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réseau neuronal artificiel 

Sebastiano Tomassetti a,*, Pio Francesco Muciaccia a, Mariano Pierantozzi b, Giovanni Di 
Nicola a,c 

a Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche 60100 Ancona, Italy 
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A B S T R A C T   

This study presents a simple correlation for describing the temperature and pressure dependence of the liquid 
dynamic viscosity of low GWP refrigerants, namely HydroFluoroOlefins (HFOs) and HydroChloroFluoroOlefins 
(HCFOs). The model has 3 input parameters (i.e., reduced temperature, reduced pressure, and acentric factor) 
and 6 coefficients which were regressed on 794 experimental data collated from the literature for 7 alternative 
refrigerants (i.e., R1233zd(E), R1234yf, R1234ze(E), R1234ze(Z), R1224yd(Z), R1336mzz(E), and R1336mzz 
(Z)). Moreover, a multi-layer perceptron neural network for the liquid dynamic viscosity of the studied fluids was 
developed from the selected dataset. The artificial network has the same 3 input parameters of the correlation 
and one hidden layer with 19 neurons. The results of the proposed correlation proved that it is an accurate model 
for calculating the dynamic viscosity of the studied liquid refrigerants, despite its simplicity. It ensured an 
average absolute relative deviation of the liquid dynamic viscosity (AARD(η)) of 2.88 %, lower than that given by 
other literature correlations. As expected, the multi-layer perceptron neural network provided the best results for 
all the selected refrigerants (AARD(η) = 0.86 % for the complete dataset), proving that it can be considered a 
reference for the development of other models.   

1. Introduction 

Over the years, to decrease global greenhouse gas (GHG) emissions, 
various international environmental agreements and regulations (e.g., 
Regulation (EU) No. 517/2014 (2014) and UNEP (2016)) have been 
approved to limit the use and production of several conventional 
long-lived GHG refrigerants, such as hydrofluorocarbons (HFCs). 
Consequently, a search for low global warming potential (GWP) alter-
natives, known as "fourth-generation" refrigerants (McLinden and 
Huber, 2020), is currently underway at a worldwide level. In particular, 
McLinden and his co-workers (Domanski et al., 2017; McLinden et al., 
2017; McLinden and Huber, 2020) systematically searched for potential 
low GWP refrigerants by thermodynamic, environmental, and safety 

selection criteria. As a result, they found a limited amount of synthetic 
alternative working fluids, mostly hydrofluoroolefins (HFOs) and 
hydrochlorofluoroolefins (HCFOs), having suitable characteristics for 
various HVAC&R applications. However, a trade-off between suitable 
thermophysical properties and flammability is required for some of 
them. Moreover, few experimental data for the thermodynamic and 
transport properties of the selected potential alternatives are available in 
the literature (Bobbo et al., 2018). Consequently, models to accurately 
describe their properties are necessary. 

Among the thermophysical properties required to design and simu-
late refrigeration systems, the dynamic viscosity (η) of refrigerants is 
essential to accurately evaluate the pressure drop and heat and mass 
transfer in system components, such as compressors and heat ex-
changers. But comprehensive theoretical-based models cannot provide 
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accurate results due to the complex nature of the liquid η. For this 
reason, empirical estimation methods and semi-empirical correlations 
for the liquid η of fluids have been proposed in the literature (Poling 
et al., 2001; Viswanath et al., 2007). Several models based on various 
approaches and characterized by different levels of complexity have 
been specifically developed to describe the viscosity behavior of re-
frigerants and their mixtures, especially in the liquid phase. Many 
models have coefficients specific to each refrigerant that should be 
regressed from experimental data. Some of the main estimation methods 
for refrigerants and their mixtures are as follows: extended corre-
sponding states (ECS) models used in REFPROP 10.0 (Huber, 2018; 
Lemmon et al., 2018); models taking into account the residual entropy 
scaling (Bell et al., 2016; Kang et al., 2022; Liu et al., 2020; Yang et al., 
2021); semi-empirical correlations based on various theories (Assael 
et al., 1995; Latini et al., 2002; Liu et al., 2022; Teja et al., 1999; Wang 
et al., 2007; Yousefi et al., 2019); models based on equations of state 
(EoSs) (Khosharay et al., 2018); artificial neural network (ANN) models 
(Di Nicola et al., 2022; Ghaderi et al., 2013; Wang et al., 2020; Zhi et al., 
2018). Some of the simplest models requiring readily available and 
well-known input parameters are briefly described below. 

Latini and his co-authors (Latini et al., 2002, 1996, 1990) developed 
simple semi-empirical correlations to estimate the liquid dynamic vis-
cosity dependence on the temperature at saturated conditions for 
various refrigerant families and their mixtures. The proposed models 
were obtained by the combination of the Batschinski equation (Bat-
schinski, 1913) modified by Hildebrand (Hildebrand, 1977) with the 
rule of Mathias (Reid et al., 1987). Their latest form is the following: 

1
η = A⋅

(
1

C − Tr
− 1

)

(1)  

with 

A = h⋅Mα⋅Tβ
Br (2)  

where η is in mPa s, Tr = T Tc 
− 1 is the reduced temperature, T is the 

temperature in K, Tc is the critical temperature in K, M is the molecular 
mass in kg kmol− 1, TBr = TB Tc 

− 1 is the reduced normal boiling point 

temperature, TB is the boiling point temperature in K, and C h, α, β are 
regressed coefficients. 

