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A B S T R A C T

Recent advances in medical imaging have highlighted the critical development of algorithms for individual
vertebral segmentation on computed tomography (CT) scans. Essential for diagnostic accuracy and treatment
planning in orthopaedics, neurosurgery and oncology, these algorithms face challenges in clinical implementa-
tion, including integration into healthcare systems. Consequently, our focus lies in exploring the application of
knowledge distillation (KD) methods to train shallower networks capable of efficiently segmenting vertebrae
in CT scans. This approach aims to reduce segmentation time, enhance suitability for emergency cases, and
optimize computational and memory resource efficiency. Building upon prior research in the field, a two-step
segmentation approach was employed. Firstly, the spine’s location was determined by predicting a heatmap,
indicating the probability of each voxel belonging to the spine. Subsequently, an iterative segmentation of
vertebrae was performed from the top to the bottom of the CT volume over the located spine, using a
memory instance to record the already segmented vertebrae. KD methods were implemented by training a
teacher network with performance similar to that found in the literature, and this knowledge was distilled to
a shallower network (student). Two KD methods were applied: (1) using the soft outputs of both networks and
(2) matching logits. Two publicly available datasets, comprising 319 CT scans from 300 patients and a total of
611 cervical, 2387 thoracic, and 1507 lumbar vertebrae, were used. To ensure dataset balance and robustness,
effective data augmentation methods were applied, including cleaning the memory instance to replicate the
first vertebra segmentation. The teacher network achieved an average Dice similarity coefficient (DSC) of
88.22% and a Hausdorff distance (HD) of 7.71 mm, showcasing performance similar to other approaches in
the literature. Through knowledge distillation from the teacher network, the student network’s performance
improved, with an average DSC increasing from 75.78% to 84.70% and an HD decreasing from 15.17 mm
to 8.08 mm. Compared to other methods, our teacher network exhibited up to 99.09% fewer parameters,
90.02% faster inference time, 88.46% shorter total segmentation time, and 89.36% less associated carbon
(CO2) emission rate. Regarding our student network, it featured 75.00% fewer parameters than our teacher,
resulting in a 36.15% reduction in inference time, a 33.33% decrease in total segmentation time, and a 42.96%
reduction in CO2 emissions. This study marks the first exploration of applying KD to the problem of individual
vertebrae segmentation in CT, demonstrating the feasibility of achieving comparable performance to existing
methods using smaller neural networks.
1. Introduction

In recent years, the field of medical imaging has witnessed a surge
in technological advancements, particularly in the realm of computer-
aided diagnosis and image analysis. Among these innovations, the
precise segmentation of individual vertebrae on computed tomography
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(CT) scans stands out as a pivotal development with far-reaching clini-
cal implications (Altini et al., 2021). Accurate identification and delin-
eation of vertebral structures are fundamental not only for diagnostic
purposes but also for planning interventions and monitoring disease
progression. This technique finds application in diverse clinical do-
mains, including orthopedics, neurosurgery, and oncology (Ren et al.,
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Table 1
Overview of the VerSe dataset. Patient/Scan split indicates the split of the data into train/validation/test sets. Cer, Tho and Lumb stands for
cervical, thoracic and lumbar, respectively.

VerSe Patients Scans Patient split Scan split Vertebrae (Cer/Tho/Lum)

2019 141 160 67/37/37 80/40/40 1725 (220/884/621)
2020 300 319 100/100/100 113/103/103 4141 (581/2255/1305)
Total 355 374 128/117/110 141/120/113 4505 (611/2387/1507)
2022; Yagi et al., 2023; Chen et al., 2023). The ability to automatically
segment vertebrae not only expedites the radiological workflow but
also enhances the overall accuracy of diagnoses. Despite the promises
it holds, deploying algorithms in clinical environments presents a set of
challenges. Issues such as algorithm robustness, adaptability to diverse
patient populations, and the need for seamless integration into existing
healthcare systems are significant concerns that necessitate careful
consideration (Saw and Ng, 2022).

In this work, our specific interest lies in determining the feasibility
of achieving comparable performance in vertebrae segmentation using
shallower neural networks, specifically 3D U-Nets with fewer hidden
layers between input and output. Our goal is to reduce segmentation
time and computational costs without compromising performance, en-
abling the deployment of algorithms in clinical devices. KD methods
were employed in this study, as their application has proven to enhance
accuracy without incurring additional computational overhead in CT
segmentation problems, such as thoracic (Noothout et al., 2022) and
abdominal organ segmentation (Choi, 2022; Zhang et al., 2022b),
pancreas (You et al., 2022), liver and kidney segmentation (Xu et al.,
2021; Qin et al., 2021), liver and kidney tumor segmentation (Qin et al.,
2021) and COVID-19 lesions segmentation (Xu et al., 2022). In fact, the
application of KD is considered a current emerging trend in medical
imaging segmentation (Conze et al., 2023).

The contributions of this paper can be summarized as follows:

∙ This research marks the pioneering application of KD methods
to address the challenge of individual vertebrae segmentation on
CT scans.

∙ To enhance the effectiveness of the distillation framework for
segmenting the first vertebrae in CT scans, problem-specific data
augmentation techniques are proposed.

∙ To the best of our knowledge, this work stands out as the first
to leverage the largest dataset of CT scans, encompassing the
highest number of vertebrae during the development phase.

∙ This work introduces a strategy to reduce segmentation time,
energy consumption, and computational requirements for in-
dividual vertebrae segmentation in CT scans, achieved by
incorporating shallower networks into existing algorithms.

2. Related work

The initial approaches investigated for individual vertebrae segmen-
tation involved a 2D analysis of the CT scan, where each slice was
analyzed separately to achieve a 3D segmentation of the vertebrae.
However, with the advent of large datasets, the exploration of deep
learning (DL) methods, specifically 3D neural networks, emerged as
highly advantageous for vertebral segmentation.

Janssens et al. (2018) introduced the first method solely based
on 3D neural networks for individual vertebrae segmentation. Their
approach uses two cascaded 3D fully convolutional networks (FCNs)
- one for localization and one for segmentation. Despite achieving
strong performance, it is important to note that the dataset used for
development and evaluation was notably uniform, featuring scans with
vertebrae from L1 to L5 and a consistent field-of-view (FoV).

To address the challenge of varying FoV in recent datasets, Less-
mann et al. (2019) introduced an iterative instance-by-instance seg-
mentation approach based on a 3D FCN. However, the authors noted
drawbacks, including the absence of initialization, requiring the net-
2

work to scan the entire volume to locate the first vertebra, and less
effective segmentation of the topmost vertebrae. Additionally, the use
of large feature maps along the FCN resulted in extended segmentation
times.

