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ABSTRACT For decades, the number of automobiles in urban areas around the world has been increasing.
It causes serious challenges such as traffic congestion, accidents, and pollution, which have a social,
economic, and environmental impact on widespread urban cities. To overcome these challenges, we need to
explore smart AI-based perception systems for vehicular applications. Such types of systems can provide
improved situational awareness to the driver and generate early alarm about upcoming obstacles and road
incidents. In this study, we have presented the effective use of uncooled thermal IR sensors for designing
smart thermal perception systems as an alternative to CMOS visible imaging by presenting state-of-the-
art studies for in-cabin and out-cabin vehicular applications with potential long-term benefits for the
automotive industry. The key rationale for selecting thermal IR sensors over conventional image sensors is
that visible cameras are highly dependent on lighting conditions and performance is degraded significantly
in low-lighting scenarios and harsh weather conditions. Contrary to this, thermal sensors remain largely
unaffected by external lighting conditions or most environmental conditions, making them a perfect optical
sensor choice for all-weather and harsh environmental conditions. This study presents a review of the current
state of the art for automotive thermal imagingwith a focus on the contributions and advances achieved by the
EU-funded project ‘HELIAUS’ in the domain of AI-based thermal imaging pipelines for safer and reliable
road journeys.

INDEX TERMS Thermal-infrared, AI, in-cabin, out-cabin monitoring, advanced driver-assistance system
(ADAS), deep learning, optimization.

I. INTRODUCTION
Advanced Driver Assistance Systems (ADAS) are a col-
lection of digital technologies that help drivers with safer
driving and enhanced security features for reliable road jour-
neys. ADAS improves automotive and road safety by pro-
viding a safe human-machine interface. It uses automated
technologies such as vehicle sensors and cameras to iden-
tify surrounding impediments and driver faults and react
correspondingly. Since most traffic accidents are caused by
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human mistakes [1], ADAS is designed to optimize, adapt,
and improve automobile safety thus providing a reliable road
journey experience. By reducing human error, ADAS has
been shown to minimize fatal accidents [2].

Asmentioned before safety features are intended to prevent
mishaps and collisions by integrating technologies with the
existing vehicular system that notifies the driver of potential
hazards, executes protections, and, if required, takes control
over the vehicle. Such features include sensor fusion for real-
time data logging and object/obstacle detection and tracking
system deployment using advanced machine learning algo-
rithms are two key essential technologies directly associated
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with smart car systems. This will eventually enable drivers
to monitor the physical factors, recognize external objects,
and forecast occurrences that they should be aware of, giving
them a better perspective of the roadside environment and
its surroundings. Furthermore, lidar and radar are catego-
rized as typical sensors commonly used in the formation
of smart perception systems for automotive sensor suites.
Both visible imaging solutions and a variety of hardware
sensors are frequently used in conjunction with providing
enhanced monitoring systems. However, visible imaging has
some restrictions, such that in poor lighting situations, in the
nighttime, with sun glare, and glim from the headlight beam,
the RGB camera does not provide satisfactory results. More-
over, in computer vision applications, common automotive
sensors (radar and lidar) exploit some flaws [3].

Thermal imaging sensor technology overcomes most
of these flaws. This study will examine and analyze
vision-based smart perception systems, with a core focus on
the use of uncooled thermal cameras for advanced driver
assistant systems. Thermal imagers are the type of infrared
camera, that collects and generates images using infrared
thermal radiation generated from the surface temperature of
an object. Infrared thermography can be used as an effec-
tive method to overcome the limitations of visible or RGB
imaging. The real-time operating capabilities of thermal cam-
eras are not affected by low lighting scenarios sun glare or
vehicle headlight beam reflection. Further, it has immunity
to visual limitations and is considered a reliable solution in
harsh weather conditions such as snowy and foggy weather.
Uncooled thermal imaging sensors have emerged as low-cost
yet effective optical sensors due to recent advancements
in microbolometer technology. These optical sensors in the
automotive suite can supplement or even replace current tech-
nology, with the added benefit of sensing the thermal emis-
sivity of objects and operating independently of illumination
conditions, giving it a more consistent option for improved
environmental perception systems.

In this research, we have focused on the introduction
of thermal imaging which can be beneficial for the design
and deployment of thermal perception systems for advanced
vehicular systems. Figure 1 shows a comprehensive block
diagram representation of various in-cabin and forward-
vision applications and vehicular applications using thermal
imaging.

The rest of the paper is organized as follows. Section II
describes the difference between CMOS and thermal imaging
sensors whereas Section III describes the thermal data acqui-
sition pre-processing pipelines and lists the publicly available
large-scale thermal datasets. Sections IV and V present pub-
lished research studies regarding the latest advances in ther-
mal imaging for in-cabin driver and occupant monitoring and
out-cabin road monitoring systems. Section VI will elaborate
on and detail the significant contributions we made while
taking part in the Horizon 2020 HELIAUS [107] project,
which is funded by the EU under grant agreement no 826131.
The project mainly aims to develop and deploy smart thermal

perceptual systems for in-cabin driver monitoring systems
and vision-based advanced driver assistance systems thus
effectively addressing the inside and outside challenges. The
project focuses on creating low-cost and innovative technol-
ogy thus validating the performance of developed prototypes
in perceptual systems for automotive applications. It will
measure the added value of thermal sensing and promote
the advantages that such systems can offer for autonomous
driving. Lastly, section VII presents the overall conclusions
drawn based on this study and future possibilities in this
domain for the research community.

FIGURE 1. Block diagram representation of In-cabin and out-cabin
vehicular applications.

II. DIFFERENCE BETWEEN CMOS AND THERMAL
IMAGING SENSORS
A Complementary Metal Oxide Semiconductor (CMOS)
camera sensor is a type of imager that collects visible light
ranging from 400∼700nm band [4] (which is the same
spectrum that the human eye perceives). The CMOS sensor
works on the theory of the photoelectric effect to convert
the photons into electrons using the Analog to Digital (A/D)
conversion methodology. In the next stage, it organizes that
information to render image frames and sequences of frames.
Image sensors assembled into today’s digital/ RGB cameras,
mobile phone cameras, and CCTVs mostly use either the
CCD (charge-coupled device) or CMOS technology. Visible
cameras are designed to create images, capturing light in
red, green, and blue wavelengths (RGB) for accurate colour
representation. As compared to the human eye which requires
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visible light, RGB cameras also require light in the visible
spectrum to generate images with lower noise levels. Due to
this reason visible cameras are considered unfavourable for
producing adequate outputs in low-lighting or zero-lighting
conditions. Their performance is also significantly degraded
by rough atmospheric conditions such as fog, haze, smoke,
heat waves, and smog. This limits their usage and applications
to daytime and clear weather conditions mostly for real-time
applications. Moreover, the CMOS image sensor has the dis-
advantage of having numerous active devices in the readout
path that might cause time-varying noise. Furthermore, fabri-
cation errors can cause charge-to-voltage amplifier imbalance
between distinct pixels. Fixed-pattern noise is the result of
this, in which distinct pixels output different values despite
being exposed to homogeneous illumination [5].

Thermal infrared cameras, in contrast, do not require any
additional external lighting conditions to operate and can
produce high-image-quality data even in low-light circum-
stances. As a result, thermal cameras can be used inconspic-
uously while still being quite effective. This makes thermal
cameras the optimal option for applications that are needed
both during the day and at night or in low-light conditions.
Furthermore, thermal cameras function well in a variety of
environmental conditions, such as fog, haze, smoke, or sand-
storms, which can hinder visible cameras’ performance and
render them useless in adverse environmental situations.
In this paper, the development of intelligent systems that
should stay functional and effective regardless of lighting
conditions is the prime motivation for using thermal imaging
technology for vehicular applications.

III. PRINCIPLE OF THERMAL IMAGING TECHNOLOGY
AND EFFECTIVE USAGE IN COMMERCIAL VEHICLES
This section will highlight the working principle of LWIR
thermal cameras, thermal camera configurations, and types of
commercially available thermal cameras. Further, this section
presents publicly available large-scale thermal and synthetic
thermal datasets which can be effectively used in vehicular
applications for training and validation purposes and chal-
lenges associated with thermal data. The last part of this
section highlights the effective usage of thermal sensing in
the automotive sensor suite for night vision systems adapted
by commercial car manufacturers.

A. WORKING METHODOLOGY OF THERMAL SENSORS
The thermal camera has internal measuring devices that
capture infrared radiation, called microbolometers. Thermal
infrared radiation is a type of electromagnetic radiation which
is comprised of minute particles referred to as photons.
Such types of radiation are emitted by all the objects at a
surface temperature above absolute zero. From there, the
microbolometer records the temperature and then assigns that
pixel to an appropriate colour, thus mapping the complete
heat map representing the temperature intensities which can
be viewed on the camera screen or camera GUI (graphical
user interface).

