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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a range of
motor and non-motor symptoms. One of the notable non-motor symptoms of PD is the presence of
vocal disorders, attributed to the underlying pathophysiological changes in the neural control of the
laryngeal and vocal tract musculature. From this perspective, the integration of machine learning
(ML) techniques in the analysis of speech signals has significantly contributed to the detection
and diagnosis of PD. Particularly, MEL Frequency Cepstral Coefficients (MFCCs) and Gammatone
Frequency Cepstral Coefficients (GTCCs) are both feature extraction techniques commonly used in
the field of speech and audio signal processing that could exhibit great potential for vocal disorder
identification. This study presents a novel approach to the early detection of PD through ML applied
to speech analysis, leveraging both MFCCs and GTCCs. The recordings contained in the Mobile
Device Voice Recordings at King’s College London (MDVR-KCL) dataset were used. These recordings
were collected from healthy individuals and PD patients while they read a passage and during a
spontaneous conversation on the phone. Particularly, the speech data regarding the spontaneous
dialogue task were processed through speaker diarization, a technique that partitions an audio stream
into homogeneous segments according to speaker identity. The ML applied to MFCCS and GTCCs
allowed us to classify PD patients with a test accuracy of 92.3%. This research further demonstrates
the potential to employ mobile phones as a non-invasive, cost-effective tool for the early detection of
PD, significantly improving patient prognosis and quality of life.

Keywords: speech analysis; speaker diarization; machine learning; Parkinson’s disease

1. Introduction

The integration of edge computing into smart healthcare systems represents a sig-
nificant advancement in modern healthcare, promising to revolutionize the industry by
bringing computation closer to the source of data generation. Its deployment for smart
healthcare has already been assessed, highlighting the security risks encountered and
proposing solutions to address said risks, thus providing a credible framework for smart
healthcare [1]. Furthermore, with the integration of artificial intelligence, edge computing
has developed into the concept of edge intelligence, paving the way for highly compelling
applications such as real-time critical healthcare systems [2]. Notably, the integration of
edge computing and smartphones into these structures has revealed new frontiers for
efficient data collection, the early detection of health issues, and the delivery of healthcare
services. In fact, smartphones, with their widespread adoption and array of sensors, have
emerged as indispensable tools for aiding in the diagnosis, treatment, and continuous mon-
itoring of individuals’ health. They can capture data on various physiological parameters
and easily connect to wearable devices and sensors, creating a seamless ecosystem for con-
tinuous data collection. Importantly, they have found wide application in the field of voice
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analysis for the early detection of health issues. This is due to their optimal microphones,
which have been evaluated for their fidelity and accuracy in the acoustic measurement
of voices [3]. Particularly, the suitability of smartphone microphones for capturing voice
recordings, even in the presence of ambient noise, and their capability to successfully record
lung sounds, making auscultation feasible, are widely demonstrated in the literature [4,5].
Moreover, they have been found to be adequate for the digitization of pathologic voices,
making them valuable for clinical voice research [6]. The high performance of smartphone
microphones has been further proven in studies showing how they outperform standard
external microphones in recording and analyzing normal and dysphonic voices [7]. Lastly,
it was demonstrated that smartphones are useful in restoring pathological voices and
allowing greater access to voice therapy for patients with dysphonia [8]. It should be
noted, though, that challenges such as device limitations in continuous voice tracking have
been identified, highlighting the need for further technological advancements to overcome
these barriers [9]. From this perspective, the development and the investigation of the
effectiveness of diarization algorithms to identify different speakers during a conversation
are crucial in order to also properly assess vocal heath status in ecological situations, such
as phone calls.

Importantly, vocal analysis often integrates machine learning (ML) techniques with the
aim to improve the classification performance between healthy and pathological voices [10].
The effectiveness of ML techniques combined with vocal analysis has been explored for
the classification of health conditions in several pathologies, such as Parkinson’s disease
(PD) [11].