In response to the issue of initial vertebrae localization, Payer
et al. (2020) proposed a solution involving a coarse-to-fine approach,
leveraging their Spatial-Configuration network (Payer et al., 2019) and
the 3D U-Net. This three-step method employs a 3D U-Net for spine
localization, the Spatial-Configuration Network for vertebrae localiza-
tion via heatmap regression, and another 3D U-Net for segmenting each
identified vertebra. Sekuboyina et al. (2021) secured victory in the
VerSe20 challenge with a two-step approach. Similar to Payer et al.
(2020), they employed a 3D U-Net for spine localization and another
3D U-Net for iterative vertebrae segmentation akin to Lessmann et al.
(2019). They achieved increased accuracy by augmenting the number
of model parameters, albeit at the cost of longer segmentation times.

Since the release of the hidden data from the VerSe challenge
dataset, three studies have introduced novel implementations for neural
networks in vertebral segmentation. Altini et al. (2021) devised a two-
step solution involving preprocessing the CT scan to crop the volume
around the spine and then using a convolutional network based on the
3D V-Net (Milletari et al., 2016) for vertebrae segmentation. However,
this approach is semi-automated, requiring two user inputs: the number
of vertebrae and slice selection. Tao et al. (2022) also proposed a two-
stage solution for vertebral segmentation, focusing on the detection
of vertebral centroids instead of vertebral positions. They achieved
improved accuracy by increasing the number of parameters, albeit with
longer segmentation times. Meng et al. (2023) introduced a cyclic
algorithm for spine and vertebra segmentation, along with vertebra
identification, aiming to enhance the segmentation of transitional verte-
brae. Despite the improved performance in transitional vertebrae, there
is a notable increase in segmentation time due to the cyclic process.

The current state-of-the-art methods primarily involve the imple-
mentation of two 3D U-Nets, each dedicated to a specific task within the
vertebral segmentation algorithm: i) spine location prediction and ii) it-
erative individual vertebra segmentation (Lessmann et al., 2019; Payer
et al., 2020; Sekuboyina et al., 2021; Tao et al., 2022). These methods
have evolved by augmenting the models’ structure, introducing more
parameters, and subsequently increasing segmentation time. However,
this augmentation comes with a notable environmental impact, driven
by the computational resources required for training and execution.
The size and complexity of these DL models contribute to a heightened
environmental footprint (Strubell et al., 2019; Ligozat et al., 2022;
Henderson et al., 2020; Lannelongue et al., 2021; Budennyy et al.,
2022). Moreover, the computational time needed for these approaches
to deliver segmented vertebrae using conventional central processing
units (CPU) poses a significant challenge. To mitigate these issues,
KD has been explored for U-Net architectures in the segmentation of
body structures on CT scans. This technique aims to train a smaller
neural network (student network) to emulate the behavior of a larger
neural network (teacher network) but with fewer parameters and faster
inference times. The objective is to achieve efficient segmentation re-
sults, leading to shorter segmentation times and reduced computational
requirements.

Noothout et al. (2022) applied KD techniques for thoracic organ
segmentation by using an ensemble of neural networks with different
structures as teachers. They successfully distilled knowledge from this
ensemble to a single neural network, achieving the same performance
as the entire ensemble with only one network. Choi (2022) investigated
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KD in abdominal organ segmentation, proposing a coarse-to-fine frame-
work that included a teacher and student network pair for each step
(coarse and fine segmentation). The student networks demonstrated a
performance increase of 7%. Zhang et al. (2022b) employed KD meth-
ods to compress the model for abdominal organ segmentation, resulting
in an 11% performance boost on the student network. Zhang et al.
(2022a) used an ensemble of teacher networks focusing on individual
organ segmentation, distilling knowledge to a student neural network
capable of performing multi-organ segmentation, improving the student
network’s performance by 1%.

(Xu et al., 2021) introduced a KD method based on growing teacher
assistant networks, which bridge the gap between teacher and student
sizes. This approach improved the student network’s performance in
liver segmentation on CT by 1%–2%. Qin et al. (2021) explored the
impact of KD on whole liver and kidney segmentation, as well as liver
and kidney tumor segmentation, demonstrating performance improve-
ments for student networks ranging from 1% to 17%. You et al. (2022)
enhanced the performance of a student network by 13% through knowl-
edge distillation from a teacher network for pancreas segmentation on
CT scans. Xu et al. (2022) investigated a KD method for COVID-19
lesions segmentation, using the encoder segment of an autoencoder
for healthy case reconstruction as a teacher and a shallower network
with the same architecture as the student. This approach improved the
networks’ performance by 2% to 7%.

Beyond CT scans, KD has found success in various healthcare
applications, including low-dose CT image denoising (Wang et al.,
2023), bone suppression on chest X-rays (Liu et al., 2023), brain tumor
segmentation on Magnetic Resonance Imaging (MRI) (Qi et al., 2022;
Xiong et al., 2023; Rahimpour et al., 2021; Noothout et al., 2022;
Lachinov et al., 2020), left atrial segmentation on MRI (You et al.,
2022), and heart segmentation in cine-MRI (Noothout et al., 2022).

3. Material and methods

This section introduces the proposed framework, the datasets em-
ployed, and the training settings. Fig. 1 provides an overview of
the implemented method, showcasing the training data, preprocessing
steps, training workflow, and the segmentation algorithm (inference
workflow).

3.1. VerSe dataset

In this paper, we leverage the VerSe dataset (Sekuboyina et al.,
2021; Liebl et al., 2021), initially introduced in 2019 for the VerSe19
Challenge at the 22nd International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI). The VerSe20
dataset, released in 2020 for the 23rd MICCAI International Confer-
ence, includes 105 cases from VerSe19, totaling 319 scans across 300
patients. The dataset encompasses cases with Schmorl nodes, heman-
gioma, degenerative changes, or the presence of foreign materials for
kyphoplasty or spondylodesis. Acquired from various CT scanners at
different institutions, the dataset exhibits significant variability in terms
of FoV, scan settings, and findings. The images, available in Neuroimag-
ing Informatics Technology Initiative (NIfTI) format, can be accessed on
the Open Science Framework (OSF) repository (https://osf.io/nqjyw/,
last accessed: 8 April 2023).