In the original works, Eqs. (1) and (2) coefficients were calculated for 
the methane and ethane refrigerant families, yielding deviations of η 
generally lower than 6 %. A modified version of Eq. (1) has been recently 
proposed by Di Nicola et al. (2022) to model the dynamic viscosity 
dependence on temperature and pressure for low GWP refrigerants in 
the liquid phase. The modified model has the following expression: 

1
η = A⋅

(
1

C − Tr
− 1

)

⋅
1 + D⋅pr

1 + pE
r

(3)  

where pr = p pc 
− 1 is the reduced pressure, p is the pressure in MPa, pc is 

the critical pressure in MPa, D and E are regressed coefficients, and A has 
the expression of Eq. (2). By minimizing the deviations between the 
experimental and calculated data, the following values of the co-
efficients were obtained for the analyzed low GWP refrigerants: C =
1.376, h = 1.387, α = − 0.05275, β = − 4.9, D = 0.9758, and E = 1.139. 
They ensured an average absolute relative deviation of 4.43 % for the 
studied dataset. 

Recently, Liu et al. (2022) presented a semi-empirical model based 
on the Modified Enskog Theory to describe the dynamic viscosity of 
liquid refrigerants, among which different HFOs and HCFOs, and their 
mixtures. The proposed equation is the following: 

η = η0⋅bʹ⋅ρ⋅
(

1
bʹ⋅ρ⋅g(σ)

+B+0.761⋅bʹ⋅ρ⋅g(σ)
)

(4)  

where η0 is the dilute gas viscosity in Pa s, ρ is the number density in 
m− 3, b’ is the covolume in m3 and g(σ) is the radial distribution function. 
Instead, B corresponds to a fluid-specific empirical parameter that de-
pends on temperature and pressure. In the original work, the Chapman- 
Enskog solution of the Boltzmann equation was used to calculate η0 by 
considering that the molecular interactions can be roughly represented 
by the Lennard-Jones model. Instead, the Peng-Robinson EoS was used 
to calculate b’ and g(σ). As highlighted by the authors, the comparison 
with other literature models proved the high accuracy of their simple 
correlation for the selected refrigerants. 

Nomenclature 

Latin symbols 
A Coefficient of Eq. (1), Eq. (3), and Eq. (5) 
B Temperature and pressure-dependent empirical parameter 

of Eq. (4); Coefficient of Eq. (5) 
b’ Covolume (m3) 
C Coefficient of Eq. (1), Eq. (3), and Eq. (5) 
D Coefficient of Eq. (3) and Eq. (5) 
E Coefficient of Eq. (3) and Eq. (5) 
g(σ) Radial distribution function 
h Coefficient of Eq. (2) 
M Molar mass (kg kmol− 1) 
N Number of experimental data 
p Pressure (MPa) 
T Temperature (K) 
u Combined uncertainty 
U Expanded uncertainty 

Greek Symbols 
α Coefficient of Eq. (2) 
β Coefficient of Eq. (2) 
η Dynamic viscosity (mPa s) 
η0 Dilute gas viscosity (mPa s) 
ρ Number density (m− 3) 

ω Acentric factor 

Subscripts/Superscripts 
B Normal boiling point 
c Critical 
calc Calculated 
exp Experimental 
max Maximum 
min Minimum 
r Reduced 

Acronyms 
ANN Artificial neural network 
AARD Average absolute relative deviation 
ECS Extended corresponding states 
EoS Equation of state 
GHG Greenhouse gas 
GWP Global warming potential 
HFC Hydrofluorocarbon 
HCFO Hydrochlorofluoroolefin 
HFO Hydrofluoroolefin 
HVAC&R Heating ventilation air conditioning and refrigeration 
MARD Maximum absolute relative deviations 
OF Objective function  
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In recent years, neural networks and machine learning have become 
increasingly popular in calculating the thermophysical properties of 
fluids. These techniques are particularly well suited for addressing 
complex problems with many interacting variables. For example, recent 
applications of these approaches have included the development of 
predictive models for several thermophysical properties, including sur-
face tension (Gharagheizi et al., 2011; Pazuki et al., 2011; Pierantozzi 
et al., 2021), thermal conductivity (Eslamloueyan and Khademi, 2009; 
Pierantozzi and Petrucci, 2018) and volumetric properties (Taghiza-
dehfard et al., 2019; Yousefi and Karimi, 2013). Different neural net-
works were proposed to model η of refrigerants and their mixtures (Di 
Nicola et al., 2022; Ghaderi et al., 2013; Wang et al., 2020; Zhi et al., 
2018). Apart from the ANN proposed by Ghaderi et al. (2013), they can 
also calculate η for various refrigerants with low GWP. 

