
Citation: Giannetti, A.; Pantalone, A.;

Antonucci, I.; Verna, S.; Di Gregorio,

P.; Stuppia, L.; Calvisi, V.; Buda, R.;

Salini, V. The Role of Platelet-Rich

Plasma on the Chondrogenic and

Osteogenic Differentiation of Human

Amniotic-Fluid-Derived Stem Cells.

Int. J. Environ. Res. Public Health 2022,

19, 15786. https://doi.org/10.3390/

ijerph192315786

Academic Editors: Felice Sirico,

Stefano Palermi and Paul

B. Tchounwou

Received: 30 September 2022

Accepted: 23 November 2022

Published: 27 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

The Role of Platelet-Rich Plasma on the Chondrogenic and
Osteogenic Differentiation of Human Amniotic-Fluid-Derived
Stem Cells
Alessio Giannetti 1,*, Andrea Pantalone 2, Ivana Antonucci 3, Sandra Verna 4, Patrizia Di Gregorio 4,
Liborio Stuppia 3, Vittorio Calvisi 1, Roberto Buda 2,5 and Vincenzo Salini 6

1 Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
2 Clinic of Orthopaedics and Traumatology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
3 Center of Advanced Studies and Technology (CAST), “G. D’Annunzio” University of Chieti-Pescara,

66100 Chieti, Italy
4 Immunohematology and Transfusional Medicine Service, “SS. Annunziata” Hospital, 66100 Chieti, Italy
5 Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara,

66100 Chieti, Italy
6 Department of Orthopaedics and Traumatology, San Raffaele Hospital, 20132 Milan, Italy
* Correspondence: alessio.giannetti@graduate.univaq.it; Tel.: +39-3293240370

Abstract: Amniotic fluid represents a new and promising source of engraftable stem cells. The
purpose of this study was to investigate the in vitro effects of platelet-rich plasma (PRP) on amniotic-
fluid-derived stem cells (AFSCs) on chondrogenic or osteogenic differentiation potential. Amniotic
fluid samples were obtained from women undergoing amniocentesis for prenatal diagnosis at
16–18 weeks of pregnancy. Undifferentiated human AFSCs were cocultured with PRP for 14 days.
The study includes two protocols investigating the effects of activated PRP using two different
methods: via freeze–thaw cycles and via the addition of calcium gluconate. On the 14th day of cultur-
ing, the differentiation potential of the cocultured AFSCs was then compared with undifferentiated
AFSCs. Staining with alcian blue solution (ABS) and alizarine red solution (ARS) was performed,
and chondrogenic- and osteogenic-associated genes markers were investigated. ABS demonstrated
enhanced glycosaminoglycan expression. Cocultured cells expressed chondrocyte-associated genes,
determined by real-time polymerase chain reaction (RT-PCR), including type I collagen, type II colla-
gen, COMP, and aggrecan. In regard to the osteogenic markers, osteopontin and bone sialoprotein,
there were no changes. In particular, the activation of PRP using the freeze–thaw cycle protocol
showed a higher expression of the chondrogenic markers. Our preliminary in vitro results showed
that PRP has good potential in the chondrogenic differentiation of AFSCs.

Keywords: amniotic fluid; stem cells; PRP; orthobiology; cartilage; regenerative medicine

1. Introduction

Osteoarthritis (AO) is currently one of the most frequently diagnosed chronic diseases,
affecting an estimated 10% of men and 18% of women over 60 years of age, and with
the increase in life expectancy, both its prevalence and incidence are expected to rise.
This condition is degenerative until the loss of function and disability leads to important
healthcare and social costs [1,2]. In addition to chondral pathologies, skeletal diseases,
such as nonunion and bone defects due to trauma, infections, or tumors, represent a great
challenge for orthopedic surgeons.

Bone, in fact, is the second-most transplanted tissue worldwide after blood, with over
two million bone grafting surgeries being conducted per year [3].

Therefore, the treatment of traumatic or degenerative osteochondral defects represents
one of the main targets of regenerative medicine in order to replace damaged tissues [4].
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Several therapeutic strategies are currently available, but the combined use of platelet-
rich plasma (PRP) and mesenchymal stem cells (MSC) is an alternative that is increasingly
being adopted by physicians, providing encouraging results for orthobiology.

1.1. Platelet-Rich Plasma

PRP is a blood-derived concentrate with a platelet concentration several times above
the baseline. PRP was discovered in 1914 when it was prepared for intravenous transfu-
sion, and it was used only for the hemostatic properties of the platelets until 1974, when
Ross et al. [5] observed that activated platelets promoted proliferation in monkey arterial
smooth muscle cells in vitro.