Table 1 provides details about the VerSe dataset and its split. For
this study, all 374 scans were used, comprising 105 scans common
to both VerSe19 and VerSe20 datasets, 55 scans from VerSe19 only,
and 214 from VerSe20 only. The data were split on a patient level,
as recommended by the dataset authors, resulting in the following
distribution: 141 scans for training, 120 scans for validation, and 113
3

scans for testing. f
3.2. Segmentation algorithm

Following a two-step approach inspired by Sekuboyina et al. (2021),
depicted in the green dotted box at the bottom of Fig. 1, 3D U-
Nets were employed. The first step involves locating the spine in the
CT scan using a 3D U-Net (Spine Location 3D U-Net). This network
outputs a Spine Location Heatmap, indicating the probability of each
voxel belonging to the spine. In the second step, individual vertebrae
within the region specified by the heatmap from the first step are
segmented. The segmentation is performed iteratively from the top
to the bottom of the heatmap, with a memory instance storing the
segmented vertebrae. Fig. 2 illustrates this iterative process of indi-
vidually segmenting vertebrae on the CT scan. Initially, the topmost
vertebra is segmented and recorded in the memory instance. Then,
the second vertebra of the CT scan is segmented, which is now the
uppermost not yet segmented vertebra. The process is repeated until all
vertebrae are segmented. The segmentation is carried out by a 3D U-Net
(Vertebra Segmentation 3D U-Net), which takes as inputs the CT volume
containing the vertebrae to be segmented and the memory instance
containing the already segmented vertebrae within that volume. The
output is the segmentation of the topmost unsegmented vertebra.

3.3. Spine location with 3D U-net

The Spine Location 3D U-Net is tasked with identifying the region
of the CT scan containing the spine, ensuring the iterative vertebrae
segmentation occurs within that area. Regardless of the CT scan’s FoV,
which may encompass the cervical, thoracic, lumbar segments, the
entire spine, or even the full body, the Spine Location 3D U-Net predicts
the probability of each voxel belonging to the spine.

The input to the Spine Location 3D U-Net is the resized CT scan,
set to 64x64x128 voxels (left side of the orange dotted box in Fig. 1).
Following the approach of Sekuboyina et al. (2021) and Payer et al.
(2020), a 3D U-Net with four depth levels was implemented. Each
encoder and decoder level comprises two consecutive blocks involving
convolution with a 3x3x3 kernel, followed by batch normalization (BN)
and rectified linear unit (ReLU) activation. Max pooling operations
reduce spatial dimensions between encoder levels. Nearest neighbor
upsampling aligns decoder spatial dimensions. The convolutional layers
have 8, 16, 32, and 64 output features in the first, second, third, and
fourth levels, respectively.

For improved generalization, training incorporates data augmenta-
tion: random translation [−20, +20] in all axes, left–right axis flip,
random multiplication in the range [0.75, 1.25] with a shift of [−0.25,

0.25], random zoom [−10, +10]% of the volume’s size, random
otation [−10, +10] degrees in all axes, Gaussian noise, and Gaussian
lur.

The neural network is trained using binary cross-entropy as the loss
unction. Training was done using an Nvidia 1660 Dual Super GPU
ith 6 GB memory, a batch size of 4, and the Adam optimizer with
small learning rate of 0.0001 to ensure slow convergence and good

eneralization over 300 epochs.

.4. Vertebra segmentation with 3D U-net

The Vertebra Segmentation 3D U-Net is responsible for segmenting
he topmost not yet segmented vertebra within a given volume. A
emory instance is employed to store already segmented vertebrae,

iding in identifying which vertebra to segment. The network takes two
olumes as input: (i) the CT scan; and (ii) the memory instance (right
ide of the dotted orange box in Fig. 1).

The input to the Vertebra Segmentation 3D U-Net is the concatena-
ion of the volume and memory instance, resulting in two channels of
ize 128x128x128, following the recommendation of Lessmann et al.
2019). The network follows the original U-Net architecture with
our depth levels, each consisting of two consecutive blocks of one
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Fig. 1. Overview of our method. The VerSe dataset (gray dotted box at top) is used for training purposes. In regards to the Spine Location 3D U-Net the training data is processed
in order to get the resized whole CT scan and the heatmap for spine location created from the vertebrae centroid, which are used to train the neural network (left side of orange
dotted box). The Spine Location 3D U-Net is trained using the binary-crossentropy loss. For training the Teacher/Student Vertebra Segmentation 3D U-Nets the training data is
processed to get the CT, memory and segmentation mask volumes centered in each target vertebra (right side of orange dotted box). The Teacher network is pre-trained using
the segmentation loss (𝐿𝑠𝑒𝑔 loss) exploiting our proposed problem-specific data processing methods. The Student network is trained using the segmentation loss (same process as
Teacher) and by distilling knowledge from the Teacher network. The segmentation algorithm (green dotted box at bottom) consist in two main steps: Spine Location Step and
Iterative Vertebrae Segmentation. The Spine Location Step consists in locating the spine (Spine Location Heatmap) in the whole CT scan. After this step, an Iterative Vertebrae
Segmentation is performed by following the heatmap of the spine location (yellow dotted arrow on Spine Location Heatmap). The volumes from the CT scan and the memory
instance (which saves the already segmented vertebrae) are inputs of the Teacher/Student Vertebra Segmentation 3D U-Net that segments the top-most not yet segmented vertebra.
When segmenting the 1st vertebra the memory is empty, while when segmenting other than the 1st vertebra, it contains the already segmented vertebrae (memory of the 20th
vertebra as example).
convolution, BN layer, and ReLU activation. Max pooling operations be-
tween encoder levels halve spatial dimensions, while nearest neighbor
upsampling in the decoder aligns dimensions.

KD techniques were applied to the problem of individual vertebrae
segmentation on CT by distilling knowledge from a Teacher Vertebra
Segmentation 3D U-Net to a smaller Student Vertebra Segmentation
3D U-Net with the same architecture. The convolutional layers of the
Teacher network have 16, 32, 64, and 128 output features in the first,
second, third, and fourth levels, respectively. The Student network has
half the output features: 8, 16, 32, and 64 in the first, second, third,
and fourth levels, respectively.

Data augmentation methods were applied to both inputs (volume
and memory instance) for better generalization: random translation
[−64, +64], left–right axis flip, random multiplication in the range
[0.75, 1.25] with a shift of [−0.25, +0.25], random rotation [−20,+20]
degrees in all axes, Gaussian noise, Gaussian blur, and random zoom
4

[−30, +30]% in the superior-inferior axis and [−20, +20]% in the
other axes. These zoom rates stretch and shrink the vertebrae along
the superior-inferior axis.