B. THERMAL SENSOR CONFIGURATION AND IMAGE
CORRECTION PIPELINE
Thermal cameras based on microbolometer technology gen-
erate thermal images by applying a colour palette to the differ-
ent intensities of Infrared Radiation. However, the way data is
gathered and processed is directly influenced by internal sen-
sor configurations. Most thermal cameras come with onboard
initial image pre-processing pipelines before recording the
data. Some of the commonly used pre-processing steps are
as follows.

• Sensor Calibration (shutter/shutterless)
• Re-scaling and denoising techniques
• Automatic gain correction (AGC)
• Bad Pixel Replacement
• Temporal Denoising

Figure 2 shows the three-stage image correction/ processing
pipeline once the camera is calibrated using the shutterless
algorithm.

FIGURE 2. Three stages of image correction/ processing pipeline to
produce high-quality thermal data.

C. COOLED AND UNCOOLED THERMAL CAMERA
Commercially available thermal cameras can be divided into
two distinct categories. This includes cooled and uncooled
thermal cameras respectively.

1) COOLED THERMAL CAMERA
Thermal imaging sensor that is coupled with a cryocooler
is a core feature of cooled thermal cameras. It is the kind
of system that lowers the sensor’s temperature to cryogenic
levels. To eventually lower the thermally actuated noise to a
level below that of the sign from the scene being captured, it is
required to lower the sensor temperature. Helium gas gradu-
ally pushes past gas seals in cryocoolers, and themoving parts
that are designed to extremely tight mechanical tolerances
eventually wear out. For applications that demand precise and
consistent data, cooled thermal imaging technology is widely
regarded as the most sensitive sort of thermal imaging tech-
nique. It can even detect very minute temperature changes
between objects. They can generate images in the wavelength
spectrum of the mid-wave infrared (MWIR) typically with
wavelengths of 3-5µm (3000nm to 5000nm) and long-wave
infrared (LWIR) range where the thermal complexity is high
because of blackbody material. However, cooledMWIR ther-
mal cameras are more costly as compared to the standard
uncooled LWIR cameras.
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2) UNCOOLED THERMAL CAMERAS
These cameras are developed utilizing technology that elim-
inates the need for cryogenic cooling of the imaging sen-
sor. A standard uncooled thermal detector relies on the
microbolometer sensor array, a silicon component with a
large surface area, low heat limit, high thermal segregation,
and a moderate vanadium oxide resistor with a big temper-
ature coefficient. The bolometer temperature fluctuates as a
result of variations in scene temperature, which is the main
working principle of uncooled thermal cameras. The electri-
cal impulses that result from these temperature variations are
then processed to create an image. Ferroelectric technology is
counted as a different type ofmicrobolometer for the develop-
ment of uncooled thermal cameras. In this case, slight varia-
tions in thematerial’s temperature led to significant variations
in electrical polarization. Metal barium strontium titanate is
used to make ferroelectric microbolometers (BST). Uncooled
sensors are made to operate in the longwave infrared range of
7 to 14 microns, where the majority of the infrared energy is
emitted by terrestrial temperature targets. Uncooled cameras
are more affordable as compared to cooled thermal cameras.

D. LARGE-SCALE PUBLICALLY AVAILABLE THERMAL
DATASETS
Dataset size plays a critical role in the training of deep
neural networks (DNN). The bigger the amount of training
data the better a DNN can generalize and regularize which
can be further used for cross-validation on unseen test data.
When coming to the supervised learning methodology for
training DNN, datasets must be organized according to their
respective class labels. In this section, we will highlight
large-scale publicly available thermal datasets along with
their respective attributes which can be used for training of
DNN or specifically, convolutional neural networks (CNN).
However, it is important to mention that as compared to
visible imaging datasets we cannot find many large-scale 2D
thermal datasets specifically for automotive applications on
the open internet. The first part will show the facial thermal
datasets whereas the second portion will underline the object
detection datasets in the thermal spectrum. These datasets
have been acquired using different types of thermal sensors in
different environmental conditions as discussed in Table 1 &
Table 2 respectively. These datasets are used for training a
wide range of pre-trained CNN for various in-cabin occupant
monitoring as well as out-cabin vehicular applications. These
applications include face detection, thermal gender classifi-
cation, and object detection in the thermal spectrum on GPU
and edge-GPU devices for the automotive sensor suite. This
subsection will list the number of face thermal datasets in
tabular form (Table 1) which are published and available on
the open internet for non-commercial purposes.

This section will list the number of out-cabin object detec-
tion thermal datasets in tabular form (Table 2) which are pub-
lished and available on the open internet for non-commercial
purposes.

TABLE 1. Facial thermal datasets attributes.
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TABLE 1. (Continued.) Facial thermal datasets attributes.

E. SYNTHETIC THERMAL DATASETS
Convolutional Neural Networks (CNN), which come under
the bigger umbrella of Deep Neural Networks, have sig-
nificantly improved discriminative tasks and are bridging
the automation gap. But even so, many computer-vision
applications require significant amounts of training data to
obtain optimum training results and reliable validation out-
comes. Sophisticated pre-trained architectures demand large
amounts of training data, such as annotated data, in order to
train object detection models. However, this method is expen-
sive, prone to mistakes, difficult, and time-consuming, espe-
cially in highly complex, dynamic production environments.
This barrier can be addressed by generating and including
synthetic data to speed up the training phase of DL from
suitable training datasets as the seed data.

Instead of being generated by actual events, synthetic data
is a form of information that is derived from a set of real
data. It is usually produced with the aid of algorithms and
is applied to a variety of tasks in order to supplement and
enhance the number of variations in the training data and, as a
result, to facilitate the best possible training of deep learning
architectures.Moreover, manufacturers can use synthetic data
for software testing and quality assurance. Synthetic data can
help professionals and researchers to build data repositories
that are required to train the networks from scratch and even
fine-tune machine learning models, a technique referred to
as transfer learning. As discussed in section 3D we cannot
find enough large-scale training datasets in thermal imaging
modality therefore synthetic data plays a vital role at this
point for optimal generalization of deep learning architec-
tures. In this work, we have highlighted various methods
for generating synthetic thermal data using the existing ther-
mal datasets listed in table 1 and table 2. These methods
include data augmentation or data transformation, generating
fake thermal data using Generative Adversarial Networks
(GANs), image-to-image translation method, and 2D to 3D

TABLE 2. Object detection thermal datasets attributes.
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face transformation using end-to-end deep learning networks.
The generated synthetic data using these methods can be
effectively used for the training purposes of pretrained CNN
architectures for thermal classification, segmentation, and
detection tasks. Table 3 lists the number of publicly available
synthetic datasets along with their respective attributes.

TABLE 3. Synthetic thermal datasets attributes.

F. CHALLENGES OF USING THERMAL DATA FOR
MACHINE LEARNING ALGORITHMS
While discussing the key advantages of thermal sensing tech-
nology for advanced vehicular systems, there are also some
challenges associated with thermal data, especially when
using it for training and validation of deep learning models.
Some of these challenges are as follows.

• Limited number of large-scale publicly available ther-
mal datasets as compared to visible imaging datasets.

• Some of the constraints in publicly available thermal
datasets also lead towards the challenge of training
dense models on thermal imaging. Such that some of
the publicly available thermal data consist of video
sequences however with little variability in the scene,
i.e., weather conditions, light conditions, and person
heat radiation. This drawback reduces the generalization
of object detection algorithms.

• Moreover, optimal training and fine-tuning of deep
learning (DL) networks on thermal data is a challenging
task especially when the networks are pre-trained using
RGB data.

G. THERMAL IMAGING FOR NIGHT-VISION SYSTEMS IN
COMMERCIAL VEHICLES
Accidental statistics have proved that nighttime driving car-
ries a significant risk. Approximately 50% of fatal car acci-
dents in Germany occurred at night, despite the fact that
driving is typically done 75% during the daytime. The same
issue occurs in United States as well where 55% of all fatal
accidents happen at night, with driving accounting for 28%
of all incidents [126]. Keeping this in view, large-scale com-
mercial car manufacturers are more focused towards deploy-
ing efficient night vision systems based on thermal imaging
technology. The most prominent auto brand in the world
Bayerische Motoren Werke (BMW) which is a symbol for
high-quality, secure, environmentally friendly and technolog-
ically advanced vehicles has already deployed an effective
night vision system in its vehicles to avoid fatal collisions.
Their night vision systems integrate high-quality FLIR ther-
mal imaging modules capable of detecting and classifying
living objects, which include pedestrians and animals in low
lighting conditions and harsh weather conditions [127]. Sim-
ilarly, another Swedish auto-technology group Veoneer had
won a production contract with leading car automakers to
manufacture thermal cameras for the autonomous vehicle to
stimulate additional safety features [128].