This work presents a general correlation specifically developed to 
describe the liquid dynamic viscosity dependence on temperature and 
pressure for low GWP refrigerants. One of the main features of this 
model is its greater simplicity compared to the literature correlations 
described above. In fact, it has a simple expression with only 3 input 
parameters (i.e., reduced temperature, reduced pressure, and acentric 
factor) and 6 coefficients that can be easily implemented with a pro-
gramming language or even a spreadsheet. The coefficients were 
regressed on all the measurements collated from the literature. In 
addition, an ANN model having the same 3 input parameters has been 
proposed to predict the viscosity of the studied refrigerants. The results 
provided by the correlation and ANN were compared with those ob-
tained from literature models. Finally, to ensure higher usability of the 
proposed correlation and ANN, an executable file that is easy to use and 
free for research and teaching is presented. 

2. Data selection and analysis 

Through a literature survey, 794 experimental data of η were 
selected for the following seven low GWP alkenes refrigerants: R1233zd 
(E), R1234yf, R1234ze(E), R1234ze(Z), R1224yd(Z), R1336mzz(E), and 
R1336mzz(Z). The selection of the η data was carried out by following a 
fluid-by-fluid and critical analysis. In particular, we discarded 

experimental points with deviations greater than three sigma with 
respect to the mean values, clearly beyond the common trend, and 
without details on the measurement conditions (i.e., pressures and 
densities). Measurements at Tr > 0.9 were also neglected because simple 
estimation models, such as the ones studied here, generally cannot 
accurately describe the η behavior close to the critical point. 

Table 1 provides the number of points and data references for the 
studied fluids, together with the temperature, pressure, and dynamic 
viscosity ranges. Table 2 summarizes the physical properties of the 
studied refrigerants and their references. Most of the properties reported 
in Table 2 were collated from the studies presenting the EoSs used in 
REFPROP 10.0 (Lemmon et al., 2018). However, the critical properties 
of R1224yd(Z) (Sakoda and Higashi, 2019) and R1336mzz(Z) (Alam 
et al., 2017) were selected from other reliable sources. Instead, since this 
refrigerant is not available in the list of pure fluids included in REFPROP 
10.0, the R1336mzz(E)’s properties reported by Tanaka et al. (2017) 

Table 1 
Liquid dynamic viscosity measurements for the selected low GWP refrigerants together with the relative combined (u(η)) and expanded (U(η)) uncertainties reported in 
the original works.  

Refrigerant Number of selected points (Tmin – Tmax) /K (pmin – pmax) /MPa (ηmin – ηmax) /mPa s Uncertainty of η Reference 

R1233zd(E) 155 243.14 – 393.57 0.15 – 40.0 0.112 – 0.732 u(η) = 3.00 % 
U(η) = 2.00 % 
U(η) = 3.00 % 

Miyara et al. (2018a) 
Meng et al. (2018) 
Cui et al. (2018)        

R1234yf 154 243.17 – 329.98 0.10 – 30.0 0.109 – 0.393 - 
2.60 % ≤ u(η) ≤ 5.20 % 
U(η) = 2.00 % 
U(η) = 2.00 % 
U(η) = 2.00 % 

Hulse (2009) 
Cousins and Laesecke (2012) 
Meng et al. (2013) 
Zhao et al. (2014) 
Dang et al. (2015)        

R1234ze(E) 149 243.17 – 343.16 0.06 – 30.0 0.109 – 0.517 2.70 % ≤ u(η) ≤ 5.20 % 
U(η) = 2.00 % 
U(η) = 2.00 % 
U(η) = 2.50 % 

Cousins and Laesecke (2012) 
Meng et al. (2013) 
Zhao et al. (2014) 
Grebenkov et al. (2009)        

R1234ze(Z) 49 312.45 – 374.12 0.50 – 4.07 0.110 – 0.224 U(η) = 2.19 % Alam et al. (2021)        

R1224yd(Z) 76 303.06 – 384.92 1.00 – 4.05 0.106 – 0.296 u(η) = 2.95 % 
u(η) = 2.95 % 

Miyara et al. (2018b) 
Alam et al. (2019)        

R1336mzz(E) 33 303.20 – 353.43 0.23 – 4.02 0.143 – 0.271 U(η) = 1..28 % 
U(η) = 2.26 % 

Zhang et al. (2022) 
Mondal et al. (2022)        

R1336mzz(Z) 178 253.14 – 394.03 0.09 – 40.0 0.128 – 0.958 U(η) = 1..91 % 
u(η) = 3.04 % 
U(η) = 2.00 % 

Zhang et al. (2022) 
Alam et al. (2018) 
Sun et al. (2018) 

Tot. 794 – – – – –  

Table 2 
Physical properties of the selected refrigerants.  

