 3-OH berrook acid 1.3 0.7 3-OH berrook acid 1.3 0.7 Percournark acid 1.3 0.7 Protournark acid 5.1 1.5 Natingin 5.69 20.8 107.9 67.7 402.0 70. Naringin 5.69 20.8 108.9 17.7 0.2 8.8 0 Naringin 5.69 20.8 108.9 17.3 245.0 70. Dencok acid 53.3 11.2 242.0 67.7 402.0 70. Dencok acid 53.3 81.5 43.2 70. 70. Dencok acid 53.3 85.3 815.4.3 1759. Ouecetin 303.9 38.4 <t< td=""><td>25</td><td>2 11.7</td><td></td><td></td><td>56.0</td><td>6.1</td><td></td><td></td><td></td><td></td></t<>	25	2 11.7			56.0	6.1				
Syringic acid 23 0.9 3-OH berrook acid 7.0 0.1 3.20 15.2 1.1 27.0 7. 3-OH berrook acid 7.0 0.1 3.0 15.2 1.1 27.0 7. 3-OH berrook acid 7.0 0.1 3.0 15.2 1.1 27.0 7. 3-OH berrook acid 1.3 0.7 0.7 0.1 27.0 7. Pcournark acid 5.1 1.5 1.7 0.2 8.8 0 Putin 56.9 20.8 108.9 17.3 266.4 68. Naringin 56.9 20.8 108.9 17.3 265.4 68. Varingin 56.9 20.8 108.9 17.3 265.4 68. Naringin 56.9 20.8 108.9 17.3 265.4 68. Aningin 56.9 20.8 108.9 17.3 26.7 402.0 70. Dencok acid 53.3 11.2										
3-OH berrook add 70 0.1 3-OH berrook add 70 0.1 3-OH-AMEO 92.3 23.0 15.2 1.1 27.0 7. 3-OH-AMEO 92.3 23.0 15.2 1.1 27.0 7. p-cournark add 1.3 0.7 p-Cournark add 51 1.5 1.7 0.2 8.8 0 Rutin 56.9 20.8 108.9 17.3 266.4 6.8 Naringin 56.9 20.8 108.9 17.3 266.4 6.8 Naringin 56.9 20.8 108.9 17.3 266.4 6.8 2.3-DiMeO 2.3-DiMeO 53.3 11.2 2.42.0 70. Denzok add 53.3 11.2 67.7 402.0 70. Denzok add 53.3 11.2 67.7 402.0 70. Outercetin 53.3 81.5 53.5 1759. 70. Harpagoside 8728.6 692.2 2769.7 483.5 1759. Outercetin 53.9 38.4 2.6 70. 70. Harpagoside 8728.6 692.2 2769.7			58.6	43.4						
3-0H-4-MeO 923 23.0 15.2 1.1 27.0 7. benzaldehyde 1.3 0.7 P-Coumark add 1.3 0.7 Rutin Sinapink add 5.1 1.5 1.7 0.2 8.8 0. Rutin 56.9 20.8 108.9 17.3 266.4 68. Naringin 56.9 20.8 108.9 17.3 266.4 68. 2.3-DiMeO 2.4 1.5 2.42.0 67.7 402.0 70. benzok add 53.3 11.2 benzok add 53.3 11.2 Ocoumark add 53.3 11.2 Aringenin 6.4 2.6 7.7 483.5 815.4.3 1759. Maringenin 6.4 2.6 7.7 483.5 815.4.3 1759. Naringenin 6.4 2.6 7.7 483.5 815.4.3 1759.					37.7	6'6	185	50	076	30
benzaldehyte 13 0.7 P-Coumark add 13 0.7 Rutin \$1 1.5 Rutin \$1 1.5 Snapink add 24 1.5 Varingin 56.9 20.8 108.9 17.3 266.4 68. Naringin 56.9 20.8 108.9 17.3 266.4 68. 2.3-DitMeO 2.3-DitMeO 2.42.0 67.7 402.0 70. Denzok add 53.3 11.2 242.0 67.7 402.0 70. Denzok add 53.3 11.2 242.0 67.7 402.0 70. Denzok add 33.3 35.5 8.5 70. 70. Marcetin 872.86 692.2 2769.7 483.5 815.4.3 1759. Parpagoside 873.86 692.2 2769.7 483.5 815.4.3 1759. Marinoenin 6.4 2.6 36.4 52.0 0	7.1 85.	7 9.1	152	120	932	9'6				
P-Cournance add 1.3 0.7 Rutin 51 1.5 1.7 0.2 8.8 0. Rutin 51 1.5 1.7 0.2 8.8 0. Sinaprinic acid 2.4 1.5 1.7 0.2 8.8 0. Naringin 56.9 20.8 108.9 17.3 266.4 68. 2.3-DiMeO 2.3-DiMeO 2.42.0 67.7 402.0 70. Demzoic acid 53.3 11.2 242.0 67.7 402.0 70. Demzoic acid 53.3 11.2 242.0 67.7 402.0 70. Demzoic acid 53.3 11.2 242.0 67.7 402.0 70. Demzoic acid 33.3 35.5 85.5 70.0 70. 70. Perzoic acid 303.9 38.4 17.2 48.35 815.4.3 1759. Connentic acid 303.9 38.4 2.6 70.0 70. Narince										
Rutin Sinaprink acid Si 1.5 1.7 0.2 8.8 0 rFendic acid 2.4 1.5 1.7 0.2 8.8 0 Naringin 56.9 20.8 108.9 17.3 266.4 68. 2.3-DiMeO 2.3-DiMeO 2.42.0 67.7 402.0 70 Benzoit acid 53.3 11.2 2.42.0 67.7 402.0 70 Demzoit acid 53.3 11.2 2.42.0 67.7 402.0 70 Demzoit acid 53.3 11.2 2.42.0 67.7 402.0 70 Demzoit acid 33.3 3.5 8.5 402.0 70 70 Occournaric acid 303.9 38.5 7769.7 483.5 815.4.3 1759. Narimoenin 6.4 2.6 2.0 5.2 0	916	2 3603	302.4	2208	21424	1183	155	1.7	15.4	L.E
Snaprink acid 51 1.5 1.7 0.2 8.8 0 r/fendik acid 2.4 1.5 1.7 0.2 8.8 0 Naringin 56.9 20.8 108.9 17.3 26.6 50.3 2.3-DitMeO 2.4 1.5 1.7 0.2 8.8 0 2.3-DitMeO 55.3 20.8 108.9 17.3 266.4 68. 2.3-DitMeO 53.3 11.2 242.0 67.7 402.0 70. Demotric acid 53.3 11.2 242.0 67.7 402.0 70. Demotric acid 53.3 11.2 242.0 67.7 402.0 70. Partock acid 53.3 81.5 46.7 48.35 70. Quercetin 8728.6 692.2 2769.7 483.5 8154.3 1759. Narinoenin 6.4 2.6 2.6 2.0 5.2 0										
r-Ferulic acid 24 15 17 02 88 0 Naringin 56.9 20.8 108.9 173 26.4 68. 2.3-DiMeO 56.9 20.8 108.9 173 26.4 68. 2.3-DiMeO 56.9 20.8 108.9 173 26.4 68. 2.3-DiMeO 53.3 11.2 242.0 67.7 402.0 70. Denzoic acid 53.3 11.2 242.0 67.7 402.0 70. Benzoic acid 53.3 11.2 242.0 67.7 402.0 70. Quercetin 53.3 11.2 242.0 67.7 483.5 1759. Quercetin 373.9 38.4 26.7 483.5 1759. Harpagoside 8728.6 692.2 2769.7 483.5 8154.3 1759. Fornnamic acid 303.9 38.4 2.6 5.2 0									46	10
Naringin 56.9 20.8 10819 17.3 266.4 68. 2.3-DiMeO 2.42.0 67.7 402.0 70. benzoic acid 53.3 11.2 242.0 67.7 402.0 70. Benzoic acid 53.3 11.2 242.0 67.7 402.0 70. Benzoic acid 25.3 8.5 11.2 242.0 67.7 402.0 70. Benzoic acid 25.3 8.5 8.5 8.5 70. 70. Ouercetin 37.39 8.5 769.7 483.5 815.4.3 1759. Harpagoside 872.8.6 692.2 2769.7 483.5 815.4.3 1759. Poinnamic acid 303.9 38.4 2.6 5.2 0 Narimoenin 6.4 2.6 5.2 0 5.2 0	0.9 16.	8 29	246	185	26.6	9.0	17	03		
2.3-Dil/MeO 2.42.0 67.7 402.0 70. benzoic acid 53.3 11.2 402.0 70. Benzoic acid 53.3 11.2 402.0 70. Ocoumaric acid 53.3 11.2 402.0 70. Orecretin 25.3 8.5 46.7 402.0 70. Harpagoside 8728.6 692.2 2769.7 483.5 8154.3 1759. Harpagoside 303.9 38.4 26 76.0 52 0 Narimoenin 6.4 2.6 2.6 6.2 2.0 52 0	68.4 49.	4 9.9	1883	137.4					225	73
benzoit acid 53.3 11.2 Berzok acid 53.3 11.2 o-Cournaric acid 25.3 8.5 Quercetin 25.3 8.5 Quercetin 8728.6 692.2 2769.7 483.5 8154.3 1759. Nameric acid 303.9 38.4 2.6 7.66.7 483.5 8154.3 1759. Nameric acid 303.9 38.4 2.6 3.7 4.3 3.7 0	70.9 362	9 146.0	96.5	81.7	201.0	2.6	293	33.7	38.4	105
Benzok acid 53.3 11.2 o-Coumark acid 25.3 8.5 Quercetin 25.3 8.5 Harpagoside 8728.6 692.2 2769.7 483.5 8154.3 1759. Nonnamic acid 303.9 38.4 Narimoenin 6.4 2.6 5.2 0										
o-Coumaric acti 25.3 8.5 Quercetin Harpagoside 8728.6 692.2 27697 483.5 8154.3 1759. KGinnamic acid 303.9 38.4 Narimoenin 6.4 2.6 5.2 0										
Quercetin Harpagoside 8728.6 692.2 27697 483.5 8154.3 1759. HGinnamic acid 303.9 38.4 Narimenin 6.4 2.6 5.2 0							35	0.7		
Harpagoside 8728.6 692.2 27697 483.5 8154.3 1759. P.Cinnamic acid 303.9 38.4 Narimenin 6.4 2.6 0.										
P.Cinnamic acid 303.9 38.4 Narimenin 6.4 2.6 5.2 0	1759.4 9158	6 878.6	9691.1	7279.6	7658.4	509.2	58449	368.2	33446	36.0
Naringenin 64 2.6 5.2 0	4	1 0.8			303	3.1				
	0.7									
Carvacrol			8.9	6.4	13.6	3.2				
Total (µg/g) 9594.2 775.6 3153.7 569.1 8994.2 1830.	1830.3 10618	9 1341.9	10407.4	7.593.7	10423.8	7125	61737	317.7	3454.8	23.4
Harpagoside 0.87 - 156 - 6.72 -	8	21	7.92	I	318	1	422	I	7.43	1
percentage 86. w. 44										