IV. IN-CABIN THERMAL MONITORING SYSTEMS
Cabin monitoring goes beyond traditional driver monitoring
to include not just the driver, but also passengers and the entire
cabin environment. It can safely identify the presence of indi-
viduals and objects, as well as assess seat occupancy and seat-
belt wearing. For autonomous driving, the car must be aware
of not just its passengers’ presence, but also their position
and state. The car, for example, needs to know if the driver
is paying attention and has both hands on the wheel. Cus-
tomizing driving experience based on the driver’s identity,
drowsiness/fatiguemonitoring, eye localization, or health and
safety criteria are further examples of Comfort-related use
cases. In this section, we will briefly discuss the in-cabin
applications developed using thermal imaging to date. The
applications below include both published articles for intelli-
gent vehicles as well as additional relevant publications that
can be utilized in intelligent vehicles.

A. GENDER CLASSIFICATION
In addition to smart in-cabin driver monitoring systems,
human-computer interaction systems [121], video communi-
cations systems [122], psychological analysis [123], [124],
and human age and gender classification [125] based on
advanced computational algorithms have found various appli-
cations for in-cabin driver comfort and safety. Researchers
have already developed a gender categorizationmethod based
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on visible spectrum images of the human face. However,
a variety of factors influence the effectiveness of these
systems, including lighting, shadow, occlusions, and time
of day. Chen and Ross [19] presented the use of local
binary pattern histograms (LBPH) to deduce face gender
categorization in thermal and NIR (near-infrared) images,
as well as the significance of machine learning algorithms
like SVM, Adaboost, and LDA for significantly better gender
recognition.

In [20], the authors proposed a Bayesian network with a
feature selectionmethod for the explicit and implicit fusion of
visible and thermal images to further classify gender. Finally,
they tested the presented approaches on the Equinox face
database, and the Natural Visible and Infrared facial Expres-
sion spontaneous database. The outcomes of the studies indi-
cated that combining feature-level and decision-level fusion
improves gender recognition performance when compared to
using only one modality. Nguyen and Park [21], proposed a
similar idea with HOG and MLBP (multi-level local binary
pattern) methods to classify body-based gender using images
both from the visible and thermal camera. Further, the same
author upgraded their system to use a convolutional neural
network to classify males and females from surveillance sys-
tems in [22]. Instead of just utilizing video or images, Aboue-
lenien et al. [23] offered a multimodal dataset containing
audio-visual, thermal, and physiological readings of males
and females to classify gender. They also demonstrated how
non-contact physiological measures, such as thermography
readings, may improve existing systems that rely on audio
or visual input. According to one of the studies [24], the
thermal condition and gender of a person can be determined
by monitoring physiological indicators from non-intrusive
body areas with wearable sensor technologies like humidity
sensation, airflow sensation, thermal preferences, and ther-
mal comfort. Further to focus more on just deep learning, [25]
proposed a system where they merged multiple CNN mod-
els to perform more robustly towards occlusion and low-
resolution degradation as well as demonstrate competitive
performance.

Using the GENDER-FERET face dataset, Dwivedi and
Singh [26] offered a detailed evaluation of deep learn-
ing approaches for robust gender identification. They also
demonstrated that Convolutional Neural Networks (CNNs)
are increasingly being used for feature extraction and clas-
sification in various vision applications and that they are
suitable because of their high performance. In [27] authors
presented a new method for classifying gender that relied
on the temperature distribution of the person’s ear. It has
been discovered that the colder area on the ear is greater
in percentage for males than for women, further to train
on using simplest neural networks [27]. Koukiou and
Anastassopoulos [28] suggested that the selected features of
the thermal image can be based on the mean value of the
pixels of specified areas on the face, which is a relatively sim-
ple way for gender discrimination utilizing thermal infrared
images of the person’s face. They also demonstrated that

discrimination can be accomplished either using simple visu-
alization in the feature space or a reasonably simple neural
network [28]. To recognize people’s gender in outdoor places
where it is difficult or impossible to guard all roads, especially
in dim illumination conditions or in the dark, [29] suggested a
model that was developed and evaluated utilizing a controlled
UAV flight that captured images of humans.

B. FACIAL EXPRESSION/EMOTION DETECTION
Human curiosity leads to a thorough examination of compu-
tational models for modelling psychological states and esti-
mating emotion. Human emotion is a pure qualitative entity
to be investigated, as the term implies. Basu et al. [30], pro-
posed suggested a non-invasivemethod for classifying human
emotion using thermal images. Hu’s moment about distinct
patches has been combined with a statistical feature called a
histogram and utilized as resilient features in the multi-class
support vector machine classification method. In [31], the
authors developed a non-invasive technology that relied on
thermal value and not its intensity, further image processing
techniques that make it possible to identify the difference
between the subject and the environment, and a cropped
region of interest to better recognize emotions in the thermal
spectrum. As an outcome of the research, a smart-thermal
system for diagnosing emotions was designed and evaluated
on twenty-five people (625 thermograms). This test achieved
an overall success rate of 89.9%. Goulart et al. [32] utiliz-
ing emissivity variation designed an experiment to analyse
emotions in children’s thermal images. The research results
demonstrate the effectiveness of a design of experiments,
including a link between valence and nose thermal decre-
ment; disgust and happiness as effective triggers of facial
emissivity variations; and significant emissivity variations in
the nose, cheeks, and regions around the eye associated with
various emotions. Furthermore, face thermal asymmetry was
discovered, with a particular thermal tendency in the cheeks,
and classification accuracy was more than 85% on average.

Authors in [33] adapted the Yolo algorithm and proposed
heat-map-based face recognition and emotion recognition
from thermal images. Further, the algorithm performance
was compared with ResNet and DenseNet in terms of pre-
cision and intersection over union (IOU). Another promising
solution was developed, which combined long-wave infrared
imaging (LWIR) with a parallel deep emotion net to improve
robustness and accuracy [34]. Authors in [35] improved a
Yolo algorithm to assess emotions hidden in the face, such
as stress and anxiety and then estimated thermal images
using thermal values of pixels rather than intensity values
of pixels. The authors found that the modified YOLO-v3
algorithm is an effective method for predicting human emo-
tions. They also claimed that the issue was due to a lack of
thermal datasets. In the future, an attempt could be made
to create a good dataset that could provide a more accu-
rate result in everyday life, assisting in the prediction of
various people human’s psychology [35]. Authors in [36]
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proposed TFSRNet, a super-resolution network to enhance
low-quality thermal images for thermal facial emotion recog-
nition. They used the Convolutional Block Attention Module
(CBAM) in both super-resolution architectures to highlight
the most significant aspects of each facial emotion while
suppressing unimportant elements. Low-resolution thermal
facial expression images are enhanced using the suggested
super-resolution frameworks, which are obtained using three
distinct degradation models: bi-cubic down-sampling (BI),
blurring backed by bi-cubic down-sampling (BD), and
bi-cubic down-sampling followed by adding random noise
(DN). Residual networks are easy to tune and can benefit
from increasing depth to improve accuracy. Authors in [37]
used the Natural Visible and Infrared Facial Expression
(NVIE) dataset with a pre-trained customized ResNet152 to
train thermal facial images to predict distinct emotions. Fur-
ther, Al Qudah et al. [38] surveyed and reviewed a compre-
hensive analysis of thermal-based imaging and particularly
focused on emotions in the thermal spectrum. This study
could also assist newcomers to the field of thermal imaging
and emotion recognition by allowing them to investigate the
various methodologies utilized by researchers to build an
affective state system based on thermal imaging. Understand-
ing the current state of humans may help not just with human-
to-human communication, but also with human-computer
connection (HCI) [38].

Moreover, researchers are also working on building algo-
rithms to detect various illnesses from thermal images based
on emotions. Authors in [39] proposed a method to detect
attention-deficit hyperactivity disorder (ADHD) syndrome
(a sign of behavioural or emotional abnormalities) by
employing data fusion analysis for face expression in thermal
imaging and deep reinforcement learning to treat behavioural
issues. Another example is the evaluation of the problems of
patients who are unable to communicate their emotions, such
as those with autism. Ganesh et al. [40] proposed a ResNet50
network, a deep-learning technique to detect autism disor-
ders based on thermal imaging. Authors in [40] proposed a
stress recognition system using biological signals and thermal
images. When a person is anxious, the deep neural network
gets facial landmarks as input to take use of the fact that eye,
mouth, and head movements are different than usual.

