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Abstract: State-dependent non-invasive brain stimulation (NIBS) informed by electroencephalogra-
phy (EEG) has contributed to the understanding of NIBS inter-subject and inter-session variability.
While these approaches focus on local EEG characteristics, it is acknowledged that the brain exhibits
an intrinsic long-range dynamic organization in networks. This proof-of-concept study explores
whether EEG connectivity of the primary motor cortex (M1) in the pre-stimulation period aligns
with the Motor Network (MN) and how the MN state affects responses to the transcranial magnetic
stimulation (TMS) of M1. One thousand suprathreshold TMS pulses were delivered to the left M1 in
eight subjects at rest, with simultaneous EEG. Motor-evoked potentials (MEPs) were measured from
the right hand. The source space functional connectivity of the left M1 to the whole brain was assessed
using the imaginary part of the phase locking value at the frequency of the sensorimotor µ-rhythm in
a 1 s window before the pulse. Group-level connectivity revealed functional links between the left
M1, left supplementary motor area, and right M1. Also, pulses delivered at high MN connectivity
states result in a greater MEP amplitude compared to low connectivity states. At the single-subject
level, this relation is more highly expressed in subjects that feature an overall high cortico-spinal
excitability. In conclusion, this study paves the way for MN connectivity-based NIBS.

Keywords: functional connectivity; Motor Network; electroencephalography (EEG); transcranial
magnetic stimulation (TMS); motor evoked potential (MEP); corticospinal excitability; brain state

1. Introduction

For over three decades, non-invasive brain stimulation (NIBS) has been used to mod-
ulate brain activity in healthy subjects and patients [1–3] for scientific, diagnostic, and
therapeutic purposes. However, the effects are highly variable, thus limiting its clinical
use [4]. Recently, it has become clear that to reduce the variability of the stimulation effects
not only between subjects but also between sessions, the internal state of the brain before
NIBS must be taken into account [5–8]. For this purpose, the integration of NIBS with
techniques which is able to non-invasively measure neuronal activity, such as electroen-
cephalography (EEG) [9,10], has offered a window into the state of the brain before the

Biomedicines 2024, 12, 955. https://doi.org/10.3390/biomedicines12050955 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines12050955
https://doi.org/10.3390/biomedicines12050955
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-6481-3743
https://orcid.org/0000-0002-0807-6005
https://orcid.org/0000-0002-9595-6923
https://orcid.org/0000-0001-9507-9505
https://orcid.org/0009-0006-8183-1376
https://orcid.org/0000-0001-8372-3615
https://orcid.org/0000-0002-0452-1108
https://doi.org/10.3390/biomedicines12050955
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines12050955?type=check_update&version=1


Biomedicines 2024, 12, 955 2 of 15

stimulation [11]. This brain state has largely been assessed by looking at the spectral
characteristics of the EEG signal at the channels near the stimulation site [12]. In partic-
ular, the phase of the sensorimotor 9–13 Hz µ-rhythm has been considered an indicator
of cortical excitability that determines the response to transcranial magnetic stimulation
(TMS) [11,13,14], although the observed phase effects vary with varying stimulation and
analysis parameters [15–17].

In parallel to advances in EEG-informed NIBS, neuroscience has seen a paradigmatic
shift from a modular view, in which different functional units act as independent processors,
to a large-scale network view, in which dynamic interactions between areas of the brain
are crucial for cognition and behavior [18]. While functional magnetic resonance studies
have been seminal in this regard [19], non-invasive electrophysiology has contributed
to this view by the characterization of neuronal networks in terms of their oscillatory
fingerprints [20–27], i.e., a view largely supported by the communication through coherence
(CTC) hypothesis [28–30]. In this framework, a brain state can be described as the evolving
dynamics of one or more large-scale networks [31], including the so-called resting-state
networks [32], that constrain ongoing activity in the absence of any externally imposed task.
Several studies have investigated the effects of invasive and non-invasive stimulation on
resting-state networks and, more in general, on remote regions connected to the stimulation
site [33–35]. However, while the techniques for connectomic neuromodulation studies
appear mature [36–41], scarce evidence has been provided, so far, for the impact of network
dynamics on stimulation effects, explicitly using functional connectivity approaches [42].
In addition, so far, only one study [43] has investigated sensor-level functional connectivity
as a feature for brain-state dependent stimulation, although the accuracy in space and time
is limited by the sensor-level analysis and by the real-time software implementation.