Specifically, PD is a neurodegenerative disorder characterized by a range of mo-
tor and non-motor symptoms, including tremors, bradykinesia, rigidity, and postural
instability [12,13]. One of the notable non-motor symptoms of PD is the presence of vo-
cal disorders, which significantly impact speech and communication abilities in affected
individuals. The vocal disorders associated with PD are collectively termed hypokinetic
dysarthria and are attributed to the underlying pathophysiological changes in the neural
control of the laryngeal and vocal tract musculature [14]. Additionally, the dysarthria and
vocal tremor observed in PD are linked to modifications in speech and voices that resemble
those seen in the normal aging process, albeit with specific differences in prosody and habit-
ual frequency, which have a significant negative impact on the quality of life of individuals
with PD [15]. At the time of this study, the diagnostic protocol utilized for PD assessment
relied upon the MDS-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). This scale,
administered by physicians, encompasses a structured questionnaire aimed at capturing
various facets of patients’ daily experiences alongside a comprehensive motor examination.
Notably, within the motor examination part, clinicians are tasked with evaluating tremor
severity solely through visual inspection. This presents a notable limitation, as the severity
of tremors is known to be associated with variations in tremor amplitude, a quantitative
metric often measured in centimeters. Consequently, this reliance on visual assessment
renders the current evaluation method inherently approximate. Given the previous consid-
erations, the purpose of this study is to propose an ML-based analysis of voice recording
acquired by means of a smartphone and preprocessed with a speaker diarization algorithm,
able to classify healthy control (HC) and PD patients. Particularly, the diarization algorithm
allowed us to split the audio recording into distinct speaker-specific parts, thus identifying
the PD patients during a phone conversation. The ML frameworks were fed using the MEL
Frequency Cepstral Coefficients (MFCC) and Gammatone Frequency Cepstral Coefficients
(GTCCs), which are both feature extraction techniques commonly used in the field of speech
and audio signal processing [16,17]. In fact, both MFCCs and GTCCs are widely used in
various audio processing applications, and their effectiveness in capturing the essential
characteristics of audio signals has been demonstrated in tasks such as speaker identifi-
cation, emotion recognition, environmental sound classification, speech recognition, and
voice disorder assessment [18]. It is imperative to acknowledge that, despite the promise of
using vocal analysis as a means of assessing PD, caution must be exercised during data
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acquisition, since the presence of noise in the recordings poses a significant obstacle to
the classifier’s accuracy, and furthermore, the quantity of data collected is of paramount
importance, as an adequate volume of data is necessary to facilitate unbiased classification.

In conclusion, the novelty of the proposed approach relies in the combination of
MFCCs and GTCCs, which has been poorly investigated so far, and on the employment of
the diarization algorithm to identify speakers during a phone call, in order to also foster
the application of voice analysis for vocal disorder assessment for ecological applications.

2. Materials and Methods

This study was conducted using the freely available Mobile Device Voice Recordings
at King’s College London (MDVR-KCL) dataset [19], which comprises a total of 37 voice
recordings, 21 from HC and 16 from PD patients. As their first task, subjects were asked to
make a call and read one of the following paragraphs:

(1) “The North Wind and the Sun were disputing, which was the stronger, when a traveler
came along wrapped in a warm cloak. They agreed that the one who first succeeded
in making the traveler take his cloak off should be considered stronger than the other.
Then the North Wind blew as hard as he could, but the more he blew the more closely
did the traveler fold his cloak around him; and at last, the North Wind gave up the
attempt. Then the Sun shone out warmly, and immediately the traveler took off his
cloak. And so, the North Wind was obliged to confess that the Sun was the stronger
of the two”.