C. FACE RECOGNITION IN THE THERMAL IMAGE
Thermal infrared (IR) images emphasize temperature varia-
tions in facial muscles and blood vessels. Temperature vari-
ations can be considered texture elements in face images for
thermal face recognition [41]. Bhattacharjee et al. [41] pro-
posed a comparative survey of thermal face recognition based
on local binary pattern (LBP) and Haar wavelet transform.
For each induvial/person the temperature of face muscle and
blood flow varies significantly. Authors in [42] published
an overview of thermal facial characteristics and approaches
that have been successful in face identification, recognition,
and verification. The usage of convolutional neural networks
and the merging of visual and thermal images were then

highlighted as advances in the development of monitoring
and surveillance systems. Wu et al. [43], proposed a novel
convolutional neural network (CNN)architecture for thermal
face recognition. When compared to standard recognition
methods like local binary pattern (LBP), histogram of ori-
ented gradients (HOG), and moments invariant, their recom-
mended CNN architecture achieved a higher recognition rate.
Further authors in [44], due to advances in CNN, proposed an
optimized techniquewith a short processing time to recognize
and detect faces from low-resolution thermal images. The
advantages of the suggested network were experimentally
tested using thermal video sequences obtained in various
settings to overcome potential limits of remote diagnostics,
such as the mobility of the person doing the diagnosis and
the movements of the person being inspected. The research
indicated that the state-of-the-art at that time in image clas-
sification and facial detection in thermography had been sig-
nificantly outperformed. Authors in [45], proposed a thermal
to the visible generative adversarial network (TV-GAN). The
network was able to transform thermal face images into their
corresponding visible light domain images and then perform
recognition.

Recognition Systems have gained a lot of interest in the
previous few years from academics, entertainment, biomed-
ical, and business groups, among other places. Biometric
authentication technologies have risen to prominence as a
potential alternative to traditional identification methods.
Thermal imaging for facial recognition is used in some
systems. The heat transfer action created by the flow of
warm arterial blood in arteries is known as convection
and for each induvial/person the convection (temperature)
of face muscle and blood flow varies significantly [46].
Tamboli and Desai [46] proposed a framework to read vein
structure from the thermal face to further extract unique
features, as it differs from person to person. Authors in [47],
proposed a biometric identification technique, a fusion of vis-
ible and thermal images for face recognition. Blood perfusion
measurements are defined by localized blood circulation in
human tissue, and so are not fully dependent on ambient
temperature. A person’s blood vessel distribution pattern is
unique to them, therefore a collection of extracted notable
features from blood perfusion data of a human face should
be distinct to that face as well [46], [48]. Following this,
authors in [48] presented a neural network based on minutiae
(trivial detail of blood vessels) to distinguish faces in thermal
images with 91.47% accuracy. Authors in [49] proposed a
pose-invariant physiological model for face recognition in
the thermal spectrum. It uses image morphology to locate
the superficial blood vascular tissue structure. As mentioned
before, the contour shapes generated by the recovered vas-
cular tissue are unique for each individual. Data acquired
from different poses and the skeletonized vascular tissue
branching points are then developed for face recognition in
the thermal [49]. Weidlich [50] further reviewed research
regarding temperature fluctuations, mathematical formu-
lae, wave kinds, and approaches in thermal infrared face
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identification. The authors also proposed that the blood vessel
structure and facial vascular networks be exploited for unique
biometric characteristics, resulting in a thermal map of the
face image. Thermal feature extraction from face images
could be achieved by executing morphological procedures
such as opening and top-hat segmentation to produce heat
signs.

Authors in [51] compared the performance of a convolu-
tional neural network with the conventional random forest
algorithm. The evaluation was carried out in a variety of
settings, namely normal, with noise while wearing both a
facemask and glasses. Furthermore, the research results indi-
cated that the model based on convolutional neural networks
performed better in various challenges. Poster et al. [52] pro-
posed visible-to-thermal facial landmark detection in thermal
images based on transfer learning. Authors in [53] proposed
a transformation model based on multi-scale image synthesis
for thermal face recognition. This transformation model is
based on a generative model (GAN), with multi-scale catego-
rization and multiple loss functions such as features anchor-
ing, identification conservation, and face landmark-guided
texture generation as basic concepts. The results of the anal-
ysis indicate that the suggested strategy surpasses the current
state of the art. The results of the analysis indicate that
the suggested strategy surpasses the current state of the art.
Hermosilla et al. [54] proposed StyleGAN-based thermal face
generation and further to validate the implementation of the
synthetic thermal database, researchers trained six pre-trained
deep learning models for face recognition, achieving 99.98%
accuracy.

D. EYE-GAZE LOCALIZATION AND ESTIMATION
Almost every driver monitoring system includes eye gaze
estimation as a crucial component. The goal of gaze esti-
mation is to determine the point of gaze, or ‘‘where is the
person or driver looking.’’ This can assist in determining if
the driver is paying attention to the road or is distracted. Eye-
tracking and localization are difficult in the thermal spectrum.
Jin et al. [55] proposed a quick method to locate an eye in
infrared images. To begin, they utilized a homomorphic filter
to boost image contrast, then used an iterative threshold selec-
tion algorithm and integral projection function to segment
the human face. They got the eye location approximately
using their understanding of the eye and facial geometry.
Furthermore, they accurately captured the human eye area
using the RAMF (Ranked-order Adaptive Median Filtering)
approach. Authors in [56], proposed a novel algorithm for
recognition and localization of the face and eyes in ther-
mal images to monitor the temperature of the human body
by measuring the eye corner (inner canthus). In the local-
ization phase, the algorithm employs a mixture of layout,
knowledge-based, and morphological approaches, especially
the modified Randomized Hough Transform (RHT), as well
as increasing segmentation to improve the system’s accuracy.
Further authors in [57], improved the existing technology

where the thermal camera detects eye corners and mea-
sures the temperatures. The authors developed a device that
would automatically measure people’s body temperatures
as they passed by. People will not need to stop and gaze
into a sensor one by one, as they do with existing systems.
Multiple people can be scanned at the same time. Authors
in [58], to test the effectiveness of thermal eye-tracking, the
authors invited ten participants and used passive thermal
imaging at 60 Hz to observe their corneal motions. The
cornea was then segmented from other regions of the eye in
thermal images using a combination of shape models of eyes
and an intensity threshold. For 5-point calibration/validation
5 times, they employed an animation sequence as a cali-
bration target. Their results were evaluated to data obtained
simultaneously using an SR EyeLink eye tracker at 500 Hz,
indicating that eye-tracking using thermal images is
possible.

Marzec et al. [59] proposed a fast algorithm for eye local-
ization from thermal images. The algorithm begins with a
block for creating characteristics that describe eye regions.
The second stage is a neural network-based decision block
that allows for the accurate categorization of pre-designated
locations. A sophisticated combination of these blocks in a
single system allows for accurate analysis of images with a
wide geometric variety (size, location, aspect) and brightness
distribution, with more than 91%correct localizations and
analysis times in a few seconds. Authors in [60], proposed a
two-eye detection approach and evaluation in thermal images.
A comparison of performance was done on three distinct
features: Haar, Histogram of Oriented Gradients (HoG), and
Local Binary Patterns (LBP). The HoG function provided
the best detection accuracy. Based on a thermal image, the
authors in [61] proposed an effective approach for detect-
ing eyes. A unique virtual high dynamic range approach is
used for image pre-processing, which considerably improves
thermal image contrast and enables the more reliable gener-
ation of sparse image descriptors. Their technique was also
compared to the YOLO-v3 deep learning model, further, the
proposed model achieved robust accuracy and rapid respon-
siveness in real-world situations without the computational
complexity of deep neural networks or the need for a large
dataset. Authors in [62] tested the results of two sparse image
descriptors for eye recognition in the long-range infrared
spectrum. Sparse descriptors of the training images were
generated and utilized to build feature vocabulary throughout
the training phase. Final detections were made with a bag-
of-words technique and a geometrical constraints heuristic.
Ferrari et al. [63] proposed an automated method for locating
the inner eye canthus (inner eye-corner) in thermal images.
They start by detecting five facial key points that correspond
to the centre of the eyes, the tip of the nose, and the ears.
Then, using a 3D Morphable Face Model, they calculate
a sparse 2D-3D point correspondence. Using the YOLO
v2 object detector, the authors in [64], presented an auto-
mated eye localization approach using IR thermal images.
For test images, eye localization in IR thermal images using
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YOLO v2 achieved an mAP of 97% and a mean intersection
over union (IoU) of 90%.

Most of the previously suggested eye localization algo-
rithms relied solely on frontal positioning. Authors in [65]
proposed a novel algorithm for eye localization and face
detection in cattle based on multi-view. The authors used
HOG filters to understand the features and support vector
machines for classification. The paper’s results show that the
suggested technique had a high level of accuracy, with an
average sensitivity of 0.9780, precision of 0.7212, F measure
of 0.8024, and misclassification of 0.0455.