The aim of this work is to bridge the gap between the study of brain networks with
non-invasive electrophysiology and brain state-dependent stimulation, with the long-term
goal of systematically using EEG-derived brain networks to drive the stimulation in space
and time with millimeter and millisecond resolutions [44,45]. Here, we provide a proof-
of-concept study that fast-dynamic brain networks [44] can be derived from combined
EEG-TMS data in the pre-stimulation resting period and that the momentary connectivity
state of such networks is related to the stimulation endpoint. Specifically, our proof-of-
concept study assessed, using data from a previous study [46] and the phase-locking of the
oscillatory µ-rhythm, the functional connectivity between the primary motor cortex (M1)
signal and the signals at all other brain locations, and its putative relation to the amplitude
of motor-evoked potentials (MEPs). The choice of the µ-rhythm frequency for our analysis
is driven by the observation that ongoing oscillations in the Motor Network (MN) at rest
are expected to synchronize at this frequency [47]. Specifically, we hypothesized that (1) the
pattern of long-range functional connectivity of the primary motor cortex (M1) in the pre-
stimulation period largely overlaps the spatial topography of the MN; (2) the connectivity
state of this network impacts the effect of TMS pulses delivered at M1 on a trial-by-trial
basis; and (3) such an impact is augmented if not only connectivity properties but also local
properties are considered.

2. Material and Methods
2.1. Participants and Experiment

Eight right-handed adults (5 females, 3 males; mean ± SD age 23.5 ± 3.3 years) with
no history of neurological and/or psychiatric pathologies were enrolled and correctly
completed the study. All participants gave written informed consent before participation.
The study was approved by the local ethics committee at the University of Tübingen and
conducted in accordance with the Declaration of Helsinki. Data were acquired at the
University of Tübingen using a concurrent EEG–TMS setup in a single session for each
participant (duration about 3 h). EEG and electromyography (EMG) were simultaneously
recorded (sampling rate 5 kHz). EEG was recorded using a TMS-compatible 128-channel
cap (EasyCap BC-TMS-128, EasyCap, Herrsching, Germany) positioned according to the
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International 10–5 system. EMG was recorded from the abductor pollicis brevis (APB)
and first dorsal interosseous (FDI) muscles of the right hand in a bipolar belly-tendon
montage. A TMS stimulator (PowerMAG Research 100, MAG & More, Munich, Germany)
was used to deliver biphasic pulses through a figure-of-eight coil (PMD70-pCool, with a
70 mm winding diameter, MAG & More, Munich, Germany). The relative head and coil
positions were tracked using optical neuronavigation (Localite GmbH, Bonn, Germany).
After the preparation of EEG, EMG, neuronavigation, and pinpointing the EEG electrodes,
the hand representation of the left M1 (lM1) was targeted, orienting the coil such that
the strongest field was induced in a posterior-lateral to anterior-medial direction. The
motor hotspot was defined as the position and orientation of the coil requiring the smallest
stimulation intensity to evoke MEPs in either of the two hand muscles. The resting motor
threshold (rMT) was defined as the minimum stimulation intensity able to elicit MEPs
with peak-to-peak amplitudes > 50 µV in 50% of test pulses [3]. During the experiment,
participants were seated comfortably and fixated on a cross located approximately 1 m
in front of them. One thousand single TMS biphasic pulses were then applied in a single
session with an interstimulus interval of 2 ± 0.25 s at a stimulation intensity of 110% rMT.
A different analysis using the same dataset was previously reported [46].

2.2. Data Processing

EEG data were down-sampled to 1 kHz and split into windows ranging from −1004
to −4 ms relative to the TMS pulse. A Laplacian-based trend detection was applied to
remove slow trends in the data, and noisy or bad channels/trials were identified and
removed. A subject-level independent component analysis (ICA) was then performed
using the FastICA technique [48] in the subspace generated by the 35 largest principal
vectors. Further details are given in [46] and in the preprocessing source code at www.
github.com/bnplab/causaldecoding, accessed on 2 October 2021.

For each independent component (IC), the channel-level topography and power
spectra were calculated and visually inspected by two experienced researchers; ICs with
a clear artifactual hallmark were discarded. The remaining ICs were projected to the
source space using the eLORETA spatial filter [49] to identify the corresponding neural
generators. ICs whose source space topography showed maxima over the motor cortices
were considered for the identification of the individual µ-rhythm frequency, defined as the
frequency in the 9–13-Hz range at which a maximum in the IC power spectrum occurs.
Among all Ics, only those with a clear peak at the µ frequency and a motor signature in the
source space were used to reconstruct channel-level cleaned signals for further analysis.
Specifically, Ics used to reconstruct cleaned signals had a ratio of at least 5 between the µ

power and beta power in their spectral representation, and when projected to the source
space, they were localized in motor areas (e.g., primary motor cortices). This step allowed
us to disentangle the contribution of µ-rhythm activity from the original signal.