Refrigerant M/kg 
kmol− 1 

TB/K Tc/K pc/ 
MPa 

ω Reference 

R1233zd 
(E) 

130.496 291.4 439.6 3.624 0.303 Mondéjar 
et al. (2015) 

R1234yf 114.042 243.7 367.9 3.382 0.276 Richter et al. 
(2011) 

R1234ze(E) 114.042 254.2 382.5 3.635 0.313 Thol and 
Lemmon 
(2016) 

R1234ze(Z) 114.042 282.9 423.3 3.531 0.327 Akasaka and 
Lemmon 
(2019) 

R1224yd 
(Z) 

148.487 287.8 428.7a 3.331a 0.322 Akasaka et al. 
(2017) 

R1336mzz 
(E) 

164.056 280.6 403.4 2.766 0.405 Tanaka et al. 
(2017) 

R1336mzz 
(Z) 

164.056 306.6 444.5 2.895b 0.387 Lemmon et al. 
(2018)  

a Value reported by Sakoda and Higashi (2019). 
b Value reported by Alam et al. (2017). 
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were used in this study. 
Fig. 1 shows the behaviors of the η measurements selected for the 

seven analyzed refrigerants as a function of Tr and pr. It is evident from 
Fig. 1 that their liquid viscosity increases as the temperature decreases 
and the pressure increases. However, the effect of pressure on η is 
limited up to moderate pressures; in fact, the values of η are almost 
constant at up to pr = 1 and fixed Tr. 

3. Models for the liquid viscosity of low GWP refrigerants 

In this section, details about the proposed correlation and ANN for 
the liquid dynamic viscosity of the low GWP refrigerants are reported. It 
is worth pointing out that an executable file for calculating η of the 

studied fluids with both the proposed correlation and ANN is provided in 
the supplementary material, together with detailed instructions for its 
use. The executable file is free for research and teaching. 

3.1. Proposed correlation 

Starting from the correlation proposed by Latini and his co-authors 
(Eq. (1)) and its modified version (Eq. (3)), a new correlation that 
combined simplicity and reliability was designed for the η of the studied 
fluids. The development of the model was based on the idea that it 
should have a limited number of coefficients and input physical prop-
erties well-known for the refrigerants under study. To this end, we 
analyzed various equations developed by simplifying Eq. (3) and char-
acterized by only three input properties and six coefficients. In addition 
to Tr and pr, which allow to describe the temperature and pressure 
dependence of the liquid dynamic viscosity, the other properties shown 
in Table 2 were tested. It was found that the correlations with the 
acentric factor provided lower deviations than the others; in particular, 
the following equation ensured the best results: 

η = A⋅(ω + 1)B⋅(C⋅pr +1)⋅
Tr

Tr + D
+ E⋅(ω + 1)F (5)  

where η is in mPa s, ω is the acentric factor, and A, B, C, D, E, and F are 
regressed coefficients. 

The greater simplicity of Eq. (5) compared to Eq. (3) is proved by the 
fact that it involves only three input properties. Although the acentric 
factor was not considered in the models developed by Latini and his co- 
authors, this property was used in the correlations to calculate the vis-
cosity of many fluids. In this regard, the acentric factor appears in the 
model proposed by Lucas (1981) to describe the effect of pressure on 
liquid viscosity. It was also used to calculate the intrinsic molal volume 
in the model for the viscosity of liquids proposed by Przedziecki and 
Sridhar (1985). Moreover, it was adopted to obtain the saturated liquid 
density used in the correlation proposed by Dutt (1990) to estimate the 
kinematic viscosity of petroleum crude oil fractions. 

To take into account the uncertainty of the experimental data in the 
regression of the coefficients, the values of A, B, C, D, E, and F of Eq. (5) 
of the seven refrigerants were obtained by the minimization of the 
following objective function OF for the complete dataset (794 data 
points): 

OF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
ηexp,i − ηcalc,i

)2

Ui(η)2

√
√
√
√ (6)  

where ηexp is the experimental liquid dynamic viscosity, ηcalc is the 
calculated liquid dynamic viscosity, U(η) is the expanded uncertainty, 
and N is the number of experimental data. The values of U(η) reported in 
Table 1 were used in the regression. 

The Levenberg-Marquardt optimization algorithm (Moré, 2006) was 
used for regression. Moreover, fluid-specific coefficients were regressed 
for each refrigerant by minimizing OF. Table 3 presents the obtained 
values. 

3.2. Artificial neural network 

Artificial neural networks (ANNs) are mathematical models consid-
ered a key component of machine learning and artificial intelligence 
because they can recognize complex patterns and adapt their behavior 
on the basis of new information (Hochreiter and Schmidhuber, 1997). In 
particular, they can predict a given dataset using a series of mathe-
matical relationships known as artificial neurons contained in "layers" 
(Rumelhart et al., 1986). Once the model has been trained to identify 
patterns within the data used for its development, the ANN can predict 
the outcome for a completely new dataset. In fact, it can process multiple 
inputs through several hidden layers to finally arrive at an output layer. 

Fig. 1. 3D behaviors of the liquid dynamic viscosity experimental points (η) for 
the low GWP refrigerants as a function of the reduced temperature (Tr) and 
reduced pressure (pr) (a) and their projections to the η - Tr plane (b) and η - pr 
plane (c). The filled and open symbols refer to the measurements at pr < 1 and 
pr ≥1, respectively. 
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This method is particularly useful in cases where a large amount of data 
is available or where performing analysis is made difficult by the lack of 
data (Maren et al., 2014). 