E. DROWSINESS/FATIGUE DETECTION IN THERMAL
IMAGING
Drowsy driving is a leading cause of deadly car accidents
across the world, and it may be avoided with early detection.
There are a few key aspects that give thermal imaging an
advantage in detecting drowsiness. For starters, unlike visible
cameras, thermal sensors are not sensitive to light and do not
rely on lighting. Second, drowsiness in the driver causes a
decrease in blood flow and a change in face thermal patterns.

There have been significant advances in deep learning
in detecting drowsiness/fatigue in drivers. Authors in [66]
proposed a non-intrusive method for detecting fatigue and
drowsiness in a driver. The authors acquired data from 12 sub-
jects to further study and estimate the blood perfusion level
when they are drowsy. The observer rating of drowsiness
(ORD) approach was used to measure the individuals’ sleepi-
ness levels separately. A four-step method was used to find
and monitor facial blood vessels in each image. The research
also observed that the facial arteries’ temperature decreased
from full wakefulness to drowsiness (0.54 ◦C, 0.33 ◦C,
and 0.32 ◦C). A series of data was created by the average
value of the image intensity of the face blood patches.

Further, the same authors proposed another non-intrusive
approach to detect drowsiness in thermal imaging bymonitor-
ing the variation in driver respiration rate from wakefulness
to drowsiness [67]. According to the findings, the rate of
breathing decreases as the subject goes from fully alert to
entirely asleep. Physiological aspects of the face were used to
pinpoint the zone around the nostrils. The respiration signal
was created by adding the average temperature of the nasal
area over all frames. Herrera-Granda [68], proposed real-time
drowsiness detection by processing the human eye. Using
the Viola-Jones algorithm for image processing, the authors
advised utilizing the AdaBoost training algorithm, in which
a cascade classifier detects the location and region of the
driver’s eye in each frame. Once the driver’s eyes have been
identified, colour segmentation and thresholding based on the
sclera binarized region are used to determine whether they are
closed or open. Furthermore, an audible alert activates when
detected driver is drowsy.

Knapik and Cyganek [69] proposed a unique approach to
detect fatigue in drivers based on yawn detection in thermal
images. Firstly, face alignment begins with the identification

of eye corners. Then the suggested yawning thermal model
is then used to detect yawns using the Viola-Jones algo-
rithm with a cascade classifier. An annotated image database
was established for quantitative assessment and made pub-
licly available [69]. Kajiwara [70] examined and reviewed
if there’s the possibility of monitoring drivers using thermal
infrared imaging. Also included in the article were proper
baselines, the independent nature of thermal imprints, exper-
imental data, methodological considerations, and limitations.
Authors of [66], [67] further proposed an upgraded version of
analyzing respiration to detect drowsiness in thermal imag-
ing. The authors proposed Support Vector Machine (SVM)
and K-Nearest Neighbors (KNN) classifiers to be used to
detect fatigue. The results indicated a good accuracy of 90%
with a precision of 91% [71].

Authors in [72] proposed a new benchmark dataset for
driver fatigue research. It contains thermal images, depth
maps as well as visible images. Kajiwara [73] attempted to
improve the real-time estimation method of low alertness rate
in drowsiness detection. The author tested the model on full
bright and low lighting condition images, the detection rate
was found to be weak, and facial landmark detection was
misaligned, the ear aspect ratio and mouth aspect ratio could
not be determined reliably. Therefore, it was discovered that
there is an issue that leads to the identification of a low wake-
fulness state and the incorrect detection of yawning. As a
result, utilizing thermal images of the face produced from an
infrared thermal camera that can be utilized in backlight and
night-time conditions, the author developed a low-alertness
state estimate method.

Tashakori et al. [74] proposed yet another good approach
to detecting drowsiness. The authors located the forehead and
the cheek skin temperature in thermal images and trained it
on the Support Vector Machine, the K-Nearest Neighbor, and
the regression tree classifiers. The drowsiness was detected
with an accuracy of 82%, the sensitivity of 85%, specificity
of 90%, and precision of 84%, according to the research.
The authors in [75] proposed drowsiness detection using
multimodal data. The proposed methodology suggested an
analysis of the effects of early fusion on the classification
of the driver’s state using multiple physiological and thermal
channels. The research outlined that it is better to detect
drowsiness using a multimodal approach as it gives two
separate factors and a clear picture of which is influencing
the driver, drowsiness, or distraction [75].

V. OUT-CABIN THERMAL MONITORING SYSTEMS
Sensors are becoming increasingly important in advanced
driver assistance systems, vehicle automation, vehicle net-
working, and new mobility services as technology advances.
With highly automated driving levels, not only are the inte-
rior support systems improving, but the cars’ exteriors are
redesigning themselves to create a complete out-vehicle
experience as well. To avoid any mishaps, a vehicle must be
aware of its surroundings. Many out-of-cabin applications,
namely object identification, and image segmentation have
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recently been developed. This section will go through these
applications and current advances in depth.

A. OBJECT DETECTION IN THE THERMAL SPECTRUM
Detecting objects in the thermal spectrum has numerous
advantages. Thermal imaging produces better and more prac-
tical outcomes in difficult conditions, including poor light
scenarios, and weather conditions, and is resistant to optical
limitations in general. Recent advances in deep learning and
a shift away from traditional machine learning have had a
significant influence on thermal object detection.

1) MULTIMODAL APPROACHES
Devaguptapu et al. [76], proposed a pseudo-multimodal
object detector. The proposed network borrows features from
rich domains like visual RGB. They generated pseudo-RGB
versions of a given thermal image using well-known
image-to-image translation architectures and then utilized
a multi-modal framework to detect objects in the thermal
image.

Various applications in driver assistance such as track-
ing, monitoring, and multispectral pedestrian detection have
become increasingly relevant in the field of computer vision.
The authors in [77] suggested a deep learning-based bright-
ness estimation model for pedestrian detection. The proposed
unique brightness estimation technique presents various illu-
mination circumstances to predict in both day and nighttime.
The suggested technique performed well on the FLIR-ADAS
Thermal dataset, with an mAP of 81.27%.

Agrawal and Subramanian [78], proposed a study that
will examine the effectiveness of object detection with a
fusion of visible and thermal images in a publicly avail-
able dataset. They provided a comparison of object detec-
tion in night images and showed that thermal images boost
detection accuracy considerably. Object detection, such as
persons and vehicles, is critical for autonomous driving.
ThermalDet is a DNN-based, one-stage detector suggested by
the authors in [79]. ThermalDet’s fundamental notion is that,
since thermal images lack many precise visual qualities (such
as color and texture), features from low and high levels are
equally essential when conducting detection tasks on images.
The suggested detector builds on RefineDet’s design and
enhances it. To begin, they build a dual-pass fusion block
(DFB) that allows them to immediately merge features from
all layers. Later they introduced a channel-wise enhancemod-
ule (CEM) to iteratively allocate relative weights to channels
of feature maps [79].

The resolution of objects in the thermal spectrum is fre-
quently poor. For real-time object detection in embedded
applications, Talluri and Dua [80] proposed a modified tiny
Yolo v3 trained on FLIR thermal dataset. Thermal cameras
are also an essential component of advanced video surveil-
lance systems due to the inability to use RGB cameras ade-
quately at night and in adverse weather circumstances. Kristo
et al. [81] proposed utilizing convolutional neural network

models initially designed for detection in RGB images to
detect people in thermal images. They examined the perfor-
mance of state-of-the-art object detectors, such as Faster R-
CNN, SSD, Cascade R-CNN, and YOLOv3, and retrained
on a dataset of thermal images acquired from recordings.
It was also observed that YOLOv3 performed significantly
better than other detectors. Again, to focus on the small
objects in thermal images, authors in [90] proposed a DDSSD
(dilation and deconvolution single shot multi-box detector).
This network is a modified or enhanced version of SSD with
a novel feature fusion module for small object detection. The
network achieves a mAP of 79.7 % with an FPS of 41 with a
300 × 300 input image.

2) DOMAIN ADAPTATION
The authors in [82] proposed a survey to examine the current
state of the art in deep-domain adaptive object detection
techniques in both the optical and thermal domains. They
began by outlining the fundamental notions of deep domain
adaptation. Next, the deep domain adaptive detectors are
divided into five groups, with full explanations of typical
approaches for each group. Furthermore, recommendations
for future study trends are provided.

For object detection, Yadav et al. [83] suggested a
CNN-based fusion architecture. They evaluated the KAIST
multispectral pedestrian dataset and the FLIR thermal object
detection dataset. They trained a baseline FasterRCNNmodel
for detection in the daytime, the Color model exceeded
the Thermal model, while in the nighttime, the Thermal
model performed better than the Color model, demonstrating
their complementary nature. Further, they built a basic mid-
level CNN fusion architecture that outperforms the base-
line models considerably. When compared to conventional
approaches, they found a 0.62% reduction in the miss-
detection rate. For safe autonomous vehicles, underexpo-
sure zones are critical for constructing a full sense of the
environment.