The cost function for training was based on (Lessmann et al., 2019)
segmentation loss, minimizing false positives and false negatives while
penalizing incorrect predictions near the vertebra’s edge using distance
to border penalization weights. These weights are calculated from the
distance 𝑑𝑖 of voxel 𝑖 to the closest point on vertebra surface: 𝜔𝑖 =
𝛾 ⋅ 𝑒𝑥𝑝(−𝑑2𝑖 ∕𝜎

2)+1. We used 𝛾 = 8 and 𝜎 = 6, as suggested by Lessmann
et al. (2019). In addition, the penalty for false positives and false
negatives is balanced, i.e., false negatives are penalized less than false
positives at the beginning of training, and this penalty increases in a
sigmoidal fashion until both penalties are equal at the end of training.

The Nvidia RTX 2080 Ti GPU with 12 GB was used for training,
allowing only a single batch during Vertebra Segmentation 3D U-Net
training. The network trained with Adam optimizer, a fixed learning
rate of 0.001, and increased momentum of 0.99 for 30 epochs.
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Fig. 2. Illustration of the Iterative Vertebrae Segmentation step. The volume is taken to
include the top-most vertebra (1). The first vertebra is segmented and added to the
memory instance of the Vertebrae Segmentation network (2) and the same volume is
analyzed again, yielding now a fragment of the following vertebra (‘?’ in 3) because
the updated memory instance forces the network to ignore the previous vertebra (3).
The volume is centered now at the detected fragment of the following vertebra and
the process is repeated (4).

Fig. 3. Problem-specific data processing techniques. (A) Data distribution before (blue)
and after (red) repeating aleatory vertebrae during training. (B) Memory cleaning: the
first row shows the original image, memory, and ground truth, while the second row
shows the case when the memory is emptied and the original image is rolled up to
make sure that the first vertebra on the patch is now the second vertebra of the original
image - the ground truth is updated accordingly.

3.4.1. Problem-specific data processing

In the quest for a more efficient method using shallower neural
networks than those in existing literature, the training of Teacher and
Student Vertebra Segmentation 3D U-Nets involved leveraging effective
data processing techniques. These techniques, validated for enhanc-
ing network performance, include data resampling to address dataset
imbalances and selectively emptying the memory instance in specific
5

training cases to tackle challenges in first vertebra segmentation, as
reported by Lessmann et al. (2019).

Addressing the substantial imbalance in the original training
dataset, where there are considerably more thoracic and lumbar verte-
brae than cervical vertebrae (as shown in Table 1), a data resampling
strategy is employed. The oversampling approach is chosen to main-
tain a more balanced representation of cervical, thoracic, and lumbar
vertebrae per epoch. For each training epoch, random vertebrae are
duplicated to ensure similar counts for each class as shown in Fig. 3A,
resulting in 2814 training samples after resampling the dataset.

To enhance the segmentation of the first vertebra in the CT scan,
a problem-specific data augmentation method is proposed. Since the
memory instance is empty when segmenting the first vertebra, and
no prior vertebrae have been segmented, additional training volumes
with an empty memory are introduced. Approximately one-third of
the data is selected for this process, and during training, when the
memory is empty, the vertebra is positioned at the top of the patch to
simulate the segmentation of the first vertebra. This dynamic process
is performed on-the-fly during training, with patches randomly selected
in each epoch (as illustrated in Fig. 3B).

3.4.2. Knowledge distillation for vertebra segmentation
Our original KD implementation (depicted in Fig. 4A) followed

a widely used method in the literature (Wang et al., 2019; Guan
et al., 2019; Nekrasov et al., 2019b; Tseng et al., 2020) to distill
knowledge from the Teacher to the Student Vertebra Segmentation 3D
U-Net. For this purpose, the Student network was designed with two
outputs: (i) the predicted segmentation; and (ii) the soft segmentation.
The predicted segmentation (𝑦̂) was derived by applying the sigmoid
activation function to the output of the last convolutional layer (logits).
Conversely, the soft segmentation (𝑦̂𝑠) was obtained by dividing the
logits by the Temperature hyperparameter (𝑇 ) before applying the
sigmoid activation function. Soft segmentation introduces increased
entropy to the predicted segmentation, spreading voxel values in the
range [0, 1] more uniformly (He et al., 2019). Also, the output of the
Teacher network were soften in order to be used as soft targets during
training of the Student Vertebra Segmentation 3D U-Net. Two versions
were implemented with𝑇 = 4 and 𝑇 = 5, respectively.

The total loss of the KD implementation (𝐿𝑇𝑂𝑇𝐴𝐿 in Fig. 4A) com-
prises two terms: i) the loss term between the predicted segmentation
of the Student network and the ground truth (GT) (𝐿𝑠𝑒𝑔(𝑦, 𝑦̂)); and ii)
the loss term between the soft segmentation of the Student network
and the soft targets of the Teacher network (𝐿𝑠𝑒𝑔(𝑦𝑠, 𝑦̂𝑠)). The total
loss function for training was the weighted sum of these two losses
(𝜆 𝐿𝑠𝑒𝑔(𝑦𝑠, 𝑦̂𝑠) + 𝐿𝑠𝑒𝑔(𝑦, 𝑦̂)), with the hyperparameter 𝜆 consistently set
to 1.

3.4.3. Ablation studies
The Teacher Vertebra Segmentation 3D U-Net underwent training

with and without the application of problem-specific data processing
methods to the input data (𝑇𝑆 and 𝑇𝐵 , respectively). The version of
the Teacher network trained without these methods (𝑇𝐵) served as
a baseline to assess the impact of the data processing methods on
performance. Also, the initial training iteration of the Student 3D U-
Net was performed from scratch (𝑆𝑆 ), employing the same training
procedure and loss function as 𝑇𝑆 and acting as a baseline to evaluate
the impact of KD techniques on the Student network’s performance.
In addition to the original KD implementation with 𝑇 = 4 and 𝑇 = 5
(𝑆𝑇 4 and 𝑆𝑇 5), tests were conducted with 𝑇 = 3 (𝑆𝑇 3) to compare their
performance.

Another KD approach from the literature was explored (Dou et al.,
2020; Holliday et al., 2017; Nekrasov et al., 2019a; Park and Heo,
2020; Liu et al., 2019), involving matching the logits of the Student
and Teacher networks (Fig. 4B). Two implementations were inves-
tigated: i) minimizing the Euclidean distance between Student and
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Fig. 4. Implementation of KD methods from Teacher to Student Vertebra Segmentation 3D U-Net. The top implementation (A) corresponds to the original implementation of KD
using the soft targets and the ground truth and using the loss function of the training of the Teacher Vertebra Segmentation 3D U-Net (𝐿𝑠𝑒𝑔). At the bottom (B), the implementation
that consists in matching the logits of both networks is illustrated, with the two different loss functions that were tested: Euclidean distance (𝐸𝐷) and including the distance map
weights (𝐷𝑖𝑠𝑡𝑀𝑎𝑝).
Table 2
Identification of Vertebra Segmentation 3D U-Net implementations. Data Pro. - whether
problem-specific data processing method were used or not; GT - whether ground truth
was used or not; Weights - whether distance map weights were used or not; Soft Outp.
- whether soft outputs of teacher and student networks were used or not; Logits -
whether the training used the logits; T - temperature value; 𝜆 - weight hyperparameter
on loss function.