(2) “This is because there is less scattering of blue light as the atmospheric path length
and consequently the degree of scattering of the incoming radiation is reduced. For
the same reason, the sun appears to be whiter and less orange-coloured as the ob-
server’s altitude increases; this is because a greater proportion of the sunlight comes
directly to the observer’s eye. Figure 5.7 is a schematic representation of the path of
electromagnetic energy in the visible spectrum as it travels from the sun to the Earth
and back again towards a sensor mounted on an orbiting satellite. The paths of waves
representing energy prone to scattering (that is, the shorter wavelengths) as it travels
from sun to Earth are shown. To the sensor it appears that all the energy has been
reflected from point P on the ground whereas, in fact, it has not, because some has
been scattered within the atmosphere and has never reached the ground at all”.

As the second task, subjects were asked to have a spontaneous dialogue with the test
executor on the other end of the line.

Both tasks were recorded through the microphone of a Motorola Moto G4 smartphone
(launched in 2016). It should be noted that recordings were performed with a ‘Toggle
Recording App’ function, which used the same functionalities as the voice recording mod-
ule used in the i-PROGNOSIS app (https://cordis.europa.eu/project/id/690494, accessed
on 5 September 2023). In summary, at the call’s beginning, the Toggle app initiated record-
ings that ceased when the call concluded. This kind of acquisition allowed recordings to be
taken directly through the smartphone microphones, and not through the GSM (Global
System for Mobile communications) compressed stream, meaning every audio track had
the highest resolution possible, with a sampling rate of 44.1 KHz and a 16-Bit depth. The
MDVR-KCL has been deemed the best option for the presented study given the nature of
the acquisitions, which ensured the maximum possible fidelity to the real patients’ voices
and the presence of recordings from daily tasks such as reading and phone conversations.
Particularly, this last feature played a fundamental role in the selection, given its congruence
with real-life activities.

Two parallel analyses were conducted to explore the impact of different sampling
strategies. Given the limited number of subjects and the high sampling frequency, the
first analysis involved sampling the original recordings with no overlap, ensuring that
biases were minimized during subsequent classification. This sampling strategy applied
only to the reading task recordings, resulting in 3156 and 2044 audio samples for HC and
PD patients, respectively. Simple partitioning, however, was not a viable option for the
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recordings of the spontaneous conversation task, given the presence of a second voice in the
audio files; thus, a more complex approach was required. In this case, the implementation
of a speaker diarization algorithm preceded the ML classification. Speaker diarization
is a method for segmenting audio streams into distinct speaker-specific intervals. The
algorithm involves the use of k-means clustering in conjunction with an x-vector pretrained
model. X-vectors, obtained from deep neural networks processing MFCCs, encapsulate
unique speaker characteristics. K-means clustering is then applied, iteratively refining
centroids to group x-vectors into distinct clusters, effectively associating each segment
with a specific speaker. In the diarization process, the audio stream is initially divided
into shorter intervals, from which x-vectors are extracted and subsequently clustered
and processed. Post-processing techniques, such as smoothing, handle challenges like
overlapping segments, ensuring a coherent and accurate diarization output. It is important
to note that, when applying this technique, the number of clusters to identify should
always be set to the number of speakers plus one. This is carried out in order to store
any background noise in a unique, separate cluster, thereby enhancing the accuracy of
the process and the quality of the output audio streams. However, in the current case,
recordings were made directly on the call, resulting in no background noise. Thus, the
algorithm was simplified, necessitating the inclusion of a number of clusters equal to the
number of speakers. Furthermore, the complete absence of noise enhanced the performance
of the algorithm, with the process resulting in successful isolation, with 100% accuracy,
of the voices of the subjects from the voice of the supervisors on the other end of the call,
storing them into distinct audio files without altering their features or content. This led
to 273 voice audio samples for HC subjects and 247 voice audio samples for individuals
with PD. Lastly, it is paramount to highlight that, without the speaker diarization process,
the classification in the spontaneous conversations would have been rendered untruthful,
since the presence of the second healthy speakers in the conversations with PD patients
would have certainly represented bias in the classification, altering the results obtained.

The ML models tested in this study were fed using MFCCs and GTCCs. With numer-
ous coefficients in each, MFCCs provide a thorough depiction of the spectral envelope, ad-
dressing redundancies and offering nuanced insights into vocal characteristics. Stemming
from the Gammatone filterbank, GTCCs offer a physiologically accurate representation of
the auditory system’s frequency response.