Thermal cameras have become an important alternative
for exploring areas where conventional optical sensors fail to
capture interpretable information. In [84], the authors sug-
gested a domain adaptation system that uses a style transfer
approach to transfer learning from visual to thermal images.
Using style consistency, the method incorporates a genera-
tive adversarial network (GAN) to move low-level charac-
teristics from the visible spectrum domain to the thermal
domain. Dai et al. [85] presented TIRNet, a novel object
detection technique based on convolutional neural networks
(CNN), for robust and sustainable object recognition in ther-
mal infrared (TIR) images. The lightweight feature extractor
(VGG) is used rather than the deep-CNN backbone (ResNet,
ResNeXt), which has lower bandwidth and significant com-
putational cost. This approach attained state-of-the-art detec-
tion accuracy while maintaining a high detection efficiency
at the time.
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Another unique approach of domain adaption for ther-
mal object detection was proposed by authors in [86].
Using the self-supervised contrastive learning technique,
the authors investigated thermal object detection to model
a view-invariant model representation. They proposed a
self-supervised thermal network (SSTN) for learning features
to optimize data between both visual and thermal spectrums.
The proposed network was trained on FLIR and KAIST
Multi-Spectral datasets.

3) OTHER APPROACHES
Bongini et al. [87] proposed a different technique to improve
object detection in the thermal domain. They suggested inte-
grating synthetic 3D objects into actual scenes as a novel data
augmentation strategy for visual content domains with sparse
training datasets. They analyzed other augmenting meth-
ods, such as state-of-the-art approaches acquired through
reinforcement learning (RL) techniques, the infusion of sim-
ulated data, and the use of a generative model, and inves-
tigated how to integrate their suggested augmentation with
these other techniques as effectively as possible. On the
FLIR ADAS dataset, their single-modality detector produces
state-of-the-art results, demonstrating the effectiveness of this
technique.

Authors in [88], proposed Bayesian fusion object detection
in visible and thermal spectrum based on multimodal data to
increase safety-critical perception. They further explore and
investigate different strategies for fusing data with different
modalities. Kumar and Gaur [89] proposed YOLO-v3 and
Spatial Pyramid Pooling (SPP) approaches to detect objects
in thermal images. The YOLO-v3 technique for object detec-
tion is unique as it obtains the bounding box coordinates and a
confidence score for the image using a single CNN. They then
built a Spatial Pyramid Pooling (SPP) layer on top of the CNN
in YOLO-v3. Cropping the image in the fully connected layer
is no longer necessary because of the SPP layer. This resulted
in a 100-fold increase in speed. The network was trained on
the FLIR dataset, the proposed technique achieves above 80%
precision.

Lu et al. [91] proposed a pedestrian detection method
based on centre, temperature, scale, and ratio prediction in
thermal imagery. The suggested technique is divided into
two parts: (1) extraction of features and (2) predictions of
centroid, temperature, scale, and ratio. The feature extrac-
tion section extracts high-level semantic characteristics from
thermal imaging data as input feed data using the ResNet-
101 network. The temperature, scale, and ratio prediction
section determine if a target centroid exists in each place of
the feature map, which is a binary classification challenge.
The temperature branch determines whether the centroid is a
heat-radiating pedestrian target or the background. The scale
and aspects ratios prediction branches are used to establish
the target size, which is a regression challenge. The sug-
gested approach and its detection performance are better than
the benchmark of night-time pedestrian detection systems,
according to experimental results.

B. SEMANTIC SEGMENTATION
One of the most difficult challenges in computer vision is
semantic segmentation. In the great scale of things, segmenta-
tion is one of the high-level tasks that leads to comprehensive
scene interpretation. Semantic Segmentation aims to apply
an object class to each pixel in an image. In self-driving
surroundings, these classes may be ‘‘pedestrians, automo-
biles, buildings, trees, poles, etc.’’ Semantic segmentation,
for example, supports self-driving cars in determining which
regions of an image are safe to drive.

Yoon et al. [92], proposed a pixel-level matching object
segmentation using a convolutional neural network. Based on
pixel-level similarity between two object units, the network
seeks to differentiate the target region from the background.
To take use of both geographical details and classification
semantic information, the proposed network depicts a target
object utilizing characteristics from distinct depth layers.
In addition, they offer a feature compression strategy that
dramatically decreases memory needs while preserving fea-
ture representation capabilities. This network was primarily
built on visual data, but the authors extended the network’s
transferability to other domains and tested it on thermal data
too. In addition, the network performed better in terms of
precision, efficiency, and stability.

Authors in [93] proposed segmentation of pedestrians in
the thermal spectrum. The authors described the testing of the
thresholding-based segmentation procedure in FIR images.
The usefulness of two types of thresholding procedures is
demonstrated by an evaluation of the acquired results: Otsu
global thresholding vs. single threshold. Wang and Bai [94]
proposed a different approach to tackle thermal pedestrian
segmentation. The authors suggested a new conditional gen-
erative adversarial network-based thermal infrared pedes-
trian segmentation technique (IPS-cGAN) [94]. According
to the results, the suggested approach outperformed vari-
ously supervised and unsupervised segmentation techniques
in terms of accuracy and robustness, particularly in complex
images. Thermal imaging is a very unique way of segmenting
the road which is not visible in RGB images.

Authors in [95] proposed a real-time unmanned aerial vehi-
cle semantic segmentation in thermal images. The suggested
model included an encoder-decoder architecture, as well as
a convolutional layer extracted features and a constrained
Boltzmann machine in the network. The algorithm was also
put to the test and evaluated with five state-of-the-art segmen-
tation approaches. The proposed model was shown to be a
robust model with an average accuracy of 0.97 in the results
obtained.

Li et al. [96] suggested an edge conditional convolutional
neural network for segmenting objects in thermal images at
different times of day and night. The authors also present
‘‘Segmenting Objects in Day And Night’’ (SODA), a new
benchmark data set for extensive assessments in thermal
image semantic segmentation. SODA has approximately
7168 carefully annotated and synthetically produced thermal
images from a variety of angles and scene complexity, each
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with 20 semantic area labels. Xiong et al. [97] proposed a
MCNet-multi-level correction network for semantic segmen-
tation in thermal images for night-time, foggy, and snowy
driving scenarios. It can generate a more accurate correla-
tion matrix and step-by-step adjust the feature development
process. A large thermal dataset was also introduced, called
SCUT- Seg. SCUT-Seg comprises 10 manually annotated
semantic area labels for 2010 thermal images taken from
diverse road scenarios. Comprehensive tests on SCUT-Seg
and the public MFNet dataset showed that the suggested
approach outperforms the state-of-the-art methods.

Other significant advancements in the thermal semantic
segmentation domain have mostly focused on narrowing the
gap between RGB and thermal images, by creating a fusion
between them. Vertens et al. [98] proposed a multimodal
semantic segmentation model and utilize thermal images in
addition to RGB images, making the network substantially
more resilient. Moreover, this article also offers a unique two-
stage training technique that uses a transfer learning mech-
anism to align the learned feature spaces across contexts.
A new dataset with over 20,000 time-synchronized and coor-
dinated RGB-thermal image sets to overcome the shortage of
thermal data for self-driving cars was also introduced.

The authors of [99] utilize thermal images to build a
unique deep neural network that fuses both RGB and thermal
information. The proposed network uses ResNet to extract
features, and a new decoder is being built to restore feature
map resolution so that visual and thermal images can be
fused. The results of the experiments show that their network
outperforms the state of the art. Further authors in [100] pro-
posed FuseSeg to achieve superior performance of semantic
segmentation in urban scenes. The proposed network is made
up of an end-to-end deep neural network that receives a pair
of visual and thermal images as input and produces pixel-by-
pixel semantic labels as outputs. The network interprets urban
scenes, which is an important part of many self-driving oper-
ations including environment modelling, obstacle detection,
mobility prediction, and planning.

John et al. [101] proposed BVTNet, a multi-label multi-
class fusion of visible and thermal images to determine free
space and person segmentation. The BVTNet calculates the
number of pedestrians and available space in each multi-class
output. In a post-processing phase, the boundaries semantics
segmentation is incorporated into the overall semantic seg-
mentation framework. The proposed model has been eval-
uated on the public MFNet dataset. The authors of [102]
proposed a sensor fusion system that does both semantic fore-
casting and optimum semantic segmentation. The network
predicts the available or free space, and pedestrian crossing
labels, including their spatial and motion behaviour. The pre-
sented system was tested using the publicly available KAIST
dataset and the framework can not only properly predict but
also update the semantic segmentation map very accurately.