ID Data Pro. GT Weights Soft Outp. Logits T 𝜆

𝑇𝐵 No Yes Yes – – – –
𝑇𝑆 a Yes Yes Yes – – – –

𝑆𝑆
a Yes Yes Yes – – – –

𝑆𝑇 3 Yes Yes Yes Yes No 3 1
𝑆𝑇 4 Yes Yes Yes Yes No 4 1
𝑆𝑇 5 Yes Yes Yes Yes No 5 1
𝑆𝐿 Yes No No No Yes – –
𝑆𝐿𝑊 Yes No Yes No Yes – –

GT-Ground truth; T-Temperature.
a Scratch implementation of teacher(𝑇𝑆 )/student(𝑆𝑆 ).

Teacher logits (𝑆𝐿) and an updated version that included distance-
to-border penalization weights (𝑆𝐿𝑊 ). The loss functions for these
approaches involved calculating the Euclidean distance between the
two predictions for 𝑆𝐿 training (𝐸𝐷(𝑇 𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑙𝑜𝑔𝑖𝑡𝑠)) and, for
𝑆𝐿𝑊 training, incorporating distance to vertebra’s border penalization
(𝐸𝐷(𝑇 𝑒𝑎𝑐ℎ𝑒𝑟𝑙𝑜𝑔𝑖𝑡𝑠, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑙𝑜𝑔𝑖𝑡𝑠) ×𝐷𝑖𝑠𝑡𝑀𝑎𝑝).

Table 2 provides a summary of the different Vertebra Segmenta-
tion 3D U-Net implementations, encompassing scratch implementations
of both the Teacher and Student networks trained with the same
methodology.

4. Results

The different implementations of the Vertebra Segmentation 3D U-
Net were compared through an analysis of four benchmark metrics: (i)
DSC to measure the overlap volume; (ii) HD to measure the maximum
distance between predicted and ground truth surfaces; (iii) ASSD to
gauge the average distance between predicted and ground truth sur-
faces in both directions (GT-Surf and Surf-GT); and (iv) failure rate
(Fail) to specify the percentage of vertebrae segmented with a DSC
6

lower than 50%. Additionally, the analysis included the number of
floating-point operations (FLOPs), memory required, inference times
and average segmentation times calculated using a standard CPU (AMD
RyzenTM 5 3600). The carbon (CO2) emissions during the segmenta-
tion of all test scans in the VerSe dataset were also tracked using the
CodeCarbon package (Courty et al., 2023) to enable a comparison of the
environmental footprint with other implementations in the literature.

4.1. VerSe19 and VerSe20 datasets

Table 3 presents the performance metrics of the Student and
Teacher networks and Analysis of Variance (ANOVA) between the
performance of various implementations of the Student network and
the best Teacher network performance. Without the use of problem-
specific data processing methods, the Teacher Vertebra Segmentation
3D U-Net (𝑇𝐵) achieved an average DSC of 80.78%, HD of 16.34 mm,
ASSD GT-Surf of 1.02 mm, ASSD Surf-GT of 0.93 mm, and a failure
rate of 5.28%. The scratch Teacher network (𝑇𝑆 ), trained with problem-
specific data processing methods, demonstrated the best results, with
an average DSC of 88.22%, HD of 7.71 mm, ASSD GT-Surf of 0.59 mm,
ASSD Surf-GT of 0.55 mm, and a failure rate of 2.12%.

The Student scratch implementation (𝑆𝑆 ) achieved an average DSC
of 75.78%, HD of 15.17 mm, ASSD GT-Surf of 2.41 mm, ASSD Surf-
GT of 0.64 mm, and a failure rate of 15.44%. Training the Student
Vertebra Segmentation 3D U-Net with knowledge distillation using
softened outputs (𝑆𝑇 4 and 𝑆𝑇 5) resulted in the best performance, with
𝑆𝑇 4 achieving an average DSC of 84.70%, HD of 9.82 mm, ASSD GT-
Surf of 0.67 mm, ASSD Surf-GT of 0.85 mm, and a failure rate of
5.50%. The 𝑆𝑇 5 approach showed similar performance, with a DSC
of 84.47%, HD of 8.08 mm, ASSD GT-Surf of 0.73 mm, ASSD Surf-
GT of 0.51 mm, and a failure rate of 6.06%. Despite not reaching the
same performance as 𝑆𝑇 4 and 𝑆𝑇 5, the 𝑆𝑇 3 approach improved the
performance of the 𝑆𝑆 implementation, achieving an average DSC of
82.26%, HD of 11.05 mm, ASSD GT-Surf of 0.53 mm, ASSD Surf-GT of
1.20 mm, and a failure rate of 7.05%.

Matching logits (𝑆𝐿) resulted in poor performance, with an average
DSC of 29.60%, HD of 44.78 mm, ASSD GT-Surf of 1.49 mm, ASSD
Surf-GT of 10.90 mm, and a high failure rate of 67.35%. However,
including distance map weights (𝑆 ) significantly improved results,
𝐿𝑊
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Table 3
Quantitative comparison of the different Vertebra Segmentation 3D U-Net on the VerSe datasets. Table reports average values and STD. Inside the square brackets, is shown the
𝑝-value of the ANOVA between each Student network with the best Teacher network (𝑇𝑆 )..