The steps involved in building a neural network include collecting 
the relevant data and then developing the model using training, vali-
dation, and test datasets (Faúndez et al., 2020). The training dataset 
allows the calculation of the network’s parameters so that it can predict 
new values as best as possible. The validation set is used to evaluate the 
network’s internal performance and modify the hyperparameters during 
the tuning process. The test set allows the evaluation of the accuracy of 
the network’s tuning process. In fact, this dataset is not part of the 
training process, so the network is unrelated to this data. In selecting the 
best ANN configuration, it is crucial to analyze the results provided by 
the test set during the training process. 

The neurons’ and layers’ numbers are two of the most important 
elements in choosing the right architecture. They determine the 
complexity of the model and the amount of information the network can 
process. It is essential to select a proper number of neurons that ensures 
accurate results without having a network that is too sensitive to data. In 
fact, having a network with too many neurons may improve its overall 
performance, but then expose the network to the problem of overfitting 
(Oyedotun et al., 2017). In this case, the network fits the training data 
very well, but it cannot describe the underlying pattern of the data, so it 
does not make reliable predictions on unseen data. The layers’ number 
determines how the inputs are connected to the output nodes. Despite 
multiple hidden layers can improve the ANN accuracy, it was shown that 
an increase in their number can enhance the network’s susceptibility to 
convergence on suboptimal local minima, which can detrimentally 
affect the generalization capabilities of the model (Karsoliya, 2012; Liu 
et al., 2007). Another key element is the activation function which de-
termines the level of interaction between the neurons in the network. 
This function is used to define the relationship between the input and 
output variables of a network. In other words, it decides how the output 
node responds to a particular input. Some common activation functions 
used in ANNs are the logistic sigmoid, rectified linear unit, hyperbolic 
tangent, and tanh. 

Once the aspects described above have been defined, the next step is 
to build and train the model. The ANN training usually involves feeding 
the neural network with input data, observing how the system responds, 
and making adjustments to ensure the output is as close as possible to 
the desired value. This process is repeated several times until the output 
produced by the network matches the desired result. 

To ensure a good trade-off between computational complexity and 
model performance, an ANN with only one hidden layer, three input 
parameters, and one output parameter (i.e., the liquid dynamic viscos-
ity) was chosen as the network configuration for calculating η for the 

studied liquid refrigerants. The same input properties of Eq. (5) were 
selected as input parameters: the reduced temperature (Tr), the reduced 
pressure (pr), and the acentric factor (ω). Since viscosity is a non-linear 
phenomenon with respect to temperature, the sigmoid was chosen as the 
activation function, which can guarantee an accurate response in non- 
linear problems. To have low deviations without the problem of over-
fitting, it was decided to have a network with one hidden layer and the 
fewer number of neurons that could guarantee good performance. As 
can be seen from Fig. 2, the ANN with 19 neurons in the hidden layer 
provided the best performance on all the datasets during the training 
process. The dataset was divided using random allocation into three 
subsets for training, validation and testing purposes. The percentage of 
instances in each subset is 80 % for training, 10 % for validation, and 10 
% for testing. 

Therefore, as shown in Fig. 3, the ANN with a hidden layer with 19 
neurons, three input parameters (Tr, pr, ω), and one output layer (η) was 
selected as the network architecture to calculate η for the studied fluids. 

4. Results and discussions 

Table 3 shows the results obtained with the proposed correlation (Eq. 
(5)) using the coefficients regressed for the complete dataset and for 
each refrigerant. The coefficients obtained from all the selected data 
gave an average absolute relative deviation of η (AARD(η)) equal to 2.88 
%. Instead, as expected, the fluid-specific coefficients ensured more 
accurate results, yielding AARD(η) always lower than 2 %. The AARD (η) 
is defined as: 

AARD(η) = 100
N

∑N

i=1

⃒
⃒ηexp,i − ηcalc,i

⃒
⃒

ηexp,i
(6a)  

where ηexp is the experimental liquid dynamic viscosity, ηcalc is the 
calculated liquid dynamic viscosity, and N is the number of experi-
mental data. 

In general, the results reported in Table 3 are satisfactory and show 
uniformity in terms of coefficients and deviations between the various 
fluids under investigation, even considering the different number of 
experimental data points collated for each fluid. Fig. 4 shows the con-
sistency between η calculated from Eq. (5) with the coefficients obtained 
for the complete dataset and the experimental data for the studied 
refrigerants. 

Going into more detail with the result analysis, the AARD(η) and 
maximum absolute relative deviations (MARD(η)) for each fluid pro-
vided by the proposed correlation (with the coefficients regressed for the 
overall dataset) are reported in Table 4. This table also presents the 
results of Eq. (3), Eq. (4), the proposed ANN, and REFPROP 10.0. For Eq. 
(3), the coefficients for the alternative refrigerants proposed by Di 

Table 3 
Coefficients and deviations of Eq. (5).  