microwave-asisted	ration of the	srpagonde	and phen horide (h=	olic compo	m) source	4 ur (6/6ri	luchfode	post unit	unders ro	ot (51) an	do an fis con	nmercual Ic	addns pos	ments (52	-36) edr	scred by
Sample ID#	Bo	ots	2						Food sup	piements						
	8	15	ľ		и		2		or	5	S		S		S	
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Gallic add	523	44	262	0.8	36.7	2/15				3	27.1	5				1
Catechin Ohlorogenic acid 4-OH benazic	2209	202	1147	426	55.7	255			180.6	0.0	2271	21	85.2	47	683	56
Vanillic acid	40.0	ā			81.9	4	26.3	33	189	3.4	43.6	48	412	1.0	92	970
Epicatechin Syntingic add									50.1	65	966	14				
3-OH benabic acid	41.9	2.4	1721	10.2			210.2	14.8			298.7	502	1.06	169	82.5	6.8
3-OH-4-MeO	30.2	51	18.3	51	32.9	18.8	28.6	83	12.8	22						
benzaldehy de																2
p-Cournaric acid Rutin	8.7	60			63	1.0	511.8	863	2929	88	837.6	11	1447	180	1502	225
Sinapinic acid	264	2.4			165	20									229	20
r-Ferulic acid	249	2	3.4	90			36.4	2.0	49.0	6.0	292	20				3
Naringin	109.7	10.5	290.4	484	19.3	40	65.0	1.72	186.5	63.7	109.8	17.6	L81	162	505	17.6
2,3-DiMeO	435.7	3.5	76.5	1.4	164.8	14.7	1384.6	510.4	2255	80	649.7	105.5	16502	4352	904	39.1
benzoic acid																
denzoic acid o-Coumatic acid									337	18			562	37		
Quercetin																
Harpagoside	17459.0	32.3	6750.1	18.9	12575.2	951.8	15199.6	1432.6	26362.2	6810	17748.5	2993	134452	2713	73,266	231.4
r-Cinnamic acid	165.8	46			10.00	1000	13.4	69			22	00				
Naringenin	29	30			33.8	20			2.95	01	1.75	ų,	26.2	81	UCK	910
Total (uq/q)	199182	89.6	7451.7	763	0.92061	10118	174543	1232.1	27423.0	0112	20041.7	3229	157615	1.181.1	CNEBY	281.9
Harpagoside percentage	1.75	Ţ	3.80	1	10.4	I	13.5	1	215	I	137	1	126	I	16.3	J.
(M/m, 106)																
Note: Std Dev, stan	dard devial	tion.														