ASSD (mm)

ID DSC (%) HD (mm) GT-Surf Surf-GT Fail (%)

𝑇𝐵 80.78 ± 20.43 16.34 ± 12.04 1.02 ± 1.24 0.93 ± 1.13 5.28Teacher
𝑇𝑆 88.22 ± 13.07 7.71 ± 6.82 0.59 ± 0.78 0.55 ± 1.05 2.12

𝑆𝑆 75.78 ± 28.48 [𝑝 < 0.001] 15.17 ± 16.05 [𝑝 < 0.001] 2.41 ± 5.22 [𝑝 < 0.001] 0.64 ± 1.01 [𝑝 = 0.900] 15.44
𝑆𝑇 3 82.26 ± 21.37 [𝑝 < 0.001] 11.05 ± 9.42 [𝑝 < 0.001] 0.63 ± 0.57 [𝑝 = 0.900] 1.20 ± 2.42 [𝑝 < 0.001] 7.05
𝑆𝑇 4 84.70 ± 17.87 [𝑝 = 0.005] 9.82 ± 8.45 [𝑝 < 0.001] 0.67 ± 0.69 [𝑝 = 0.900] 0.85 ± 1.91 [𝑝 = 0.009] 5.50
𝑆𝑇 5 84.47 ± 21.01 [𝑝 = 0.002] 8.08 ± 6.77 [𝑝 = 0.900] 0.73 ± 1.13 [𝑝 = 0.5974] 0.51 ± 0.87 [𝑝 = 0.900] 6.06
𝑆𝐿 29.60 ± 30.20 [𝑝 < 0.001] 44.78 ± 8.88 [𝑝 < 0.001] 1.49 ± 1.06 [𝑝 < 0.001] 10.90 ± 3.96 [𝑝 < 0.001] 67.35

Student

𝑆𝐿𝑊 78.94 ± 21.45 [𝑝 < 0.001] 14.52 ± 10.63 [𝑝 < 0.001] 1.08 ± 1.54 [𝑝 < 0.001] 1.57 ± 2.17 [𝑝 < 0.001] 8.89

GT-Ground truth surface; Surf-Predicted surface.
Table 4
Quantitative comparison of our implementations with the approaches that used the VerSe datasets, including segmentation times in minutes
(min.) and carbon emission (CO2 Emi.) in grams (g).

Author Seg. Time CO2 Emi. VerSe19 VerSe20

(min.) (g) DSC (%) HD (mm) DSC (%) HD (mm)

Lessmann et al. (2019) – 278.80 85.76 8.20 66.96 –
Payer et al. (2020) – 98.06 89.80 7.08 89.71 6.06
Chen D. et al. – 421.25 86.44 – 91.23 7.15
(Altini et al., 2021)a – – – – 89.17 –
Tao et al. (2022) – 260.68 89.80 6.35 – –
Meng et al. (2023) 26b – 90.84 – 91.11 6.69
𝑇𝑆 (Ours) 3 44.83 89.43 9.36 88.23 7.47
𝑆𝑇 4 (Ours) 2 25.57 82.79 11.95 84.98 9.47
𝑆𝑇 5 (Ours) 2 25.57 84.46 8.60 84.33 7.81

a Uses only 50 scans of VerSe20.
b On Quadro RTX 5000 GPU (16Gb).
A
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Fig. 5. Results of the Tukey HSD test on DSC, HD and ASSD of the different Student
network implementations, when compared with the Teacher network results. A) Tukey
95% confidence interval of DSC; B) Tukey 95% confidence intervals of HD and ASSD.
Due to the HD of the 𝑆𝐿 implementation is too high (37.07) it has not been included
n order not to hinder the visualization of the results.

chieving an average DSC of 78.94%, HD of 14.52 mm, ASSD GT-Surf

f 1.08 mm, ASSD Surf-GT of 1.57 mm, and a failure rate of 8.89%.

he performance of 𝑆 surpassed that of SS.
7

𝐿𝑊 l
The Tukey Honestly Significant Difference (HSD) test allowed to
analyze the difference between the means of the Teacher Vertebra
Segmentation 3D U-Net (𝑇𝑆 ) and each implementation of the Student
network, in order to conclude which implementation presents simi-
lar performance to the Teacher network. According to DSC intervals
(Fig. 5A), none of the implementations obtained similar performance to
the Teacher. On the other hand, according to the other metrics (Fig. 5B)
the performance of the Student network trained using the soft outputs
and the GT with a Temperature of 5 (𝑆𝑇 5) achieved a performance that
is not significantly different from the Teacher network (HD: 𝑝 = 0.90;

SSD GT-Surf: 𝑝 = 0.59; ASSD Surf-GT: 𝑝 = 0.90) since the 95%
confidence intervals on these metrics include the value of 0.

Fig. 6 shows the qualitative segmentation results of two subjects
with different implementations of the Vertebra Segmentation 3D U-
Net. In the case of subject ‘verse809’, the application of KD techniques
enabled the Student network (𝑆𝑇 4 and 𝑆𝑇 5) to segment the cervi-
al vertebrae. Regarding subject ‘verse563’, the scratch Teacher and
tudent networks (𝑇𝑆 and 𝑆𝑆 ) performed an erroneous segmentation

by oversegmenting some vertebrae or segmenting two vertebrae as if
they were the same. Through KD, 𝑆𝑇 4 and 𝑆𝑇 5 networks were able to
orrectly segment the vertebrae, mostly by improving the segmentation
f the scratch implementation of the Student (𝑆𝑆 ).

.2. Benchmark

Table 4 provides a comparative analysis of our method with other
orks that used the VerSe dataset. Using the Teacher Vertebra Segmen-

ation 3D U-Net (𝑇𝑆 ) trained with proposed data processing techniques,
ur algorithm achieved the fourth and fifth positions on the VerSe19
nd VerSe20 datasets, respectively, for individual vertebrae segmen-
ation. The Teacher network demonstrated consistent performance on
oth datasets, with a DSC of 89.43% on VerSe19 and 88.23% on
erSe20, indicating good generalization. These results exhibit a close
pproximation to other state-of-the-art methods in the field. Specif-
cally, on the VerSe19 dataset, our model’s results are marginally

ower, showing only a 1.41% decrease in effectiveness. Similarly, when
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Fig. 6. Qualitative results for patients where KD had the most impact. Red arrows/boxes indicate erroneous segmentation, green arrows/boxes indicate correction of erroneous
segmentation.
Fig. 7. Comparison of our Teacher and Student Vertebra Segmentation 3D U-Net to other 3D U-Nets found in the literature for individual vertebrae segmentation on CT. The
comparison is made considering the number of parameters (green), FLOPs (blue), required memory (yellow), inference time (orange), segmentation time (purple) and CO2 emissions
(red). Arrows point to the shallower network, indicating the difference between the networks in the respective metric (absolute difference and percentage).
Table 5
Comparison of our neural networks architecture with the approaches that used the VerSe datasets, including methods, input size, depth, features per level, number of parameters
(Params) in millions (M), floating-point operations (FLOPs) in millions (M), required memory (Memory Req.) for inference in gigabytes (GB) and inference times (Inf. time) in
seconds (s).