MFCC is a method of representing the power spectrum of a sound over a short period
of time, using the human auditory system’s reaction to sound as a basis. The process
involves first applying Fourier transform to a signal, followed by calculating the logarithm
of the magnitude of the resulting Fourier transform. Next, there is a conversion to the MEL
scale, which is a perceptual scale where listeners perceive pitches to be equally spaced
from each other. Ultimately, the MEL log spectrum undergoes discrete cosine conversion in
order to obtain the MFCCs [16].

Conversely, GTCC is a technique for extracting features that is influenced by the way
the human auditory system responds to sound. The gammatone filterbank is designed
to mimic the frequency response of the basilar membrane found in the human ear. The
gammatone filterbank is first applied to the signal, followed by obtaining the logarithm
of the magnitude of the filterbank outputs. Finally, discrete cosine transform is used to
produce the cepstral coefficients [17,20].

Both feature sets contribute to a well-balanced representation of crucial spectral details
without unnecessary complexity. Extracted from audio signals, these features aim to capture
significant variations in the voice, making them suitable for tasks such as identifying speech
impairments, recognizing emotions, and managing conditions like asthma. In the healthcare
domain, both MFCCs and GTCCs find application in diverse areas, including the detection
of speech impairments, emotion recognition, and the management of asthma [21–23]. The
analyses described were performed with 13 coefficients each, extracted and normalized
with a z-score algorithm, after the application of a pre-emphasis filter on the recording,
aligning with current common practice [24].
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Both MFCCs and GTCCs have been employed separately in the assessment of PD
patients from voice recordings [25,26]. Furthermore, studies have shown how cepstral
coefficients can be defined as new quantitative biomarkers for the assessment of this spe-
cific disease, and how GTCCs outperform every other audio feature in the field of speech
analysis [27,28]. Hence, employing both MFCCs and GTCCs could potentially offer better
performance in identifying PD than using either set of coefficients alone. It should also be
noted that even considering both sets of coefficients, the number of samples is much larger
than the number of predictors; hence, this choice does not negatively affect the classifica-
tions. Once the coefficients for each recording were extracted, separate tables, designed for
utilization in ML applications, were prepared: one specifically for training, and the other
for testing purposes. It is crucial to note that to avoid any bias in the resulting accuracies,
every table was built selecting the same number of random samples for both the HC and
the PD classes, thus conferring evenness. Lastly, classifications were performed through
Support Vector Machine (SVM), k-nearest neighbor (KNN), and neural network models,
which are widely utilized in the field of speech analysis [29,30]. Specifically, the SMV model
adopted a ‘One-vs-one’ strategy for multiclass classification [31], while the KNN model
was set to have one neighbor and Euclidean distance as classification metrics. Lastly, the
neural network chosen was the wide model configured with an intermediate layer size of
100. The training was performed using nested cross-validation (nCV), where the dataset is
divided into folds, and the model is trained repeatedly on all but one fold of the data. The
inner loop determines the most effective hyperparameters via validation, while the outer
loop assesses the model’s performance over iterations through testing [32–34]. Specifically,
5-fold cross validation was implemented. The complete processing pipeline is represented
in Figure 1.
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Figure 1. Processing pipeline of the analyses performed in the study. Recordings from both tasks
were classified through all three ML models represented. Concerning the representation of the ML
algorithms, the blue and red squares in the SVM and KNN representation are indicative of the two
different groups. Regarding the Neural Network, the black circles are the first layer of the machinery,
the green circles represent the inner layers, whereas the red and blue circles are indicative of the two
groups provided as output by the model.

Analyses were performed through MATLAB 2023b©. Notably, the number of predic-
tors was significantly lower than the number of samples, hence allowing us to reduce the
possibility of an overfitting effect.