Platelets, when activated, release 95% of the chemokines, cytokines, and growth factors
(GFs) contained in the α-granules within 1 hour; then, the release of the remaining content
reaches a plateau, and a slow secretion continues for up to 7–8 days.

The most important GFs are platelet-derived growth factor (PDGF), transforming
growth factor-beta (TGF-beta), fibroblast growth factor (FGF), insulin-like growth factor-
1 (IGF-1), connective tissue growth factor (CTGF), epidermal growth factor (EGF), and
hepatocyte growth factor (HFG), providing the PRP with chemoattractive, angiogenic,
proliferative, and proregenerative properties. In addition, acting as a hydrogel, activated
PRP could be suitable as a cell-delivery vehicle in the context of tissue engineering [6].

Because of all these characteristics, PRP has found wide application in clinical practice,
useable as local infiltration in many orthopedic diseases, such as as mild osteoarthritis,
acute and chronic tendinitis, and plantar fasciitis, as well as in pathologies that are not
strictly orthopedic, such as the treatment of chronic wounds and diabetic ulcers, and it has
even found application in other fields of medicine, such as plastic surgery and medical
esthetics [7–12].

Furthermore, different microRNAs involved in mesenchymal tissue regeneration
are also present in platelets’ microvesicles, and some of them, such as microRNA-23b,
have been hypothesized as being strictly implicated in the differentiation of MSC into
chondrocytes [13].

The practice of combining MSC and PRP in regenerative medicine and, of course, in
orthobiology in the treatment of osteochondral defects continues to be an area of interest
for many investigators.

1.2. Mesenchymal Stem Cells + Platelet-Rich Plasma

The abilities of MSCs, including self-renewal and multilineage differentiation into other
types of cells, in addition to their analgesic, immunomodulatory, and anti-inflammatory
properties, offer encouraging strategies for replacing or regenerating damaged tissues [14].
Among the MSCs, bone marrow stem cells (BMSCs) have certainly been the most used
and the most commonly investigated cells in regenerative medicine [15,16]. On the other
hand, adipose-derived stem cells (ADSCs) have the advantage of being more numerous
and easier to harvest [17]. Nevertheless, MSCs can be harvested from many other sources,
such as peripheral blood [18], the lungs [19], the synovial membrane [20], dental pulp [21],
satellite muscle cells [22], the placenta [23], and the umbilical cord [24].

In a review of the international literature, it emerges that promising results have been
obtained by combining MSC and PRP, both in vitro [22,25,26] and in vivo [18,21,22,24],
and more and more clinical trials are reporting encouraging results in the most common
orthopedic pathologies, such as mild arthritis, tendinitis, and muscle lesions, showing
improvements in patient-reported outcome measures (PROMs) [7,27].

1.3. Amniotic-Fluid-Derived Stem Cells

The amniotic membrane has been known for its clinical use and has already been
investigated in different fields for applications [28], while less is known about amniotic
fluid. Recently, it was found that amniotic fluid could represent a promising new source for
harvesting stems cells with therapeutic applications [4,29,30]. Amniotic-fluid-derived stem
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cells (AFSCs) are collected via amniocentesis in women undergoing prenatal diagnosis
(16th–18th week of pregnancy). These cells possess interesting characteristics; in fact,
AFSCs present intermediate properties, placing them between embryonic stem cells (ESCs)
and adult stem cells (ASCs) in terms of their capabilities. Indeed, AFSCs present a greater
potency than ASCs. In addition, in a comparison between ESCs and AFSCs, the latter are
easier to collect and more ethically acceptable because no embryo needs to be suppressed.
In addition, they are more genetically stable, and therefore, they do not induce teratomas
after in vivo transplantation [4,29,30].

Despite the important role of PRP in orthobiology, the literature currently lacks studies
on the potential of PRP in the chondrogenic and osteogenic differentiation of AFSCs. The
purpose of the study was to investigate the in vitro effects of PRP on the potential of AFSCs
to differentiate.

2. Materials and Methods
2.1. Preparation of Platelet-Rich Plasma

The PRP was obtained from a pint of whole blood, taken from a volunteer periodic
blood donor and considered suitable for blood donation. The platelet count from the
complete blood count (CBC) was 325 × 103 platelets/µL.

Then, 450 cc of the whole blood was collected in a quadruple bag and centrifugated
(Jouan KR4i centrifuge). The four bags are connected. Welding was performed to separate
them so as to maintain the sterility of the products.