Kim et al. [103] proposed a framework that overcomes the
data limitation issues and enhances segmentation results in
the thermal. The approach further improves the classification

performance of the thermal segmentation network in day
and night thermal images with pixel-level domain adaptation.
By utilizing sequential multi-spectral knowledge transfers,
such as RGB -to- RGB, RGB -to-thermal, and thermal-to-
thermal adaptations, a thermal image segmentation network
achieved exceptional performance without any ground-truth
labels. In addition, the authors include a real-world RGB-
Thermal segmentation dataset that includes 950 manually
labelled Cityscapes-style ground-truth labels in Nineteen
classes.

Further authors in [104] proposed an RGB-thermal seg-
mentation for snowy road scenarios. This research com-
pared some of the most advanced semantic segmentation
approaches for categorizing snow road surfaces from RGB
images. The authors also proposed a completely new dataset
for feature classification in various lighting circumstances
(day and night). Zhou et al. [105] proposed a graded fea-
ture multi-label learning network (GMNet) with two RGB-
thermal fusion modules, namely a shallow feature fusion and
deep feature fusion to determine the segmentations in urban
thermal image scenes. The network outperformed the state-
of-the-art methods for urban scene semantic segmentation.
Guo et al. [106] proposed the state-of-the-art MLFNet to
determine the robust semantic segmentation based on the
fusion between RGB-thermal images in the variable lighting
scenes. Furthermore, the results show that this network is
precise and resilient in a variety of illumination situations and
that it exceeds state-of-the-art networks in terms of overall
performance.

C. OTHER APPLICATIONS
This section will detail the use of thermal technology for
other critical applications which includes but not limited
to adaptive cruise control, lane keeping and lane changing.
During poor visibility scenarios, a driver-assistive system
that makes use of a precision based differentially corrected
GPS (DGPS) system, highly accurate geospatial data, radar,
and driver interfaces can assist the driver in maintaining
lane position and avoiding crashes. The intelligent trans-
portation system institute presented a similar system with
the integration of infrared imaging for head-up display lane
keeping and collision avoidance [129]. This system was fur-
ther deployed in Minnesota and Alaska. Further, there are
few studies with thermal/ infrared imaging to monitor roads
using unmanned aerial vehicles to patrol the roads to reduce
road fatalities [130], [131]. Moreover, focusing on drowsy
drivers, authors in [132] presented a lane departure system
using IR cameras for nighttime road conditions. Authors
in [133] proposed a road detection algorithm with 3D infor-
mation. The proposed method is incorporating a thermal
stereo system-based methodology, which is supplemented by
the depth data from the disparity map, to assess the thermal
features of the road. The research community have tremen-
dous potential to do further research in this area in the coming
years.
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VI. OUR CONTRIBUTIONS TOWARDS SAFE
AUTONOMOUS SYSTEMS USING THERMAL
INFRARED IMAGING
This sectionwill summarize our core contributions toward the
effective use of thermal imaging technology for both in-cabin
and out-cabin vehicular applications. The entire experimen-
tal work was carried out under the Heliaus project [107].
The project tends to develop a smart breakthrough thermal
perception system using an uncooled thermal camera based
on a microbolometer sensing array. An indigenous prototype
VGA camera was used specially designed for data recording
and validation purposes. The camera embeds a Lynred Long
Wave Infrared (LWIR) sensor with a focal length of 7.5 mm
and an F-number of 1.2. Figure 3 shows the images of the
640×480 LWIR thermal camera used in this project. The first
phase of this sectionwill highlight experimental results for in-
cabin vehicular applications whereas the second phase will
describe the experimental findings for out-cabin vehicular
applications carried out under the Heliaus project [107].

FIGURE 3. Uncooled Prototype LWIR 640 × 480 thermal imaging
developed under the Heliaus project.

A. HELIAUS IN-CABIN CONTRIBUTIONS USING THERMAL
INFRARED IMAGING
The in-cabin applications development targeted in the context
of the Heliaus project aims at prototyping new smart ther-
mal systems enabling the monitoring of driver activities by
specifying the person’s soft biometrics, vital sign monitoring,
and drowsiness detection. The main contributions are listed
below.

In the first phase, we proposed a composite mechanism to
generate a large-scale synthetic thermal dataset using various
computer and deep learning methods. These include data
augmentation/ data transformation, synthetic data generation
using SoA styleGAN, and lastly 2D-3D thermal face recon-
struction using end-to-end Position map Regression Network
(PRN) architecture [108]. The generated synthetic data along
with the real-world thermal data gathered from the proto-
type thermal camera and other public thermal datasets is
further used for various experimental work. The main goal
of synthetic data is to further use it for robust training of
deep learning models and the development of an autonomous

driver gender classification system. The complete working
methodology along with detailed experimental results are
published in [109], [110].

In the next phase, we have developed a thermal driver
gender classification framework [111] for human-machine
interface applications. For this, we have trained nine state-of-
the-art pre-trained networks from scratch (by unfreezing all
the network layers) on a large-scale casia facial dataset. These
models include AlexNet, VGG-19, MobileNet-v2, Inception-
v3, ResNet-52, ResNet-50, ResNet-101, DenseNet-121,
Dense-201 and EfficientNet-B4. The trained architectures are
further fine-tuned using Tufts public thermal dataset [1], [7],
[112]. In addition to utilizing the pretrained architectures, the
main contribution of this work is designing a novel CNN
architecture ‘GENNet’ [111] for the thermal gender classi-
fication task, and further its performance is compared against
all the pre-trained state-of-the-art architectures. For rigorous
validation tests of all the trained architectures including the
newly proposed GENNET architecture on thermal data nine
different quantitative metrics have been employed. These
include accuracy, sensitivity, specificity, precision, negative
predictive value, False Positive Rate (FPR), False Negative
Rate (FNR), Matthews Correlation Coefficient (MCC), and
F1-score.

In our study, the EfficientNet-B4 model achieved the high-
est test accuracy of 93.3% followed by the DenseNet-201
and the proposed GENNet network which has achieved an
overall testing accuracy of 92.2 and 91.1% however, GENNet
architecture is good for a compute-constrained thermal gen-
der classification use-case as it performs significantly better
than other low-parameter models. The complete experimental
results are published and available at [111].

The third phase of our experimental work contributes
toward driver stress and drowsiness detection using ther-
mal infrared imaging technology. Cardone et al. [113] from
NEXT2U [114] proposed a driver stress evaluation based on
ECG signals. To estimate the ‘‘stress index’’ (SI) using ther-
mal features derived from the face region of interest (i.e., nose
tip, nostrils, glabella), a non-linear support vector regression
(SVR) method was employed. The predicted, ‘‘stress index’’
(r = 0.61, p = 0) had a strong relationship with the actual SI.
Based on the anticipated SI, a two-level categorization of the
stress condition (STRESS, SI 150, vs NO STRESS, SI 150)
was performed. Considering an AUC of 0.80, a sensitivity of
77%, and a specificity of 78%, the ROC analysis revealed that
the classification results were improved drastically.

Further, NEXT2U [114] proposed the drowsiness classifi-
cation work [115] using a low-cost and high-resolution pro-
totype thermal camera developed under the Heliaus project.
A total of 10 subjects participated in this study among which
six were male subjects between the age range of 23-44. The
data was recorded at a 30hz frame rate for performing further
experiment work. The facial skin temperature was acquired
using LWIR thermal camera along with visible facial videos
which were recorded using an Intel RealSense D415 cam-
era. The purpose of recording the visible facial data was to
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transfer the visible facial landmark features tracked to the
thermal imagery, thus estimating the geometrical transforma-
tion between the two imaging optical devices. The authors
utilized PERCLOS (percentage of eyelid closure over the
pupil across time) which is one of the most accurate parame-
ters to assess the drowsiness state on the visible data whereas
the facial feature (i.e., nose tip, glabella) estimation was
performed using the acquired thermal data. The recorded data
was then used to train a conventional machine learning-based
support vector classifier with a polynomial kernel to classify
the data into three different classes which include AWAKE,
SLEEP, and FATIGUE. The ROC curve showed satisfac-
tory performance of the classifier with an average AUC of
0.65, a sensitivity of 72.52%, and an overall specificity of
67.69% [115].

A method for enhancing the quality of thermal image
data using deep learning-based multi-image super-resolution
was also proposed as part of the Heliaus project in [119].
In this paper, a novel architecture for a fully convolutional
recurrent neural network was presented and was trained for
4x super-resolution on a custom thermal dataset of 30 unique
subjects in a driving simulator. The trained network signif-
icantly outperformed traditional bicubic interpolation both
quantitatively and qualitatively. Further work has since been
done on optimizing this neural network model for real-time
inference on an embedded platform.