Image Start Start <th< th=""><th>Sample ID#</th><th>Ro</th><th>ots</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Food sup</th><th>plements</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Sample ID#	Ro	ots							Food sup	plements						
Mem Star Dev Me			15	4	2	S		S		S	10	S	9	S		S	
Galle seld M.6 11.6 3.2 1.8 1.1 2.1 2.3 3.4 4.6 Carechin 11.21 2.38 10.3 2.31 13.9 5.3.6 4.9 3.4 4.6 Cherospic sold 2.2 2.3 11.9 7.2.6 11.1 2.3 8.6 4.6 Chorospic sold 3.0 1.21 3.9 5.3 5.4 4.9 5.46 4.9 Chorospic sold 3.0 1.1 2.3 1.9 7.2 3.9 1.1 3.0 1.1 3.6 4.9 Achtheresce and Shimple cold 3.0 1.1 3.3 1.1 3.1 2.1 3.1 3.1 2.1 3.0 1.1 3.6 4.9 3.7 Shimple cold 3.1 3.1 2.1 3.1 2.1 3.1 2.0 3.1 3.1 3.0 1.1 3.6 4.9 Shimple cold 3.1 3.1 3.1 3.1 3.0 3.		Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Charaction 1121 228 1004 208 51 327 762 33 1167 233 1091 25 546 46 46 Choracperix acid 4 Chiracperix acid 5 Wilk acid 327 139 628 57 762 38 1167 273 901 25 546 46 Chiracperix acid 5 Wilk acid 327 100 303 314 367 130 11 205 240 405 Symple acid 5 Wilk acid 326 101 333 47 533 112 307 121 307 121 305 304 Symple acid 5 Wilk acid 329 103 353 110 323 103 323 103 323 304 305 324 305 324 305 324 305 324 305 324 305 324 305 324 305 324 305 324 305 324 305 324 324 325	Gallic acid	24.6	11.6			526	1.8			and a	3	232	32	No.	ł		
Observence and protention and symple and sy	Catechin	112.1	27.8	100.4	20.8					1197	73.6			88.4	4.6		
Vanite acid 60 34 121 39 23 24 23 24	Chlorogenic acid 4-OH berzoic acid	2275	240	327	13.9	628	23	762	3.8	1167	27.8	1.601	25	546	49		
Epicatechtal Solutions solution 3-OH-Monoced 3-	Vanillic acid	48.0	3.4	121	39			243	22			30.7	1.1			8.6	03
Offlemende Softleme	Epicatechin									-	-	201	40				
3-014-4Mo0 336 11 333 01 337 149 153 21 260 238 3-014-4Mo0 356 84 1345 281 1593 47 5531 163 137 21 20 238 Deratadehyde Motion Sampink acid 396 84 1345 281 1593 47 5531 135 21 397 21 397 21 393 403 Sampink acid 2133 846 599 238 400 277 1026 233 317 473 313 473 313 Naming 2133 846 599 236 10014 2936 10985 2721 3354 991 9970 372 1986 21 713 8650 2423 Naming 21 21 23 345 321 3355 321 3352 321 303 303 303 Naming 360 3603	SOH harmonic and	200	10.0	607.8	21.4	367	4.8	2674	707	25	100	3	3				
Description between tartime Description (1) Description (1) <thdescription (1) Description (1) <th< td=""><td>S ON A MAD</td><td>Acr</td><td>11</td><td>2.2</td><td>10</td><td>141</td><td>2</td><td>L-MANNA</td><td>1.44</td><td>100</td><td>140</td><td>2.41</td><td>10</td><td>DAC</td><td>0 62</td><td></td><td></td></th<></thdescription 	S ON A MAD	Acr	11	2.2	10	141	2	L-MANNA	1.44	100	140	2.41	10	DAC	0 62		
p-Countance acid 5895 84 1345 281 1593 47 5531 215 1037 495 217 397 21 397 421 Rutin Sembles acid 213 211 121 01 112 04 16.0 04 375 131 21 393 403 Rutins acid 2133 846 599 238 490 277 1026 234 3659 107 372 1986.2 713 845.0 242 Narringen 2133 845 238 10014 2395.6 10985 277.1 3546 991 977 372 1986.2 713 845.0 242.0 Narringen 211 23 231 73 3546 991 977 372 1986.2 713 845.0 242.0 Description 2036 80.04 12016.0 1586 1267.28 3194 2306.6 2149 713 845.0 <td< td=""><td>benzaldehvde</td><td>1</td><td>E.</td><td>2</td><td>ŝ</td><td></td><td></td><td></td><td></td><td>100</td><td>2</td><td>1</td><td>ī</td><td>107</td><td>9.25</td><td></td><td></td></td<>	benzaldehvde	1	E.	2	ŝ					100	2	1	ī	107	9.25		