Furthermore, a t-test was performed for both MFCCs and GTCCs extracted from the
diarized recording to examine the differences between PD and HC. This analysis aims at
gaining a more comprehensive understanding of how differences in the cepstral coefficients
are associated with the health status of the individual.
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3. Results
3.1. Reading Task—Standard Sampling

For the reading task, given that the only voices present in the recordings were those
of the subjects, partitioning the data was the only viable option to increase the dataset
size. Following a random selection process, a training set comprising 3000 samples and a
testing set of 300 samples were used for processing with various SVM and KNN models. As
mentioned in the previous sections, tables were evenly constructed, with both containing
50% samples from HC and 50% samples from PD patients. The results from the various
ML models are presented in detail in Table 1.

Table 1. Details of performance in the classification of samples from the reading task.

Feature Set ML Model Training
Accuracy Test Accuracy Sensitivity Specificity F1-Score

MFCCs
Cubic SVM 86.4% 86.3% 0.86 0.86 0.86
Fine KNN 89.4% 90.3% 0.90 0.91 0.90

Wide neural network 88.8% 90.7% 0.93 0.87 0.90

GTCCs
Cubic SVM 87.0% 86.7% 0.86 0.88 0.87
Fine KNN 87.9% 87.7% 0.88 0.87 0.88

Wide neural network 87.5% 90.3% 0.93 0.88 0.90

MFCCs +
GTCCs

Cubic SVM 90.0% 88.7% 0.90 0.88 0.88
Fine KNN 89.8% 92.3% 0.93 0.91 0.92

Wide neural network 90.3% 92.3% 0.92 0.93 0.92

Of the multiple trials, the confusion matrices reporting the best results for the best
performing model for the training and test performances are shown in Figure 2.
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3.2. Spontaneous Conversation Task—Speaker Diarization

For the spontaneous conversation task, after the diarization process and random
selection, a training set comprising 400 samples and a testing set of 40 samples were
utilized for processing with different SVM and KNN models. As mentioned in the previous
sections, tables were evenly constructed, with both containing 50% samples from HC and
50% samples from PD patients. The results from the diverse ML models are reported in
detail in Table 2.
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Table 2. Details of performance in the classification of samples from the spontaneous conversa-
tion task.

Feature Set ML Model Training
Accuracy Test Accuracy Sensitivity Specificity F1-Score

MFCCs
Cubic SVM 81.5% 85.0% 0.85 0.85 0.85
Fine KNN 80.2% 85.0% 0.85 0.85 0.85

Wide neural network 80.5% 87.5% 0.89 0.86 0.87

GTCCs
Cubic SVM 85.2% 82.5% 0.78 0.88 0.84
Fine KNN 83.2% 77.5% 0.76 0.79 0.78

Wide neural network 82.8% 82.5% 0.81 0.84 0.83

MFCCs +
GTCCs

Cubic SVM 84.0% 90.0% 0.90 0.90 0.90
Fine KNN 84.8% 75.0% 0.75 0.75 0.75

Wide neural network 86.8% 87.5% 0.86 0.89 0.88

Of the multiple trials, the confusion matrices reporting the best results for the best
performing model for training and test performances are shown in Figure 3.
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and GTCCs.

The results of the unpaired t-test revealed significant differences in the distribution of
most of the cepstral coefficients, as reported in Figure 4. Particularly, while MFCCs had the
most groups with significant differences, the best results in the classifications were obtained
by leveraging GTCCs, meaning that their differences held higher weight in ML processing.
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4. Discussion

This study employed a multifaceted approach to discern between HC and PD pa-
tients, relying solely on vocal samples processed through a simple partition or a speaker
diarization algorithm.

The results show that, while all ML models considered can be valuable in the field of
speech analysis, SVM and neural networks prove to be more effective than KNN in the
described task. Furthermore, although all classification accuracies are comparable, utilizing
a combination of MFCCs and GTCCs proves to be the optimal choice, yielding better
results at a comparable computational cost. For instance, in the case of SVM for the second
task, a total cost of 66 was registered when utilizing only GTCCs as features, achieving
a test accuracy of 82.5%, compared to a cost of 68 assessed when classifying through the
same model but leveraging both MFCCs and GTCCs, reporting a test accuracy of 90.0%.
The inferential analysis supports the optimal results obtained through ML classifications,
highlighting significant differences almost in the totality of the t-test performed.