EMG data were divided into stimulus-locked trials ranging from −500 s to 500 ms
relative to the TMS pulse. First, slow drifts were removed by trendline fitting; then, 50 Hz of
noise was removed [46]. The visual inspection of EMG data allowed us to remove bad trials,
such as those presenting clear EMG activity before the pulse. TMS-related artifacts were
removed by relying on an exponential fitting. For each trial and channel, the peak-to-peak
MEP amplitude was estimated as the EMG signal range of the manually defined window
of data that contain the MEP [46]. Finally, an across-trials principal component analysis
was applied to the log-transformed MEP amplitudes estimated from the FDI and APB
muscles; the first principal component was used in the subsequent analyses as it explained
99.3 ± 0.5% of the variance (mean and standard deviation across subjects).

2.3. Source Estimation

Source estimation from the cleaned channel-level signals was performed with the
FieldTrip toolbox [50] by relying on a source model based on a standard template composed
of 15,684 uniformly distributed sources in the Montreal Neurological Institute (MNI) space.

www.github.com/bnplab/causaldecoding
www.github.com/bnplab/causaldecoding
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A non-linear transformation was applied to realign individual EEG sensor positions to
the nearest vertex of the scalp mesh [51]. The geometrical mapping of sources to sensors
(namely, the lead field matrix) was derived by solving the electromagnetic forward problem
using a 3-shell boundary element model (BEM) between the vertices of the standard
template and the realigned electrodes with the conductivity values of the head tissues
set to 0.33 S/m for the skin, 0.0041 S/m for the bone, and 0.33 S/m for the brain. The
dimensionality of the obtained lead fields was reduced for each voxel by retaining the
source orientation, explaining most of the variance. Then, the reduced lead field matrix
was used to derive the spatial filter operator by the eLORETA method [49]. Finally, the
cleaned EEG signals were projected to the source space with the spatial filter matrix, thus
obtaining a time-course for each of the 15,684 sources.

2.4. Connectivity Analysis

A seed-based connectivity analysis was performed based on the reconstructed source’s
time-courses. The seed was chosen according to the position of lM1 in the MNI space
[−45.9 −9.9 54.6]. The time-courses of the seed and target sources, i.e., all the other
15,683 sources, in the 1 s window prior to the stimulation, were band-pass-filtered around
the individual µ-rhythm frequency, with a bandwidth of 2 Hz, using a two-pass fourth-order
Butterworth filter. The filtered time-courses were padded at both ends by 64 ms and then
transformed into their analytic representations by means of the Hilbert transform. Padding
was necessary to reduce the edge effects of the filter and the Hilbert transform. Specifically,
padding was performed by applying an autoregressive model (Yule-Walker, order 30)
in which coefficients were generated from the filtered time-courses. Given the analytic
signals of the seed ΣS( f , t) and of each target ΣT( f , t), we extracted the spectral phases
ϕS( f ) = arg{ΣS( f )} and ϕT( f ) = arg{ΣT( f )} where arg{·} represents the argument
of a complex-valued number. Finally, the imaginary part of the phase-locking value
(iPLV) [52] was estimated as iPLVS,T( f ) =

∣∣∣ 〈I{ exp
{

ı ∆ϕS,T( f )
} } 〉 ∣∣∣ where |·| denotes

the absolute value, I{·} is the imaginary part of a complex-valued number, ⟨ · ⟩ indicates
expectation value across data epochs and the phase difference ∆ϕS,T( f ) was calculated as
∆ϕS,T( f ) = ϕS( f )− ϕT( f ). We relied on the iPLV metric because we aimed to characterize
connectivity through the phase coupling of neuronal oscillations in line with the CTC
hypothesis [29,30] with a robust approach to EEG mixing artifacts [26].

The procedure described above led to an individual seed-based functional connectivity
map at the µ-rhythm frequency. The group-averaged functional connectivity map was then
computed to identify sources functionally connected to the left M1 in the following termed
connectivity Regions of Interest (cROIs) that were considered for subsequent analysis.

Of note, we explicitly decided not to a priori select trials with a high signal-to-noise
ratio, a procedure employed, e.g., by Zrenner et al. [11], for phase detection to avoid
potential biases in connectivity analysis or subsequent analyses.

2.5. Relation between Functional Connectivity and Motor-Evoked Potential

To assess if the observed functional connectivity is related to the amplitude of the
MEP signal at the individual level, for each of the cROIs, we split the trials into two subsets
according to the median of the iPLV values: high-connectivity (HC) and low-connectivity
(LC) trials. Then, for each cROI and subject, we calculated the MEP change relative to the
mean MEP amplitude for the HC and LC trials separately and determined with a paired
sample t-test whether a difference in these classes of trials existed.