Rutin Samplinic acid Simplinic acid Rutin Simplinic acid 121 01 112 04 16.0 04 96.2 17 96.2 17 96.2 17 96.2 17 96.2 17 96.2 133 96.2 133 96.2 133 96.2 133 96.2 133 96.2 133 96.2 133 96.2 133 96.2 133 96.2 133 96.2 133 96.2 133 96.2 133 96.2 103 96.2 103 97.2 93.2 112 96.2 103 <td>p-Coumaric acid</td> <td>589.6</td> <td>8.4</td> <td>1345</td> <td>281</td> <td>1593</td> <td>47</td> <td>5531</td> <td>215</td> <td>103.7</td> <td>49.5</td> <td>222</td> <td>3.5</td> <td>35.7</td> <td>21</td> <td>262</td> <td>42.4</td>	p-Coumaric acid	589.6	8.4	1345	281	1593	47	5531	215	103.7	49.5	222	3.5	35.7	21	262	42.4
Smaprine acid 213 21 01 112 04 6.0 04 refendic acid 213 21 21 112 01 112 04 6.0 04 refendic acid 2133 846 599 238 1903 277 1026 213 355 713 1865 747 6.7 355 211 1022 147 473 103 Darbooks acid 8750 5677 1129 286 10985 2721 3556 991 9970 372 1986.2 713 886.0 243 Darbooks acid accommark acid 3321 73 3946 293 342 193 213 193 213 193 213 213 103 2143 213 <td>Rutin</td> <td></td>	Rutin																
rfendic acid 213 21 21 321 962 17 962 17 473 70	Sinapinic acid					121	0.1	112	0.4	16.0	0.4						
Naringin 2133 846 599 238 490 277 1026 234 3659 1021 147 473 1032 147 473 1032 Denroick acid Denroick acid Denroick acid 8750 567.7 1129 286 1001.4 293.6 1098.5 272.1 334.6 937.0 372.2 1936.2 147 473 103.2 Denroick acid Denroick acid 355.7 112.9 286.6 1001.4 293.6 1098.5 272.1 334.6 931.0 372.2 1936.0 243.2 243.2 213.2 103.2 147 473 103.2 148.6 243.0 243.2 213.2 103.2 148.7 473 103.2 248.2 103	rFendic acid	21.3	17			13,8	2,0	747	63	285	23.1	96.2	1.7				
2.3-DilMoO 875.0 567.7 1129 286 101.4 293.6 1098.5 272.1 354.6 99.1 97.0 37.2 1936.2 71.3 1845.0 242.1 Dentroic acid 352.1 7.3 352.1 7.3 354.6 99.1 97.0 37.2 1936.2 71.3 1845.0 242.1 Dentroic acid 0-Coumaric acid 352.1 7.3 319.4 23006.3 1449.4 1536.6 0.2 251.8 101.2 260.0 Ouercetin Unercetin 12.1 0.7 356.6 12 12 26 0.2 231.8 12107.2 232.8 6130.2 268.0 Ouercetin 12.1 0.7 256.6 1.2 12 26 0.2 21.8 12107.2 222.5 6130.2 268.0 Namicenin 12.1 0.7 256.6 1.2 26 0.2 26 0.2 245.8 2107.2 231.5 6130.2 268.0 268.0 268.0 268.0 268.0 268.0 268.0 268.0 268.0 268.0 </td <td>Naringin</td> <td>2133</td> <td>84.6</td> <td>59.9</td> <td>238</td> <td>49.0</td> <td>27.7</td> <td>102.6</td> <td>23.4</td> <td>3659</td> <td>140.6</td> <td>1753</td> <td>21</td> <td>1022</td> <td>147</td> <td>473</td> <td>103</td>	Naringin	2133	84.6	59.9	238	49.0	27.7	102.6	23.4	3659	140.6	1753	21	1022	147	473	103
Denrotic acid Berrotic acid Ouercetin Commaric acid Ouercetin Commaric acid 3521 73 Berrotic acid Berrotic acid Ouercetin Commaric acid 1001 12 <t< td=""><td>2.3-DilMeO</td><td>8750</td><td>567.7</td><td>1129</td><td>28.6</td><td>1101.4</td><td>293.6</td><td>1098.5</td><td>272.1</td><td>3546</td><td>1.66</td><td>07/66</td><td>37.2</td><td>1936.2</td><td>713</td><td>1845.0</td><td>242.2</td></t<>	2.3-DilMeO	8750	567.7	1129	28.6	1101.4	293.6	1098.5	272.1	3546	1.66	07/66	37.2	1936.2	713	1845.0	242.2
Berook add o-Coumaric acid Ouercetin 3521 73 o-Coumaric acid Ouercetin 180349 3469 82306 8604 120160 1586 126728 3194 153660 231.8 121072 2225 61302 2680 Ouercetin 12.1 07 2556 12 16.0 12 26 02 231.8 121072 2225 61302 2680 231.8 2680 231.8 2680 231.8 2680 231.8 2680 261 26 02 232.5 61302 2680 2660 231.8 2680 231.8 2680 231.8 2680 231.8 2680 231.8 2660 231.8 2660 231.8 2660 231.8 2660 231.8 2660 231.8 2660 231.8 266.0 261.8 266.0 276.8 276.8 276.8 276.8 276.8 276.8 276.8 276.8 276.8 276.8 276.8 276.8 276.8 276.8 276.8	benzoic acid																