While the results observed in the reading task classification are generally higher
than the ones obtained for the spontaneous dialogue, it is important to note the different
number of samples in the tables involved in the process. Previous studies demonstrated
the possibility of classifying PD patients from HCs by employing the cepstral coefficient.
For instance, Benba et al. employed MFCC and Support Vector Machine (SVM) to analyze
voiceprints for detecting patients with PD, demonstrating the effectiveness of MFCC
in differentiating individuals with PD from healthy subjects, reaching an accuracy of
91.7% [18]. Moreover, Boualoulou et al. proposed a classification on a small dataset of 38
vocal recordings—20 from PD patients and 18 from healthy controls—first applying an
algorithm of empirical mode decomposition on the signals, and then, leveraging MFCCs
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and a KNN model, reaching an accuracy of 86.7% [35]. Later on, in another study, the same
technique was applied in combination with discrete wavelet transform to two different
datasets, and both MFCCs and GTCCs were extracted. Classifications were conducted
with more advanced methods such as convolutional neural networks and long short-term
memory networks, achieving accuracies of 96.55% and 100% on the different datasets,
employing in both cases only the GTCCs [26]. However, in none of these cases were MFCCs
and GTCCs employed together, and none of the datasets analyzed contained conversations
between subjects or recordings acquired during a phone call. It should be highlighted
that the novelty of the present study relies on the possibility of identifying PD using vocal
recordings performed by smartphones, whereas the previous studies used professional
recordings. Furthermore, employing speaker diarization algorithms unlocks the potential
for real-life applications, not having limits to the number of speakers it manages to identify,
thus making it appliable to daily conversations. Another highlight lies in the nature of the
tasks performed, both simulating common situations, which are easily reproducible, and
thus presenting the possibility of building new datasets which could be worked on with
the goal of improving research and results in the field of vocal analysis.

The first limitation of the conducted research, however, lies in the limited number of
subjects. A larger number of patients participating in the data acquisitions would have
influenced the study differently, removing the need for partition in the first task, thus
achieving more realistic results. Plus, assuming that the slightly lower accuracies registered
in the spontaneous conversation classifications are once again attributed to the number of
samples, increasing the number of subjects would likely also enhance the results obtained.
However, it must be noted that performing the same study on a larger and more diverse
dataset would have probably lowered the accuracies obtained in the absence of a proper
training phase. This places a question mark on the nature of the training required for the
construction of a model with high performance on a larger scale. Another point to highlight
regarding the specific dataset employed is related to the lack of the selection criteria for the
passages read by participants. For instance, the linguistic complexity of the passages (e.g.,
vocabulary difficulty, sentence structure) can influence the cognitive load on participants,
potentially affecting their speech production. Passages with varying complexity levels can
elicit speech that captures different aspects of PD-related speech impairments. Moreover, a
selection based on phonetic content could aim to ensure that the passages cover a broad
range of phonemes and phonetic contexts. This comprehensive coverage can help in
analyzing how PD affects different aspects of speech production. Regarding the emotional
and semantic content of the passages, the different emotions evoked could require deep
semantic processing that might elicit differences in prosody and articulation. Notably, the
length of the passages and their readability can affect participant fatigue and engagement,
potentially influencing their speech characteristics. An optimal length would ensure
that participants do not become fatigued, which could affect speech production. Finally,
familiarity with the passage content can affect a participant’s comfort level and speech
naturalness. Passages that are relevant and interesting to participants might elicit more
natural speech patterns; hence, choosing passages that are too familiar or too relevant
to the participants’ personal experiences might lead to variations in expressiveness that
are not directly related to PD symptoms. From this perspective, the passages should be
selected based on a comprehensive understanding of PD’s impact on speech, considering
the balance between uniformity (to ensure comparability across participants) and diversity
(to cover a broad range of speech characteristics). Further studies should investigate how
the passages’ selection could impact the classification outcomes.