Author Methods Input Size Depth Features Params FLOPs Memory Req. Inf. time
(per level) (M) (M) (GB) (s)

Lessmann et al. (2019) 3D U-Net [128, 128, 128, 2] 4 84-84-84-84 3.44 109.49 15.30 14.66

Payer et al. (2020)
SL: 3D U-Net [64, 64, 128] 5 64-64-64-64-64 2.33 27.38 2.17 1.67
VL: Spatial-Configuration Net – – – – – – –
VS: 3D U-Net [128, 128, 96, 2] 5 64-64-64-64-64 2 – – 4.88

Chen D. et al. SL: 3D U-Net [64, 64, 128, 1] 5 8-16-32-64-128 1.47 27.38 0.36 0.36
VS: 3D U-Net [128, 128, 128, 2] 5 64-128-256-512-512 162.55 109.52 19.06 23.46

Altini et al. (2021) VS: 3D V-Net [64, 64, 64, 1] – – – – – –

Tao et al. (2022) VL: Spine-Transformers – – – – – – –
VS: 3D U-Net [144, 144, 96, 2] 4 64-128-256-512 31.98 80.37 14.38 19.26

Meng et al. (2023) Cyclic SS-VS-VI – – – – – – –

Our Teacher SL: 3D U-Net [64, 64, 128, 1] 4 8-16-32-64 0.37 27.37 0.36 0.25
VS: 3D U-Net [128, 128, 128, 2] 4 16-32-64-128 1.48 45.07 3.60 2.13

Our Student SL: 3D U-Net [64, 64, 128, 1] 4 8-16-32-64 0.37 27.37 0.36 0.25
VS: 3D U-Net [128, 128, 128, 2] 4 8-16-32-64 0.37 45.07 1.81 1.36

SL-Spine Location; VL-Vertebrae Location; VS-Vertebra Segmentation; SS-Spine Segmentation; VI-Vertebra Identification.
evaluated against the VerSe20 dataset, the model demonstrates a slight
reduction in performance, being only 3% less effective than the current
best-performing methods. However, our approach notably reduced seg-
mentation time by 88.46% (3 min vs. 26 min) and CO2 emissions by
54.28% to 89.36% compared to other methods (44.83 g vs. 98.06 g,
260.68 g, 278.80 g and 421.25 g).

The Student network, trained with 𝑇 = 4, achieved a DSC of 82.79%
and HD of 11.95 mm on the VerSe19 dataset, while on the VerSe20
dataset, it achieved a DSC of 84.98% and HD of 9.47 mm. Using 𝑇 = 5
to distill knowledge from the Teacher network, the Student network
achieved a DSC of 84.46% and HD of 8.60 mm on VerSe19 and a
DSC of 84.33% and HD of 7.81 mm on VerSe20. The Student network
demonstrated efficient segmentation time, completing the task in 2 min
8

with an associated CO2 emission of 25.57 g, indicating a 33.33% and
42.96% improvement compared to the Teacher network.

Table 5 presents a comparison of the architecture of our neural
networks with other methods in the literature. Regarding the Spine
Location 3D U-Net, our network has one less depth level (4 vs. 5)
and fewer features per level, totaling 0.35M parameters. This is 1.98M
parameters less than (Payer et al., 2020) and 1.12M parameters less
than Sekuboyina et al. (2021), resulting in a shorter inference time
(0.25 s vs. 1.67 s and 0.36 s). Our Spine Location 3D U-Net exe-
cutes 27.37M FLOPs and requires 0.36 GB of memory, comparable
to Sekuboyina et al. (2021). Payer et al. (2020) shows a similar number
of FLOPs (27.38M) but requires 2.17 GB of memory.
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Fig. 8. Qualitative results of the teacher neural network (𝑇𝑆 ) and student networks (𝑆𝑇 4, 𝑆𝑇 5) on poor quality (A), thoracic kyphosis (B, C), lumbar lordosis (D), angiography (E),
cervical kyphosis (F), osteophytosis (G), instrumentation (H) and myelography (I) scans.
The impact of our methods on the Vertebra Segmentation 3D U-
Net is evident in Fig. 7. The Teacher Vertebra Segmentation 3D U-Net,
composed of 4 levels and 1.48M parameters, represents a reduction of
0.57M to 161.02M parameters (−28.50% to −99.09%). This reduction
leads to a shorter inference time (−56.35% to −90.92%) compared to
other methods. Corresponding to 45.07M FLOPs and requiring 3.60 GB
of memory, our model achieves a reduction between 35.3M and 64.45M
FLOPs (−43.92% to 58.85%) and 10.78 GB to 15.46 GB (−74.97% to
−81.11%) of required memory.

The Student network, with fewer features per level than the
Teacher, comprises 0.37M parameters, 45.07M FLOPs, requires 1.81 GB
of memory, and has an inference time of 1.36 s. This represents
an improvement of 75.00%, 0%, 49.72%, and 36.15% compared to
the Teacher network in the number of parameters, FLOPs, required
memory and inference time, respectively.

5. Discussion

In recent years, efforts have concentrated on enhancing vertebrae
segmentation in CT scans, typically by augmenting the 3D U-Net and
introducing more layers to its architecture. Our approach, inspired
by Sekuboyina et al. (2021), sought to explore whether shallower
networks could rival larger ones commonly employed in vertebrae
segmentation. We developed an algorithm for segmenting individual
vertebrae in CT scans, using 3D U-Net architectures with reduced depth
levels and output features per level. This algorithm comprises two
steps: (i) spine localization on the CT scan aided by a 3D U-Net (Spine
Location 3D U-Net); and (ii) iterative segmentation of the vertebrae
from top to bottom using another 3D U-Net (Vertebra Segmentation
3D U-Net). We investigated the application of KD in the context of
individual vertebrae segmentation on CT scans for the first time, train-
ing a Teacher Vertebra Segmentation 3D U-Net smaller than those
in existing literature and then transferring its knowledge to an even
smaller Student Vertebra Segmentation 3D U-Net. This objective aligns
with the European Commission’s Ethics Guidelines for Trustworthy Ar-
tificial Intelligence (AI), emphasizing the critical evaluation of resource
use and energy consumption throughout the development, deployment,
and usage processes, advocating for less harmful choices (European
Commission and Directorate-General for Communications Networks,
Content and Technology, 2019).