o-Coumaric acid Quercetin Iso 0349 346.9 8230.6 860.4 12016.0 158.6 1267.2.8 319.4 23006.3 1449.4 15366.0 231.8 12107.2 222.5 6130.2 268.0 Rampegolde 130.349 346.9 8230.6 860.4 12016.0 158.6 12 726 12 225.5 6130.2 228.6 13 Nampenin 22.6 0.9 25.3 43 230.2 0.3 243.48 1556.0 231.8 12107.2 222.5 6130.2 268.0 Nampenin 22.6 0.9 25.3 43 200.2 0.3 243.48 1556.0 231.8 1395.5 6130.2 288.0 Total (ug/y) 20297.2 8387.9 13901.5 471.1 14891.9 4585.5 242.484 1607.4 1682.23 203.5 8139.5 617 195.5 67.0 Nameercatage 1.80 - 638.7 242.484 1607.4 1682.23 203.5 8137.4	Benzoic acid					3521	23										
Overcetin Overcetin Overcetin 180349 3469 8230.6 860.4 12016.0 158.6 12672.8 319.4 1536.60 231.8 12107.2 222.5 6130.2 X680 Harpagoside 12.1 07 25.3 4.3 25.6 1.2 1.6 1.2 2.6 0.2 2.5 6130.2 288.0 231.8 12107.2 222.5 6130.2 268.0 261.0 261.0 261.0 261.0 261.1 266.7 261.2 262.0 231.8 12107.2 222.5 6130.2 268.0 261.0 261.0 261.0 261.0 261.0 261.1 266.7 261.1 266.7 261.1 1489.1 674.4 1507.4 263.2 211.1 265.0 274.5 211.1 266.7 261.0 261.4 1607.4 16822.23 203.6 171.1 192.5 677.4 265.2 211.8 245.5 209.0 211.8 245.5 809.04 545.0 215.6 245.5 245.5	o-Coumaric acid																
Harpagoside 180349 3469 8230.6 860.4 120160 158.6 12672.8 319.4 2300.63 1449.4 1536.60 231.8 12107.2 222.5 6130.2 268.0 Poinnamic acid 12.1 0.7 22.6 0.9 25.3 4.3 23.6 1.2 16.0 1.2 2.6 1.2 2.6 1.2 2.5 0.3 2.4 1.2 1.2 1.2 1.2 1.2 1.2 2.5 1.3 2.4 2.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Quercetin																
r-Cliniamic acid 12.1 0.7 25.6 1.2 1.6.0 1.2 2.6 0.2 Naringenin 12.1 0.7 25.6 1.2 1.2 2.5 1.3 2.5 1.3 2.5 1.3 2.5 1.3 2.5 2.1 19.5 6.7 Naringenin 22.6 0.9 25.3 4.3 2.0.2 0.3 2.5 1.1 14391.9 2.43 2.3 2.45 2.1 19.5 6.7 Total (µg/g) 20297.2 8380 9318.3 887.9 13901.5 471.1 14891.9 4585 2.448.4 1607.4 16822.3 2.3 2.45 2.1 19.5 6.7 Harpagoside 1.80 - 4.63 - 9.90 - 11.2 - 18.8 - 6.34 - 13.6	Harpagoside	18034.9	3469	8230.6	860.4	12016.0	158.6	126728	319.4	230063	1449.4	15366.0	231.8	121072	2225	61302	268.0
Naringenin 12.1 0.7 25.6 1.2 1.2 1.8 2.4.3 2.3 2.5.5 1.9.5 6.7 Carvacrol 22.6 0.9 25.3 4.3 20.2 0.3 25.9 11.8 2.4.3 2.3 2.4.5 2.1 19.5 6.7 Carvacrol 22.6 0.9 25.3 4.3 20.2 0.3 24.5 2.1 19.5 6.7 Total (µg/g) 20297.2 8387.9 13901.5 471.1 14891.9 4585 24.48.4 1607.4 16822.3 203.6 14374.7 235.5 8090.4 545.0 Harpagoside 1.80 - 4.63 - 11.2 - 18.8 - 8.74 - 13.6 - 33.6 - 33.6 - 33.6 - 33.6 - 33.6 - 33.6 - 33.6 - 33.6 - 33.6 - 33.6 - 3.6 - 3.6	r-Cinnamic acid							160	2			26	5				
Carvacrol 22.6 0.9 25.3 4.3 20.2 0.3 25.9 11.8 24.3 2.3 2.1 19.5 6.7 Total (µg/g) 20297.2 8380 9318.3 887.9 13901.5 471.1 14891.9 458.5 242.48.4 1607.4 1682.23 203.6 14374.7 235.5 8090.4 545.0 Harpagoside 1.80 - 4.63 - 9.90 - 11.2 - 18.8 - 8.74 235.5 8090.4 545.0 Percentage 1.80 - 4.63 - 9.90 - 11.2 - 18.8 - 8.74 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 - 13.6 -	Naringenin	12.1	07			256	7										
Total (µg/g) 20297.2 838.0 9318.3 887.9 13901.5 471.1 14891.9 458.5 242.48.4 1607.4 16822.3 203.6 1437.47 235.5 8090.4 545.0 Harpegoside 1.80 - 4.63 - 9.90 - 11.2 - 18.8 - 6.38 - 8.74 - 13.6 - 13.6 // Note: Std Dev. standard deviation.	Carvacrol	22.6	60	253	43	202	60			259	11.8	243	23	245	21	19.5	6.7
Harpagoside 1.80 - 4.63 - 9.90 - 11.2 - 18.8 - 6.38 - 8.74 - 13.6 - percentage (%, w/w) Note: Std Dev. standard deviation.	Total (µg/g)	202972	838.0	93183	67.88	13901.5	471.1	14891,9	4585	24248.4	1607.4	168223	203.6	143747	2355	8090.4	545.0
percentage (%, w/w) Note: Std Dev. standard deviation.	Harpagoside	180	I	463	I	066	1	112	I	18.8	1	6.38	I	8.74	I	13.6	I
(%, w/w) Note: Std Dev. standard deviation.	percentage																
Note: Std Dev. standard deviation.	(M/M 'W)																
	Note: Std Dev. stan	dard deviat	ion.														