Potential sources of errors in the classification accuracy might be represented by
subjects with minor symptoms affecting their vocal apparatus. Although this case cannot
be explored in the presented study, given the absence of such information in the analyzed
dataset, this possibility should be considered in future studies, with the goal of developing
a stronger classifier able to take into account the severity of vocal disorders and to identify
the progression of the disease.
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Furthermore, high recording quality with no background noise may not be guaranteed
in other applications or datasets, emphasizing the necessity for more advanced speaker
diarization algorithms, which should employ a separate cluster for storing said noise, or
even a different, more solid model than k-means clustering. This is especially true in real-
life scenarios when not only is a high noise component present, but there is also a variable
number of speakers in a single conversation. Moreover, considering real-life applications,
the classifiers implemented should be open to the possibility of the presence of more than
one kind of disease, meaning they should be capable of accurately assessing various kinds
of shadows in vocal distortions. This is particularly important, as different pathologies
may exhibit similar alterations in how the voice is perceived, potentially weakening the
effectiveness of cepstral coefficients as features utilized by ML models. A potential solution
to address this challenge lies in enhancing the strength of the coefficients. Utilizing a higher
number of coefficients, in fact, would result in a more accurate representation of vocal char-
acteristics, thereby improving the overall robustness and efficacy of the classifier. However,
it should be noted that such an application would once again require a proper training
phase, which means a comprehensive dataset of these different kinds of diseases should be
used. Furthermore, regarding possible questions about the quality of recordings performed
through mobile devices, it should be highlighted that smartphone microphones have been
deemed to perform exceptionally well when the goals are healthcare applications [36,37].

Still regarding limitations, it is important to understand that classification performed
is just a simple assessment of the disease, and thus, is not comparable with the evaluation
carried out by the physician with the support of the MDS-UPDRS. However, this study is
meant to be a first step towards automated classification of the severity of the disease, and
the final goal should be the complete replacement of the scale, establishing a new model
for the disease’s evaluation.

Future developments should be aimed at overcoming the reported limitations, employ-
ing solutions such as improved diarization algorithms, based on models more advanced
than k-means for the clustering of different voices. Furthermore, a deep learning approach
should be conducted, aimed at constructing a classification model which performs well
without the need for training. This approach represents an initial stride towards the real-
time assessment of an individual’s health through straightforward vocal recordings. These
recordings could play a dual role by not only serving to refine and enhance the model,
but also contributing to the creation of an ultimate system. Such a system would possess
the capability not only to offer immediate diagnoses but also to detect subtle changes that
might indicate the potential development of a specific disease. In order to enhance the
model’s performance, further predictors could be considered. Specifically, the adoption of
more than 13 cepstral coefficients as classification features for a widened representation of
the vocal characteristics could be implemented. Moreover, integrating additional features
or data types beyond MFCCs and GTCCs can significantly enhance a model’s predictive
power for identifying vocal disorders associated with PD. These features can provide com-
plementary information about speech production, articulation, and other characteristics
affected by PD. For instance, prosodic features such as pitch variation, speech rate, pause
duration, and intonation patterns can be used. In addition, voice quality features reflecting
the characteristics of the voice signal itself, including jitter (frequency variation), shimmer
(amplitude variation), harmonics-to-noise ratio (HNR), and voice breaks could be used as
predictors. Furthermore, articulatory features which provide insights into the movements
and positions of the articulators (e.g., tongue, jaw, lips) during speech production could
be integrated into the model. Moreover, non-linear dynamic features (e.g., detrended
fluctuation analysis, recurrence quantification analysis, and Lyapunov exponents) that
can capture the complexity and variability of speech signals, revealing subtle changes
in speech production mechanisms, can be exploited to increase the performance of the
model. Importantly, it should be highlighted that incorporating these additional features
and data types requires enlarging the dataset in order to avoid overfitting effects related to
the elevated number of predictors with respect to the classes’ numerosity.
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In fact, another crucial development would be the construction of a larger dataset of
vocal recordings, for the specific purpose of classifying not only the PD, but also other
similar neurodegenerative diseases. This would obviously be constricted by ethical con-
siderations and privacy concerns [38], which require careful consideration and can only
be addressed by ensuring transparency, data security, and user privacy preferences at the
moment of the acquisitions.