Refrigerant Number of selected points A B C D E F AARD(η)/% 
MARD(η)/% 

R1233zd(E) 155 0.14067 4.6090 0.01285 − 0.33121 − 0.16900 5.0648 1.79 
5.99 

R1234yf 154 0.17383 5.3220 0.00956 − 0.28702 − 0.20340 5.7907 1.15 
5.14 

R1234ze(E) 149 0.11654 3.8954 0.01580 − 0.39374 − 0.14348 4.5006 1.65 
6.41 

R1234ze(Z) 49 0.16957 5.1085 0.00979 − 0.28142 − 0.19696 5.5656 1.31 
6.68 

R1224yd(Z) 76 0.14626 4.6101 0.02160 − 0.34027 − 0.17692 5.1898 1.34 
5.00 

R1336mzz(E) 33 0.14161 4.4002 0.01237 − 0.34759 − 0.16834 4.9558 0.90 
1.99 

R1336mzz(Z) 178 0.12528 4.1483 0.01324 − 0.36619 − 0.16200 4.4980 1.15 
5.36 

Overall 794 0.18104 3.7005 0.01228 − 0.33654 − 0.23335 3.9643 2.88 
14.66  
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Nicola et al. (2022) were used in the calculation. For Eq. (4), the 
fluid-specific B coefficients available in the original work (Liu et al., 
2022) were considered here. For R1336mzz(E), it was impossible to 
perform calculations for Eq. (4) because of the lack of its B coefficients. 
Moreover, Table 4 does not show the REFPROP 10.0 results for 
R1336mzz(E) because this fluid is not yet available on the software 
routines. Therefore, it is worth noting that, unlike the proposed corre-
lation, REFPROP 10.0 and Eq. (4) do not allow calculating η of all the 
studied refrigerants. 

Comparing Table 3 and Table 4, it is worth noting that, even when 
the complete dataset is regressed, deviations for Eq. (5) are similar to the 

ones obtained when the fluids were regressed individually, with the only 
exception of R1234ze(Z). This outcome confirms the validity of the 
model. 

Analyzing in detail the results achieved with the presented correla-
tion, Figs. 5 and 6 show deviations between the selected measurements 
and the calculations obtained from Eq. (5) using the coefficients ob-
tained from the complete dataset versus reduced temperatures and 
pressures, respectively. From these figures, higher deviations for 
R1234ze(Z) appear for the proposed equation, both when the analysis is 
performed regarding reduced temperatures and reduced pressures. 
Generally, experimental data for R1234ze(Z) were obtained at low 

Fig. 2. AARD(η) for the complete, training, validation, and test datasets as a function of the neurons’ number.  

Fig. 3. Schematic diagram of the proposed ANN model. Tr is the reduced temperature, pr is the reduced pressure, ω is the acentric factor, and η (mPa s) is the liquid 
dynamic viscosity. 
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reduced pressures and high reduced temperatures. However, excluding 
R1234ze(Z), all fluids’ deviations are well within 10 %. 

Comparing the different correlation performances, however, it is 
evident that the proposed model (Eq. (5)) gives, on average, better re-
sults than the ones already present in the open literature (Eqs. (3) and 
(4)). On the other hand, REFPROP 10.0 provided an accurate viscosity 
description for the refrigerants available in the software. This result was 
expected since it uses models derived from their experimental data. 

Regarding the results obtained with the ANN, Table 4 shows that this 

model is undoubtedly the most accurate and can therefore be considered 
a useful reference for the other methods and even a lower limit for the 
deviations provided by a model. In fact, its results are promising, 
especially considering the dataset size and the limited amount of input 
parameters used to train the model. The relatively low values of MARD 
(η) for all the fluids prove that the network works well on the data used 
for training and the data used to test its prediction capability. Further-
more, by comparing the results of the ANN with that reported in Table 3, 
it can be seen that the network ensured even better results than those 
obtained from Eq. (5) with fluid-specific coefficients. this study, an 
empirical correlation and an ANN were proposed to represent the liquid 
dynamic viscosity dependence on temperature and pressure for low 
GWP refrigerants. Both models have only three input parameters (i.e., 
reduce temperature, reduce pressure, and acentric factor) and were 
developed using 794 experimental data collated from the literature for 7 
refrigerants. 

An accurate description of the dynamic viscosity for the studied 
liquid refrigerants was ensured by the proposed correlation using the 
coefficients regressed from all the selected experimental data (AARD (η) 
of 2.88 % for the complete dataset). In this regard, the proposed model 
provided lower deviations than other literature correlations, such as a 
modified version of the correlation proposed by Latini and his co- 
authors (Latini et al., 2002, 1996, 1990) (AARD (η) = 4.43 %) and the 
correlation proposed by Liu et al. (2022) (AARD (η) = 3.30 %). Instead, 
REFPROP 10.0 gave better results than the correlation (AARD (η) = 1.46 
%). However, REFPROP 10.0 did not allow calculating η for R1336mzz 
(E) because no models for this refrigerant are available on the software 
routines. Therefore, the proposed correlation can be considered a reli-
able tool for calculating the liquid dynamic viscosity of the analyzed low 
GWP refrigerants, especially for the less-known refrigerants, such as 
R1336mzz(E). In fact, unlike other literature models, it ensures a good 
trade-off between accuracy and simplicity for these refrigerants. 