Being the main analytical marker for the *H. procumbens* root, as requested by the *European Pharmacopoeia* monograph, among the 22 selected secondary metabolites, harpagoside is the most abundant component disregarding the extraction technique with a concentration ranging from 8729 to 18035 μ g/g. The best extraction performances were obtained by using MAE and 1% β -cyclodextrin solution as extraction solvent, as also rationalised by the molecular modelling studies. As regards the phenolic pattern, herein DLLME was firstly applied to *H. procumbens* and provided a more complete phenolic profile with respect to the other technique (MAE with different solvents), even if their quantities were generally lower. This fact could be related to the type and the limited volume of solvent used for this green microextraction procedure. Conversely, MAE exhibited an improved efficiency in terms of total phenolic recovery. The quantification of other secondary metabolites, in addition to harpagoside, took advantage of the important and well-recognised biological activities attributed to this plant material in order to have more exhaustive data about the chemical characterisation of the phytocomplex.

Successively, we applied these three procedures for the comparative analyses of seven commercially available food supplements containing *H. procumbens*. The quantities of harpagoside found in the commercial products (Tables 1-3) resulted in slightly higher values than the declared concentration (percentage w/w of dry extract). This discrepancy could be related to the different extraction techniques, processing steps (Cesa et al., 2017), and to the fact that all food supplements were characterised by an established content of harpagoside-enriched plant material, but into the formulations was also present an undefined amount of raw plant material in addition to other ingredients. All commercial samples of food supplements respected the European Pharmacopoeia monograph that requires, for *H. procumbens*-containing preparations, a harpagoside content higher than or equal to 1.2%. As reported in Tables1-3, the three different extraction techniques registered a similar behaviour observed for the extraction of natural plant material, with DLLME as the least efficient procedure in terms of total recovery, expressed as µg/g. However, all the three extraction procedures coupled to HPLC-PDA confirmed the quality of these food supplements in terms of harpagoside content. Moreover, the total phenolic content in these food supplements ranged from 3154 to 27423 μg/g, for salt-aided DLLME, MAE-βcyclodextrin, and MAE-sodium chloride.