To enhance the performance of smaller neural networks, two strate-
gies were devised to address identified weaknesses in the algorithm
reported by other authors. Vertebrae resampling played a crucial role in
balancing the dataset, enabling the network to accurately segment the
less-represented vertebrae. To tackle the issue of incorrect segmentation
9

of the first vertebrae in CT scans, we proposed cleaning the memory
instance during network training to replicate scenarios involving the
segmentation of the first vertebra. The results highlight the positive
impact of the resampling and memory cleaning techniques on the
performance of the Teacher Vertebra Segmentation 3D U-Net (DSC
without data processing: 80.78%; DSC with data processing: 88.22%),
overcoming challenges associated with the segmentation of cervical
vertebrae and the initial vertebrae in CT scans. The Teacher net-
work achieved performance similar to other methods in the literature
(DSC: 89.43% vs. 90.43% on VerSe19; 88.23% vs. 91.23%), despite
having fewer layers and parameters. Notably, our Teacher network
demonstrated faster inference and segmentation times, less FLOPs and
required memory and a lower associated CO2 emission rate than any
other reported neural network, corresponding to a reduction of up to
90.92%, 88.46%, 58.85%, 88.94% and 89.36% in these metrics, respec-
tively. These results emphasize that achieving the same performance
does not necessarily require larger networks.

To distill knowledge from the Teacher to a Student Vertebra Seg-
mentation 3D U-Net, five approaches were tested, including the use
of soft outputs from both networks and the GT, or matching their
logits. The most effective method involved using the soft outputs with
the GT, particularly employing a Temperature of 4 or 5 to obtain the
soft outputs. Results on VerSe19 and VerSe20 datasets suggest that
knowledge distillation with𝑇 = 5 exhibits consistent performance on
both datasets (84.46% on VerSe19 and 84.33% on VerSe20), while
using𝑇 = 4 shows a 2% difference in DSC between the datasets (82.79%
on VerSe19 and 84.98% on VerSe20). Although not matching the per-
formance of the Teacher network, the results achieved by the Student
network through knowledge distillation are promising, surpassing the
performance of the scratch implementation of the Student (Scratch:
75.78%; KD: 84.70%). Compared with the Teacher’s performance, the
Student network shows a 4% reduction in terms of DSC, but opting for
the Student network results in a 75%, 36%, 33%, and 42.96% reduction
in the number of parameters, inference time, total segmentation time,
and CO2 emissions, respectively. Thus, KD allowed to achieve a balance
between better performance and the Student network architecture,
contributing to reduced environmental impact as outlined in the Euro-
pean Commission’s Ethics Guidelines for Trustworthy AI and suitability
for emergency cases involving low computational devices in medical
institutions.

5.1. Generalization and limitations

From Fig. 6, it is evident that there are challenges in segmenting
cervical vertebrae. This difficulty may arise due to the differences in
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size and shape compared to thoracic and lumbar vertebrae. Addition-
ally, the junction between the C1 and C2 vertebrae is unique, as the
C2 vertebra has the odontoid process that traverses C1 to facilitate the
movement of the human head. This specific anatomy can contribute
to a lower segmentation performance when dealing with these two
vertebrae, as illustrated in the bottom part of Fig. 6.

The Teacher (𝑇𝑆 ) and Student (𝑆𝑇 4, 𝑆𝑇 5) Vertebra Segmentation
3D U-Net demonstrated the ability to segment most of the scans,
irrespective of the pathologies present. Fig. 8 displays the segmen-
tation results from the Teacher and Student networks on specific
test scans from the VerSe dataset, including cases with low image
quality, kyphotic/lordotic conditions, angiographs, myelograms, osteo-
phytosis, and instrumentation. Both the Teacher and Student networks
successfully segmented the vertebrae without major errors in sce-
narios involving low-quality scans, angiograms, and the presence of
osteophytes (Fig. 8A,E,G). However, it is worth noting that 𝑆𝑇 4 under-
egmented some vertebrae in poor-quality scans (as indicated by the
ed arrow in Fig. 8A for 𝑆𝑇 4).

In cases of thoracic kyphosis, the Teacher network demonstrates the
bility to correctly segment the vertebrae, with some errors occurring
hen there are more inclined vertebrae (Fig. 8B of 𝑇𝑆 ). However,

he Student network proves effective in correcting these cases (green
rrows in Fig. 8B for 𝑆𝑇 4 and 𝑆𝑇 5). Concerning cases of lumbar lordosis,
he Teacher network segmented two spinous processes in the displayed
ase (Fig. 8D of 𝑇𝑆 ), a situation that is corrected by the Student network
green arrows in Fig. 8D for 𝑆𝑇 4 and 𝑆𝑇 5). Another pathology present
n the dataset is cervical kyphosis, characterized by a curvature of the
ervical spine in the opposite direction to the considered normal cases
lordosis). In these cases, both the Teacher and Student networks cor-
ectly segmented the vertebrae, despite the aforementioned difficulty
n segmenting the C1-C2 junction (Fig. 8F).

In cases of instrumentation, both the Teacher and 𝑆𝑇 4 networks
xhibited undersegmentation at T11 (orange vertebra in Fig. 8H of 𝑇𝑆
nd 𝑆𝑇 4) and oversegmentation at L4 (purple in Fig. 8H 𝑇𝑆 and 𝑆𝑇 4),
hile 𝑆𝑇 5 oversegmented L2 and L4 (red arrows in Fig. 8H of 𝑆𝑇 5). In

he case of myelograms, 𝑆𝑇 4 correctly segmented the vertebrae, while
he Teacher network and 𝑆𝑇 5 considered the spinal cord to be part of
he vertebra and segmented it as well, which should not have occurred
red arrows in Fig. 8I of 𝑇𝑆 and 𝑆𝑇 5).

Despite its lower performance compared to the Teacher network,
he Student network demonstrated the ability to correctly segment
ome vertebrae that were missegmented by the Teacher, highlight-
ng the capacity of KD methods to empower smaller networks with
nformation from both the Teacher network and the GT.

. Conclusion

The developed algorithm for individual vertebrae segmentation in
T scans, based on 3D U-Net architecture, has demonstrated high
ccuracy while maintaining low memory and computational resource
equirements. The incorporation of data processing techniques during
eural network training proved crucial in enhancing the performance
f smaller networks. Additionally, the application of KD techniques
n the context of individual vertebrae segmentation on CT scans was
xplored, resulting in a smaller 3D U-Net with high performance. The
lgorithm achieved performance comparable to existing methods in the
iterature, making it suitable for deployment in medical devices with
imited computational resources and memory, and potentially aiding
n emergency cases where rapid segmentation is crucial.

For future work, it would be valuable to conduct further investi-
ations on different values for Temperature and loss function weight
yperparameters (𝑇 and 𝜆) in the KD methods proposed. Exploring
he reliability and performance of alternative KD methods, such as
ransferring knowledge using logits and GT, could provide additional
nsights. Additionally, repeating the neural network training with input
T scans clipped to bone range values might be explored to determine
10

f it leads to performance improvement.
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