A first centrifugation (1800 rpm for 10 min at room temperature) was performed to
separate the red cell concentrate from the PRP. The PRP was centrifugated in the same
centrifuge at 3500 rpm for 15 min. At this stage, two bags had been obtained, one containing
the PRP, and the other containing the platelet-poor plasma.

The CBC for the PRP was 1.2 × 106 platelets/µL. The PRP was 10% of the volume
of the original whole blood. In the end, the PRP was aliquoted in vials under a sterile
hood and stored at −40 ◦C for a maximum period of 3 months. Sterility was checked on
two random aliquots, with negative results. The PRP aliquots were thawed at 37 ◦C at the
time of use.

2.2. Amniotic-Fluid-Derived Stem Cells
2.2.1. Isolation and Culture

Amniotic fluid samples were obtained from women undergoing amniocentesis for
prenatal diagnosis at 16–18 weeks of pregnancy after written informed consent had been
obtained. For each sample, 2–3 mL of amniotic fluid, corresponding to a cell number
ranging from 2 × 103 to 2 × 106 was centrifuged for 10 min at 1800 rpm. Pellets were
resuspended in Iscove’s Modified Dulbecco’s Medium (IMDM), supplemented with 20%
fetal bovine serum (FBS), 100 U/mL penicillin, 100 µg/mL streptomycin (Sigma), 2 mM
L-glutamine, and 5 ng/mL basic fibroblast growth factor (FGF2) and incubated at 37 ◦C
with 5% humidified CO2.

After 7 days, nonadherent cells were removed, and the adherent cells were allowed
to grow in the same medium, which was changed every 4 days. In this way, the AFSCs
were isolated from the original cell population and expanded in a culture until the third
passage (Figure 1).

2.2.2. Study Protocols

The study included two protocols to investigate the effects of PRP activation via
different methods. The medium of Protocol 1 was: IMDM (90%), PRP (10%), L-glutamine
(200 mM), and penicillin/streptomycin (100×). In this protocol, the PRP was activated
using freeze–thaw cycles.

On the other hand, the medium of Protocol 2 was: IMDM (87%), PRP (10%), calcium
gluconate (3%), L-glutamine (200 mM), and penicillin/streptomycin (100×). In this case,
the PRP was activated via the addition of calcium gluconate.
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Undifferentiated human AFSCs were cocultured, with the medium studied for 14 days.
The medium was changed every 2 days.

The two protocols were compared, with a cell lineage of undifferentiated AFSCs used
as the control group (control medium: IMDM (90%), FBS (10%), L-glutamine (200 Mm),
and penicillin/streptomycin (100×)).
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2.2.3. Staining

On the 14th day of culturing, two different stains were investigated: one using alcian
blue solution (ABS), which binds sulphurated acid mucins and glycosaminoglycans, and
one using alizarine red solution (ARS), which shows mineralization processes through
red depositions.

Different plastic dishes were utilized for each staining. Cells were fixed with 4%
paraformaldehyde and washed with phosphate-buffered saline (PBS). The stain was added,
and the cells were incubated for 30 min. After lavage, the cells were observed with the
phase-contrast microscope.

2.2.4. Real-Time PCR

Total ribonucleic acid (RNA) was isolated using an SV Total RNA Isolation System kit.
RNA from the amniotic stem cells of the control medium were used as the control group.
A quantity of 1 µg of RNA was reverse-transcribed using a RETROscript kit.

Amplification was performed with specific primers for genes expressed during chon-
drogenic differentiation, such as type I collagen (COL I), type II collagen (COL II), chon-
droadherin (CNAD), cartilage oligomeric matrix protein (COMP), fibromodulin (FMOD),
aggrecan (AGG), and osteogenic differentiation, such as bone sialoprotein (BSP), osteo-
pontin (OPN), and for genes expressed in the mesenchymal stem cells considered to be
markers of pluripotency (OCT-4 and SOX-2). The GAPDH gene was used as a reference for
the standardization of the data (Table 1).

Amplifications were carried out using 35 cycles at 95 ◦C, 1 min; variable annealing
temperature, 1 min; 72 ◦C, 1 min. RT-PCR products were separated in a 2% agarose gel
and visualized via ethidium bromide staining. Images were captured using a Gel Doc 2000
(BioRad, Hercules, CA, USA).
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Table 1. Primer sequences for pluripotency markers (1a), chondrogenic markers (1b), osteogenic
markers (1c), and the control sequence (1d).