Based on the achieved results for salt-aided DLLME and MAE, these methods could be successfully applied as rapid and environmentally friendly pre-concentration procedures for the analysis of *H. procumbens* root and its commercial food supplements. These optimised conditions also permitted the reduction of solvent consumption in routine analysis and, coupled with the reported HPLC-PDA instrumental configuration, improved the chemical pattern that could be evaluated in a one-step procedure. Additionally, the possibility to assess a multi-analyte pattern could expand the research studies, related to the fact that

several biological activities were demonstrated not only for the main (and often the most representative) compound, but also for the whole phytocomplex.

Acknowledgements

A.D. gratefully acknowledges the University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy for allowing the opportunity of this research project to be implemented. This work was supported by MIUR (FAR), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy, and the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic (VEGA 1/0010/15).

References

Baghdikian B, Filly A, Fabiano-Tixier A-S, Petitcolas E, Mabrouki F, Chemat F,Ollivier É. 2016. Extraction by solvent using microwave and ultrasound-assisted techniques followed by HPLC analysis of Harpagoside from Harpagophytum procumbens and comparison with conventional solvent extraction methods.CR Chimie 19: 692–698.

Brien S, Lewith GT, McGregor G. 2006. Devil'sClaw (Harpagophytum procumbens) as a treatment for osteoarthritis: A review of efficacy and safety.J Altern Complement Med 12: 981–993.

Campillo N, Viñas P,Šandrejová J, Andruch V. 2017. Ten years of dispersive liquid–liquid microextraction and derived techniques.Appl SpectroscRev 52: 267–415.

Cardellini F, Tiecco M, Germani R, Cardinali G, Corte L, Roscini L, Spreti N.2014. Novel zwitterionic deep eutectic solvents from trimethylglycine and carboxylic acids: Characterization of their properties and their toxicity. RSC Adv4: 55990–56002.

Cesa S, Carradori S, Bellagamba G, Locatelli M, Casadei MA, Masci A, Paolicelli P. 2017. Evaluation of processing effects on anthocyanin content and colour modifications of blueberry (Vaccinium spp.) extracts: Comparison between HPLC-DAD and CIELAB analyses. Food Chem 232: 114–123.

Chung HJ, Kim WK, Park HJ, Cho L, Kim MR, Kim MJ, Shin JS, Ho LJ, Ha IH,Kook LS. 2016. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models. J Ethnopharmacol 179: 66–75.

Council of Europe. 2016.European Pharmacopoeia Ninth Edition. Devil's Claw Root. Council of Europe: Strasbourg; 1335.

Craveiro R, Aroso I, Flammia V, Carvalho T, Viciosa MT, Dionísio M, Barreiros S, Reis RL, Duarte ARC, Paiva A. 2016. Properties and thermal behavior of natural deep eutectic solvents. J Mol Liq 215: 534–540.

Fariña L, Boido E, Carrau F, Dellacassa E. 2007. Determination of volatile phe nols in red wines by dispersive liquid–liquid microextraction and gaschromatography-mass spectrometry detection. J Chromatogr A 1157: 46–50.