From the training process, it was found that a single-layer ANN with 

Fig. 4. Liquid dynamic viscosities (η) obtained from Eq. (5) using the coefficients regressed for the complete dataset versus the experimental data for the studied 
refrigerants. 

Table 4 
AARD(η)% and MARD(η)% given by Eq. (3), Eq. (4), Eq. (5), the artificial neural 
network (ANN), and REFPROP 10.0 for each fluid and the complete dataset.  

Refrigerant Number 
of 
selected 
points 

Eq. (3) 
AARD 
(η)/% 
MARD 
(η)/% 

Eq. (4) 
AARD 
(η)/% 
MARD 
(η)/% 

Eq. (5) 
AARD 
(η)/% 
MARD 
(η)/% 

ANN 
AARD 
(η)/% 
MARD 
(η)/% 

REFPROP 
10.0 
AARD 
(η)/% 
MARD 
(η)/% 

R1233zd 
(E) 

155 4.42 
21.07 

8.42 
17.08 

2.29 
8.08 

0.69 
4.46 

1.63 
9.22 

R1234yf 154 2.91 
13.29 

2.06 
8.96 

1.35 
5.62 

1.05 
5.29 

1.35 
6.85 

R1234ze 
(E) 

149 7.85 
18.95 

1.72 
4.60 

3.86 
8.76 

1.25 
5.21 

1.87 
6.69 

R1234ze 
(Z) 

49 5.20 
13.93 

1.83 
6.07 

9.52 
14.66 

0.97 
2.99 

1.27 
4.01 

R1224yd 
(Z) 

76 3.39 
13.38 

1.79 
7.24 

2.56 
7.77 

0.97 
5.35 

1.44 
4.37 

R1336mzz 
(E) 

33 2.90 
8.51 

- 
- 

3.53 
5.51 

0.73 
2.01 

- 
- 

R1336mzz 
(Z) 

178 3.38 
13.45 

2.28 
8.22 

2.06 
8.14 

0.46 
3.43 

1.13 
5.14 

Overall 794 4.43 
- 

3.30 
- 

2.88 
- 

0.86 
- 

1.46 
-  
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19 neurons provided the best results. In particular, this network archi-
tecture gave the lowest deviations for all the studied fluids with respect 
to the other studied models (AARD (η) = 0.86 % for the whole dataset). 
This outcome proved that the ANN is undoubtedly the most accurate 
model and can be considered a good reference for developing other 
models. 

Finally, it is worth remarking that, to allow researchers and scholars 
to use the models presented in this work, an executable file for calcu-
lating the dynamic viscosity of the studied low GWP refrigerants with 
both the proposed correlation and ANN is provided in the supplemen-
tary material. 
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Pierantozzi, M., Mulero, Á., Cachadiña, I., 2021. Surface tension of liquid organic acids: 
an artificial neural network model. Molecules. 26, 1636. 

Pierantozzi, M., Petrucci, G., 2018. Modeling thermal conductivity in refrigerants 
through neural networks. Fluid. Phase Equilib. 460, 36–44. https://doi.org/ 
10.1016/j.fluid.2017.12.027. 

Poling, B.E., Prausnitz, J.M., O’Connell, J.P., 2001. The properties of gases and liquids, 
5th ed. McGraw-Hill. 

Przedziecki, J.W., Sridhar, T., 1985. Prediction of liquid viscosities. AIChe J. 31, 
333–335. 

Regulation (EU) No. 517/2014, 2014. Regulation (EU) No 517/2014 of the European 
Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases 
and Repealing Regulation (EC) No 842/2006. Official Journal of the European 
Union. 

Reid, R.C., Prausnitz, J.M., Poling, B.E., 1987. The properties of gases and liquids. 
Richter, M., McLinden, M.O., Lemmon, E.W., 2011. Thermodynamic properties of 

2,3,3,3-tetrafluoroprop-1-ene (R1234yf): vapor pressure and p – ρ – T measurements 
and an equation of State. J. Chem. Eng. Data 56, 3254–3264. https://doi.org/ 
10.1021/je200369m. 

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back- 
propagating errors. Nature 323, 533–536. 

Sakoda, N., Higashi, Y., 2019. Measurements of PvT properties, vapor pressures, 
saturated densities, and critical parameters for cis-1-chloro-2, 3, 3, 3-tetrafluoro-
propene (R1224yd (Z)). J. Chem. Eng. Data 64, 3983–3987. 

Sun, Y., Li, X., Meng, X., Wu, J., 2018. Measurement and correlation of the liquid density 
and viscosity of HFO-1336mzz (Z)(cis-1, 1, 1, 4, 4, 4-Hexafluoro-2-butene) at high 
pressure. J. Chem. & Eng. Data 64, 395–403. 