1a

PLURIPOTENCY MARKERS

OCT-4
Forward (5′ to 3′): CTT GCT GCA GAA GTG GGT GGA GGA

Reverse (5′ to 3′): CTG CAG TGT GGG TTT CGG GCA

SOX-2
Forward (5′ to 3′): TTG CTG CCT TAA GAC TAG GA

Reverse (5′ to 3′): CTG GGG CTC AAA CTT CTC TC

1b

CHONDROGENIC MARKERS

TYPE I COLLAGEN
Forward (5′ to 3′): CCA ATC ACC TGC GTA CAG AAC

Reverse (5′ to 3′): GGC ACG GAA ATT CCT CCG GTT GAT

TYPE II COLLAGEN
Forward (5′ to 3′): CCA GGT CAA GAT GGT C

Reverse (5′ to 3′): CTT CAG CAC CTG TCT CAC CA

CHONDROADHERIN
Forward (5′ to 3′): ACC TGG ACC ACA AGG TC

Reverse (5′ to 3′): GAA CTT CTC CAG GTT GT

COMP
Forward (5′ to 3′): CAG GAC TTT GAT GCA GA

Reverse (5′ to 3′): AAG CTG GAG CTG TCC TGG TA

FIBROMODULIN
Forward (5′ to 3′): ACC AGT GAT AAG GTG GGC AG

Reverse (5′ to 3′): AAG TAG TTA TCG GGG ACG GT

AGGRECAN
Forward (5′ to 3′): GGC TTG AGC AGT TCA CCT TC

Reverse (5′ to 3′): CTC TTC TAC GGG GAC AGC AG

1c

OSTEOGENIC MARKERS

OSTEOPONTIN
Forward (5′ to 3′): AGG AGG CAG AGC ACA

Reverse (5′ to 3′): CTG GTA TGG CAC AGG TGA TG

BONE SIALOPROTEIN
Forward (5′ to 3′): CTA TGG AGA GGA CGC CAC GCC T

Reverse (5′ to 3′): CAT AGC CAT CGT AGC CTT GTC CT

1d

CONTROL

GAPDH
Forward (5′ to 3′): CGC TCT CTG CTC CTG TT

Reverse (5′ to 3′): CCA TGG TGT CTG AGC GAT GT

3. Results
3.1. Molecular Characterization of the AFSCs

The AFSC lines used for our experiments, as previously described, were characterized
by flow cytometry. As in previous studies, the AFSCs were positive for the mesenchymal
stem-cell markers CD29, CD73, and CD44, while they were negative for the hematopoietic
markers CD34 and CD45 and for the endothelial marker PECAM-1/CD31. Nevertheless,
positivity for stemness markers (SSEA4, OCT4, Tra-1–60, and CD90) was found among the
samples (data already published) [30].

3.2. Phase-Contrast Microscopy

After 4 days of coculture with PRP, it was possible to observe with a phase-contrast mi-
croscope round-shaped cell aggregates that had not been identified in the control medium.
The cell aggregates increased in number and dimension until the 14th day (Figure 2a–c).
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There were no significant differences observed between the results of Protocol 1 and
Protocol 2.

The cells in the control medium maintained the fibroblastoid shape of the AFSCs for
the duration of the experiment.

3.3. Staining

On the 14th day of culturing, two different stains were investigated. The one using
ABS, which binds sulfurized acid mucins and glycosaminoglycans, resulted as positive. In
fact, the centers of the cell aggregates appeared blue using the phase-contrast microscope
(Figure 3a–d).
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The other one stain, using ARS, did not demonstrate any mineralization. Protocol 1
and Protocol 2 were similar in aspect and in staining.

3.4. Real-Time PCR

The molecular study was performed using RT-PCR (Thermo Scientific Luminaris Color
HiGreen qPCR Master Mix K0392).

The decrease in the expression of OCT-4 in Protocols 1 and 2, as compared to the
control, suggests the beginning of a differentiation process (Figure 4).
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The study of the specific markers for chondrogenic differentiation showed increased
expressions of COL I, COL II, and COMP that were greater in Protocol 1, in which the PRP
was activated through freeze–thaw cycles (Figure 5).
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In regard to the specific markers for osteogenic differentiation (OPN and BSP), there
were no changes in expression in Protocols 1 and 2, as compared to the control.

4. Discussion

In recent decades, the use of PRP has gained popularity in the field of tissue engi-
neering because of its anti-inflammatory and analgesic properties, as well as its capacity
to induce neo-angiogenesis, tissue formation, and remodeling by influencing stem-cell
migration, proliferation, and differentiation [14]. Because of these properties, the clinical
use of PRP in the orthopedic field has increased more and more, with it finding an applica-
tion with encouraging results in the most common orthopedic pathologies, such as muscle
lesions, acute and chronic tendinitis, mild osteoarthritis, and osteochondral lesions [7–12].