Ferrante C, Recinella L, Locatelli M, Guglielmi P, Secci D, Leporini L, Chiavaroli A, Leone S, Martinotti S, Brunetti L, Vacca M, Menghini L, Orlando G. 2017. Protective effects induced by microwave-assisted aqueous Harpagophytum extract on rat cortex synaptosomes challenged with amyloid β -peptide. Phytother Res 31(8): 1257–1264.

Górnas P, Neunert G, Baczyński K, Polewski K. 2009. Beta-cyclodextrin complexes with chlorogenic and caffeic acids from coffee brew: Spectroscopic, thermodynamic and molecular modelling study. Food Chem 114: 190–196.

Grant L, McBean DE, Fyfe L, Warnock AM. 2007. A review of the biological and potential therapeutic actions of Harpagophytum procumbens. Phytother Res 21: 199–209.

Grant L, McBean DE, Fyfe L, Warnock AM. 2009. The inhibition of free radical generation by preparations of Harpagophytum procumbens in vitro. Phytother Res 23: 104–110.

Hao Y, Chen X, Hu S, Bai X, Gu D. 2012. Utilization of dispersive liquid–liquid microextraction coupled with HPC-UV as a sensitive and efficient method for the extraction and determination of oleanolic acid and ursolic acid in Chinese medicinal herbs. Am J Analyt Chem 3: 675–682.

Haseeb A, Ansari MY, Haqqi TM. 2017. Harpagoside suppresses IL-6 expression in primary human osteoarthritis chondrocytes. J Orthop Res 35: 311–320.

Hawkins C, Dolan JW. 2004. Understanding split peaks.LC•GC Eur 17:2-4.

Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. 2006.Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725.

Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. 2001. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105: 6474–6487.

Khezeli T, Daneshfar A, Sahraei R. 2016. A green ultrasonic-assisted liquid–liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta 150: 577–585.

Liu Y, Zhang W, Yang Y. 2008. Validated hydrophilic interaction LC-MS/MS method for simultaneous quantification of dacarbazine and 5-amino-4-imidazole-carboxamide in human plasma.Talanta 77: 412–421.

Locatelli M, Ferrante C, Carradori S, Secci D, Leporini L, Chiavaroli A, Leone S, Recinella L, Orlando G, Martinotti S, Brunetti L, Vacca M, Menghini L. 2017. Optimization of aqueous extraction and biological activity of Harpagophytum procumbens root on ex vivo rat colon inflammatory model. Phytother Res 31: 937–944.

Mahomed IM, Ojewole JAO. 2004. Analgesic, antiinflammatory and antidiabetic properties of Harpagophytum procumbens DC (Pedaliaceae) secondary root aqueous extract. Phytother Res 18: 982–989.

Mncwangi N, Chen W, Vermaak I, Viljoen AM, Gericke N. 2012. Devil's claw–a review of the ethnobotany, phytochemistry and biological activity of Harpagophytum procumbens.J Ethnopharmacol 143: 755–771.

Mollica A, Locatelli M, Macedonio G, Carradori S, Sobolev AP, De SalvadorRF, Supuran CT. 2016. Microwave-assisted extraction, HPLC analysis, and inhibitory effects on carbonic

anhydrase I, II, VA, and VII isoforms of 14 blueberry Italian cultivars. J Enzyme Inhib Med Chem 31(suppl 4):1–6.

Płotka-Wasylka J, Owczarek K, Namieśnik J. 2016. Modern solutions in the field of microextraction using liquid as a medium of extraction. Trends Anal Chem 85:46–64.

Rajendiran N, Mohandoss T, Thulasidhasan J. 2017. Photophysics of caffeic, ferulic and sinapic acids with α -and β -cyclodextrins: spectral and molecular modeling studies. Int Lett Chem Phys Astron 72:37–51.

Schmidt AK, Cottaz S, Driguez H, Schulz GE. 1998. Structure of cyclodextringlycosyltransferase complexed with a derivative of its main product β -cyclodextrin. Biochemist37: 5909–5915.

Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V. 2017. Application of deep eutectic solvents in analytical chemistry. A review. Microchem J 135:33–38.

Tang B, Bi W, Tian M, Row KH. 2012. Application of ionic liquid for extraction and separation of bioactive compounds from plants. J Chromatogr B 904:1–21.

Xiong X, Zhao X, Song Z. 2014. Exploring host–guest interactions of sulfobutylether-β-cyclodextrin and phenolic acids by chemiluminescence and site-directed molecular docking. Anal Biochem 460:54–60.

Yan H, Wang H. 2013. Recent development and applications of dispersive liquid–liquid microextraction. J Chromatogr A 1295:1–15.

Yang P, Li H, Wang H, Han F, Jing S, Yuan C, Guo A, Zhang Y, Xu Z. 2017. Dispersive liquid–liquid microextraction method for HPLC determination of phenolic compounds in wine. Food Anal Methods 10:1–15.

Zengin G, Menghini L, Malatesta L, De Luca E, Bellagamba G, Uysal S,Aktumsek A, Locatelli M. 2016. Comparative study of biological activities and multicomponent pattern of two wild turkish species: Asphodeline anatolica and Potentilla speciosa. J Enzyme Inhib Med Chem 31(suppl1): 203–208.