Moreover, in the near future, serious consideration should be given to implementing
a portable app. Such an application could analyze diverse recordings captured by the
individual and, after undergoing a sufficient number of processes, offer a straightforward
health evaluation. This concept closely aligns with the heart-monitoring technologies
found in smartwatches, offering simple indications of one’s health. This approach brings a
better health status understanding directly to the individual, eliminating the need for direct
consultation with a physician, thus enabling a simple at-home assessment. Furthermore,
it is not difficult to imagine a more complex version of the app to be used in a clinical
environment in difficult cases as an aiding tool for physicians which could also keep track
of examined cases, also working as a reference for complex diagnosis, without ignoring
the privacy concerns previously cited. From this perspective, it should be noted that
using mobile phones for collecting sensitive health-related data raises significant ethical
considerations and privacy concerns. The convenience and ubiquity of mobile phones
make them powerful tools for health monitoring and data collection, but they also pose
risks related to confidentiality, data security, and user consent. Firstly, individuals must
fully understand what data are being collected, how they will be used, and who will
have access to them. To address this concern, it is necessary to implement clear and
comprehensible consent processes, possibly through the app interface, where users can
review and agree to the terms before participating. Ensuring that consent is freely given and
can be withdrawn at any time is crucial. Moreover, employing strong encryption for data
transmission and storage is necessary, as are adhering to best practices for cybersecurity
and ensuring that data are anonymized or de-identified to protect participant identity.
Regular security audits and compliance with standards like HIPAA (Health Insurance
Portability and Accountability Act) in the U.S., GDPR (General Data Protection Regulation)
in the EU, and other relevant data protection regulations are essential.

However, more immediate steps should be taken in the direction of clinical trials.
Since voice analysis has found wide applications only in recent years, there is a lack of
employment of said instruments in real-time clinical applications. This poses an important
obstacle to the advancement of studies in the field and should be the first limitation to
address. Moreover, given the severity of the disease in question, it is easy to imagine
that complementary at-home observations of patients would enhance the findings of the
principal clinical trials.

In conclusion, these findings show the feasibility of the assessment of PD by leveraging
cepstral coefficients and ML models, both already established as powerful tools in the realm
of speech analysis. The results obtained show promise in paving the way for a greater
degree of understanding of the changes in vocal features in PD patients and in the aided
diagnosis of said disease. The strength of the presented study lies in its reproducibility and
its utilization of features solely dependent on the voice of the subject. Its effectiveness in
addressing minor diseases has already been established [39], thus supporting the potential
applicability of the same approach to other neurodegenerative diseases and, more broadly,
to any condition where the patient’s voice plays a significant role. This underscores the
great potential of the presented approach in speech analysis.

5. Conclusions

In conclusion, this study proposed an optimal method for the classification of PD
patients and HCs by leveraging vocal recordings acquired while reading or having a
spontaneous conversation on the phone. Utilizing diverse ML methods, leveraging novel
techniques such as speaker diarization, and working on widely used vocal features such as
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MFCCs and GTCCs, this research showcases the capacity of this method to glean valuable
insights into an individual’s health status from a basic voice recording. This study’s
significance is underscored by its effective use of a streamlined set of features, emphasizing
the inherent potential in leveraging dated recording devices. By highlighting the untapped
reservoir of valuable data accessible through older technologies, this work emphasizes the
transition from traditional diagnoses to augmented diagnostic approaches, advocating for
the utilization of existing resources to enhance medical assessments.
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