If we focus on this latter pathology, the literature reports the use of PRP to induce the
chondrogenic and osteogenic differentiation, both in vitro and in vivo, of MSCs harvested
from several tissues [15,31–33].

While for in vivo usage the activation of PRP is not necessary, for in vitro applications,
it is imperative [34], and several methods are available for PRP activation [6]. In our study,
we selected two different strategies, and we decided to compare them with two protocols.
In Protocol 1, PRP was activated using freeze–thaw cycles. In Protocol 2, PRP was activated
through the addition of calcium gluconate.
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For the choice of a platelet count in the PRP, we followed the recommendations of the
Italian Society of Transfusion Medicine and Immunohematology (SIMTI) for PRP clinical
use: 1 × 106 µL ± 20%.

According to Lucarelli et al. [35], PRP has a dose-dependent effect on cell prolifera-
tion. A quantity of 10% PRP was proposed as a suggested concentration to promote the
proliferation effect, while PRP concentrations of more than 20% have been demonstrated as
having a negative impact [36].

On the other hand, AFSCs were chosen as the stem cells to be utilized, rather than
more-commonly investigated alternatives. In fact, adult MSCs have limited potential and,
even after reprogramming, they may maintain epigenetic modifications that limit their
application. In regard to embryonic stem cells (ESCs), despite their high potential for
differentiation, their use is associated with the risk of teratocarcinoma induction after
in vivo transplantation and, furthermore, their harvesting gives rise to ethical problems
due to the necessary suppression of the embryo [37]. Considering that, AFSCs can be seen
as a very promising tool in the area of regenerative medicine.

AFSCs, in fact, represent an “intermediate” cellular phenotype between ESCs and
adult MSCs; they express markers of both pluripotency and mesenchymal commitment,
and they exhibit a broad differentiation potential for all three embryonic germ layers [37].
They can be a suitable cell source for tissue engineering, and their abilities in cartilage and
bone defect repairs have been tested in established animal models [38,39].

In addition, AFSCs are nontumorigenic; they do not form teratomas in vivo when
injected in immunodeficient mice [37], and the low immunogenicity of AFCSs supports
their use in allogenic transplantation. In fact, AFSCs are slightly positive for the MHC
class II antigens of HLA-DR, the expression of immuno-suppressive factors, such as CD59
(Protectin), which inhibits the complement system in damaging cells, and HLA-G, which
plays a key role in immune tolerance in pregnancy, making them resistant to rejection [4].

However, despite these promising characteristics, in the international literature, only
two works have investigated the association of AFSCs and PRP on tissue regeneration.
Both authors used AFSCs premixed with PRP to restore bone defects in rats, showing
encouraging results as compared to those of the control groups [40,41].

In addition to the previous mentioned varieties of MSC and PRP, in combination,
they have been found to have several applications in orthopedic clinical practice for their
synergistic effect, as broadly discussed. In regard to AFSCs, having seen their favorable
properties, it would be desirable to see results from a clinical trial as soon as possible.

In the end, it is important to point out that we investigated the differentiation poten-
tialities of PRP itself. In fact, to our knowledge, in most of the experiments performed to
investigate the chondrogenic or osteogenic effect of PRP in vitro, PRP is usually added to
chondrogenic or osteogenic media, or it is combined with biomaterials or recombinant
growth factors. Therefore, the experimental designs do not allow conclusions to be drawn
regarding the effect of the PRP itself [6].

Several limitations should be noted in regard to this study. First, there is a lack of
biochemical or Western blot staining to confirm the data from the real-time PCR. The second
limitation of this study is the absence of preclinical experiments on animal models, and
one of our future priorities is to better investigate these results.

5. Conclusions

According to our data, looking at the phenotype observed with phase-contrast mi-
croscopy, the result of staining with ABS and ARS, and the results of RT-PCR, it can be
assumed that adding PRP to a culture medium with AFSCs can influence them through
chondrogenic differentiation.

Based on their ease of harvesting, their ability to differentiate into several cell lineages,
the absence of tumorigenicity after transplantation, and the lack of ethical problems related
to their use, AFSCs could be considered as a novel, promising resource in orthobiology.
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In conclusion, the association of PRP and AFSCs could be considered, in the foreseeable
future, as a new tool in regenerative medicine for the treatment of chondral pathologies.
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