Taghizadehfard, M., Hosseini, S.M., Pierantozzi, M., Alavianmehr, M.M., 2019. 
Predicting the volumetric properties of pure and mixture of amino acid-based ionic 
liquids. J. Mol. Liq. 294, 111604. 

Tanaka, K., Ishikawa, J., Kontomaris, K.K., 2017. Thermodynamic properties of HFO- 
1336mzz (E)(trans-1, 1, 1, 4, 4, 4-hexafluoro-2-butene) at saturation conditions. Int. 
J. Refrig. 82, 283–287. 

Teja, A.S., Smith, R.L., King, R.K., Sun, T.F., 1999. Correlation and prediction of the 
transport properties of refrigerants using two modified rough hard-sphere models. 
Int. J. Thermophys. 20, 149–161. 

Thol, M., Lemmon, E.W., 2016. Equation of State for the Thermodynamic Properties of 
trans-1, 3, 3, 3-Tetrafluoropropene [R-1234ze (E)]. Int. J. Thermophys. 37, 28. 

UNEP, 2016. Amendment to the montreal protocol on substances that deplete the ozone 
layer (Kigali Amendment). Int. Leg. Mater. https://doi.org/10.1017/ilm.2016.2. 

Viswanath, D.S., Ghosh, T.K., Prasad, D.H.L., Dutt, N.V.K., Rani, K.Y., 2007. Viscosity of 
liquids: theory, estimation, experiment, and Data. Springer Science & Business 
Media. 

S. Tomassetti et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0002
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0002
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0002
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0003
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0003
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0003
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0004
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0004
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0004
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0005
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0005
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0005
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0006
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0006
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0006
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0007
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0007
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0008
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0008
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0009
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0009
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0009
https://doi.org/10.1016/j.ijrefrig.2018.03.027
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0011
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0011
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0011
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0012
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0012
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0012
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0013
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0013
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0013
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0014
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0014
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0014
https://doi.org/10.1016/J.IJREFRIG.2017.08.019
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0016
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0016
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0017
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0017
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0018
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0018
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0018
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0019
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0019
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0019
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0020
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0020
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0020
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0021
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0021
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0021
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0022
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0023
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0023
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0025
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0025
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0025
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0026
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0026
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0026
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0027
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0027
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0028
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0028
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0028
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0029
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0029
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0030
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0030
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0030
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0031
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0031
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0031
http://www.nist.gov/srd/nist23.cfm
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0033
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0033
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0034
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0034
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0034
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0035
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0035
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0035
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0037
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0037
https://doi.org/10.1038/ncomms14476
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0039
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0039
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0040
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0040
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0040
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0041
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0041
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0041
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0042
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0042
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0042
https://doi.org/10.18462/iir.hfo.2018.1139
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0044
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0044
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0044
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0045
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0045
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0045
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0045
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0046
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0046
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0046
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0047
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0047
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0048
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0048
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0048
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0049
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0049
https://doi.org/10.1016/j.fluid.2017.12.027
https://doi.org/10.1016/j.fluid.2017.12.027
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0051
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0051
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0052
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0052
https://doi.org/10.1021/je200369m
https://doi.org/10.1021/je200369m
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0056
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0056
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0057
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0057
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0057
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0058
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0058
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0058
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0059
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0059
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0059
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0060
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0060
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0060
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0061
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0061
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0061
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0062
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0062
https://doi.org/10.1017/ilm.2016.2
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0064
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0064
http://refhub.elsevier.com/S0140-7007(24)00168-3/sbref0064


International Journal of Refrigeration 164 (2024) 95–104

104

Wang, X., Li, Y., Yan, Y., Wright, E., Gao, N., Chen, G., 2020. Prediction on the viscosity 
and thermal conductivity of hfc/hfo refrigerants with artificial neural network 
models. Int. J. Refrig. 119, 316–325. 

Wang, X., Wu, J., Liu, Z., 2007. Viscosity modeling of several HFC refrigerants using the 
friction theory. Fluid. Phase Equilib. 262, 251–263. 

Yang, X., Xiao, X., May, E.F., Bell, I.H., 2021. Entropy scaling of viscosity—III: 
application to refrigerants and their mixtures. J. Chem. Eng. Data. 

Yousefi, F., Hosseini, S.M., Hamidi, K., Pierantozzi, M., 2019. Viscosities of liquid 
refrigerants from a rough hard-sphere theory-based semi-empirical model. Int. J. 
Thermophys. 40, 1–18. 

Yousefi, F., Karimi, H., 2013. Application of equation of state and artificial neural 
network to prediction of volumetric properties of polymer melts. J. Ind. Eng. Chem. 
19, 498–507. 

Zhang, X., Zhao, G., Jianguo, Y., Suxia, M., 2022. Experimental investigation of saturated 
liquid kinematic viscosity and surface tension of two isomeric refrigerants trans-1, 1, 
1, 4, 4, 4-hexafluoro-butene (R1336mzz (E)) and cis-1, 1, 1, 4, 4, 4-hexafluoro- 
butene (R1336mzz (Z)) by surface light scatteri. Fluid. Phase Equilib., 113468 
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