In one of the recent studies by Cardone et al. [120] carried
out under the Heliaus project [107], the authors have pro-
posed the evaluation of mental workload (MW) for Advanced
Driver-Assistance Systems, since it is correlated with traffic
accident risk. In this work, two different cognitive tests which
include Digit Span Test (DST) and Ray Auditory Verbal
Learning Test (RAVLT) were monitored and examined on
participants while driving in a simulated environment. The
authors utilized infrared sensing technology along with heart
rate variability (HRV) data to collect features related to the
psychophysiology of the subjects, which were then used
for training machine learning (ML) classifiers. The authors
achieved the best classifier performances with a maximum
accuracy of 73.1%, the sensitivity of 0.71, and specificity
of 0.69 for the Digit Span Test and Ray Auditory Verbal
Learning Test the systems achieve overall accuracy of 75.0%,
average sensitivity of 0.75, and an average specificity of 0.87.

B. HELIAUS OUT-CABIN CONTRIBUTIONS USING
THERMAL INFRARED IMAGING
In this project, we have mainly focused on supervised learn-
ing methodology and used different types of CNN architec-
tures for out-cabin driver assistance which include thermal
object detection and classification framework. Moreover, the
further stage of this research work focuses on the deploy-
ment of trained/ fine-tuned networks on single-board edge-
GPU devices for onboard real-time feasibility testing. The
first phase of experimental work contributes toward a novel
roadside thermal object detection dataset collection named

‘C3I Thermal Automotive Dataset’. The main purpose of this
dataset is to further use it for out-of-cabin applications which
include the development of the SoA thermal object detection
framework that should be effective in all weather and environ-
mental conditions. The further details of the newly acquired
thermal dataset from the prototype LWIR thermal camera are
summarized in Table 4. The complete dataset is open-sourced
and available on IEEE Dataport [116].

TABLE 4. Novel thermal datasets attributes.

Figure 4 depicts various thermal frames acquired in differ-
ent environmental and weather conditions selected from the
C3I thermal automotive dataset.

FIGURE 4. Newly acquired C3I sample thermal frames acquired in the
daytime, evening time, and nighttime showing different classes.
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The newly acquired is further used for training and deploy-
ment of SoA end-to-end YOLO-v5 object detector models on
GPU and edge GPU devices. The main purpose for choosing
theYOLO-v5 framework for thermal object detection as com-
pared to all the previous versions of YOLO released is that
YOLO-v5 is different, as this is a PyTorch implementation
rather than a fork from the original Darknet library.Moreover,
the YOLO-v5 has a Cross-Stage-Partial (CSP) backbone and
PA-NET neck. The foremost improvements include mosaic
data augmentation and auto-learning bounding box anchors
thus saving the efforts for manual tuning of anchors for
performing optimal training on detector models. The com-
plete study is published and available online [117]. Three
alternative test methodologies, including test-time with no
augmentation (TTNA), test-time augmentation (TTA), and
test-time with model ensembling, are used to validate the
performance evaluation of all trained models (ME). Model
ensembling, also known as an ensembling engine, is the
process of combining several trained networks concurrently
to create the best possible predictive inference model.

Figure 5 displays the results of the qualitative inference
on nine challenging thermal frames with complex circum-
stances, such as numerous objects with overlapping classes,
object scale and viewpoint fluctuations, and various weather
conditions. These frames are selected from public test data
as well as locally acquired C3I thermal automotive datasets.
During the validation phase, the large network variant com-
prising 47.4 million parameters achieved the best qualitative
results thus achieving the mean average precision (mAP)
score of 84.1% using TTNA and 86.6% using the TTA
method. The additional optimization and deployment of neu-
ral networks onGPUs and resource-constrained edge devices,
including Nvidia Jetson Nano and Nvidia Jetson Xavier
development boards, are part of the Heliaus project’s major
contribution [107].

FIGURE 5. Inference results on nine different thermal frames using small,
medium, large and x-large model variants of the Yolo v5 framework.

The SoA inference accelerator Tensor RT is employed to
further accelerate the thermally tailored YOLO architectures,
resulting in higher frames per second (FPS) and shorter infer-
ence times.When deploying the models on edge hardware for
the automobile sensor suite, themajor goal of the quantization
process is to demonstrate the viability of thermally tuned
object detection models for real-time onboard testing.

FIGURE 6. Inference results on four different thermal frames using
TensortRT optimizer.

Figure 6 shows the inference results on 4 different ther-
mal frames using the TensorRT inference accelerator engine.
The complete study along with detailed experimental out-
comes is published in IEEE Transactions on Intelligent Vehi-
cles titled ‘‘Evaluation of Thermal Imaging on Embedded
GPU Platforms for Application in Vehicular Assistance Sys-
tems’’ [118]. The optimized version of the smaller network
variant achieved 60 FPS on the Nvidia Jetson Xavier devel-
opment board and 11 FPS on the Nvidia Jetson Nano board.

C. FINAL PROJECT OUTCOMES
At the final phase of this project all the developed in-cabin
and out-cabin thermal perceptions systems are discussed in
section VI-A and VI-B were installed on a prototype vehicle.
The prototype vehicle used for complete onboard deployment
is the Toyota Prius car to validate the real-time performance
of developed systems. Figure 7 shows the complete deploy-
ment of all the developed AI-based thermal systems on a
prototype car demonstrated at Denso Germany Headquarters.
The first columns in Figure 7 show the prototype car used
under the Heliaus project with all the camera and sensors
which includes thermal LWIR, NIR, visible RGB, lidars, and
global positioning systems installed on it. Further, it displays
the embedded power supply and control system which inte-
grates all the AI-based imaging and sensor pipelines with
low-power edge computing boards installed in the trunk of
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FIGURE 7. In-Cabin and Out-Cabin AI-thermal perceptions systems deployed on the HELIAUS project demo car. (a) vehicle, (b) roof-mounted sensor
array, (c) power, computation & data storage, (d) In-cabin camera setup, (e) in-cabin driver monitoring data & UI, (f) out-cabin forward perception
system with lidar mapping & UI, (g) out-cabin thermal object detection and semantic segmentation & UI.

25168 VOLUME 11, 2023



M. A. Farooq et al.: On the Role of Thermal Imaging in Automotive Applications: A Critical Review

the car. The second column shows the results of both in-cabin
driver monitoring systems (DMS) and out-cabin advanced
driver assistance systems (ADAS). The DMS systems incor-
porate the results of thermal super image resolution, stress
monitoring, head pose and emotion estimation. On the other
side, the ADAS incorporates lidar map estimation, ther-
mal multi-class object detection, and semantics segmentation
outputs.

D. ADDITIONAL CONTRIBUTIONS
In addition to all the contributions under the Heliaus project,
we have also started focusing on other low-powered and eco-
nomical edge computing boards. Recently, we have trained
a multi-class object classifier using a nano variant of the
YOLO-v5 framework. The tuned thermal model was further
optimized using TensorFlow lite and deployed on a Raspberry
Pi-4 computing board. The optimized model achieves the
maximum FPS of 2 [134]. In addition to that we are also
focusing on other imaging modalities which mainly include
neuromorphic event cameras. In contrast to visible camera
sensors that produce pixels, neuromorphic vision or event
vision is a more advanced vision technology that produces
events whenever a brightness change in the field of view
(FoV) exceeds a predetermined threshold [135]. We have
conducted a proof-of-concept study with event modality. Two
networks, small and large variants of YOLO-v5 were trained.
The trained model achieved a maximum of 201 FPS [136].

VII. CONCLUSION AND FUTURE WORK
As a result of the tremendous advancements in imaging
physics over the previous few decades, the infrared ther-
mal imaging modality has witnessed numerous technolog-
ical advancements. Further integrating this with AI-based
imaging pipelines we can develop smart thermal perception
systems for advanced vehicular applications. The same has
been highlighted in the proposed research study by presenting
state-of-the-art studies for in-cabin and out-cabin applica-
tions for automotive sensor suites. The most important rea-
son for selecting thermal modality over conventional CMOS
imaging is that it is unaffected by light or any other environ-
mental conditions, making it ideal for all-weather and day
conditions, thus providing redundancy. Further, this study
lists large-scale thermal datasets and highlights the technique
for generating synthetic thermal datasets. This is required to
overcome the shortcomings of thermal datasets for optimal
training of deep neural networks. Further, this study high-
lights key contributions of the EU-funded Heliaus project and
presents the state-of-the-art studies and datasets which are
published and open-sourced as the result of the dissemination
of this project.

The possible future directions of this research would be
to study multi-imaging modalities which can be integrated
with the automotive sensor suite. Such as, recently event cam-
era has gained more popularity in the research community
because they can measure per-pixel brightness changes asyn-
chronously. As an outcome, a stream of events is generated,

each of which encodes the time, location, and signal of the
brightness changes.
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