Additionally, we asked whether a set of trials existed for which, taken together,
all cROIs exhibited high or low connectivity to lM1. We termed these subsets as high-
connectivity trials for the network (HC_network) and low-connectivity trials for the
network (LC_network). The modulation of MEP amplitudes in the HC_network and
LC_network trials was assessed, similarly to that between HC and LC trials, by a paired
sample t-test.
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Control analyses were run for the modulation of MEP in different trial subsets defined
at the subject level according to criteria that did not consider functional connectivity as
follows: (i) splitting the trials into the first and second part of the recording; (ii) splitting
the trials into even and odd. For each of these different trial-splitting approaches, median
MEP amplitudes across the first and second subsets were calculated for each subject, and a
paired sample t-test (two-tails) was run to assess modulations of MEP amplitudes between
the two subsets.

2.6. Coupling Directionality

To assess coupling directionality, we relied on the multivariate phase slope index
(MPSI) [53], known to be more reliable than the corresponding bivariate approaches [54,55].
The calculation of MPSI is based on the estimation of the cross-spectra among time-courses
of the cROIs and time-courses of the voxels surrounding the seed. Specifically, to apply the
multivariate directionality metric, we selected all voxels, the distance of which were smaller
than 4 mm from the seed (a subset of dimensionality n) and from the cROI centroids. Each
multivariate time series was then built as a matrix, with the first dimension being n and
the second being the total data length obtained by concatenating one-second prestimulus
data for the HC_network and LC_network trials. These time series were used to calculate
MPSI over each pair of frequencies in a range spanning 4 Hz centered at the individual µ
frequency and with a 1 Hz frequency resolution. To assess the statistical significance of
the observed results, we considered a standardized version of MPSI that allowed us to
interpret the ratio between MPSI and its standard deviation across estimation segments
(jackknife approach) as a pseudo-Z score. Finally, a group-level Z-score was obtained
by averaging the individual pseudo-Z score values multiplied by the square root of the
number of subjects to normalize the variance of the averaged pseudo-Z score distribution.
Of note, the coupling directionality measured by the MPSI pseudo-Z score could not be
directly interpreted as a measure of the coupling strength; rather, it estimates the leader
and follower role between a pair of multidimensional signals.

2.7. Phase Estimation

The phase of the µ-rhythm signal at stimulation was estimated by following the
approach of [11]. Specifically, we extracted the signal 500 ms preceding the TMS stimulation
from the lM1 region in the source space, then a forward-backward filter in the individual µ-
band (order = 64) was applied and, finally, the filtered signal was trimmed at the beginning
and end by 64 ms to remove the edge effects of the filter. An autoregressive model of
order 30 was then used to predict the signal from −64 to +64 ms centered around the TMS
stimulation. The phase of the signal was then obtained by applying the Hilbert transform
to the predicted signal and by extracting the phase at time zero. Of note, the phase values
and the connectivity values were estimated for all trials that survived artifact rejection. As
mentioned in the previous paragraph, no trials were discarded based on EEG power.

2.8. Linear Regression Analysis

To investigate the relationship between the long-range Motor Network connectivity, as
measured by the phase locking (i.e., phase differences) of µ-rhythm oscillations, and local
properties of M1, as measured by the phase of the µ-rhythm oscillation at M1, we tested
five different linear models for MEP amplitude prediction at the individual level across all
trials.

First, we tested a model in which connectivity values between lM1 and a single cROI
were used as an independent variable

[
a + b1 iPLVlM1, cROI1

]
; then, we added the connectivity

between lM1 and all other (n − 1) cROIs to the first model
[
a + ∑n

j=1 bjiPLVlM1, cROI j

]
. The

phase at lM1 was used as the only independent variable in a third model [a + ccos φ + dsin φ].
Then, all the variables were used in a fourth model, including all forms of the connectivity
and phase as independent variables

[
a + ∑n

j=1 bjiPLVlM1, cROI j
+ ccos ϕ + dsin ϕ

]
. In the above
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equations, a, b1, bj, c, d are the model parameters, φ is the phase, and iPLV lM1, cROI j
is

the connectivity between lM1 and all the cROIs. Finally, a constant model was used as the
control analysis.

Robust linear regression [56] based on an iteratively reweighted least squares ap-
proach implemented in Matlab 2020b (The Matworks Inc., Natick, MA, USA) was used for
all models.

The Akaike Information Criterion (AIC) value [57] was calculated to compare these
different models. Indeed, the AIC-based model selection weights model performance and
complexity in a single metric, and the difference between AICs of different models was an
indicator of their relative plausibility [58]. Specifically, we used AIC to answer the question
as to whether it is worth adding another variable in the model for the connectivity-based
model with one cROI versus the connectivity-based model with all cROIs; the connectivity-
based model versus the connectivity and phase-based model; and the phase-based model
versus the functional connectivity and phase-based model.

3. Results
3.1. Functional Connectivity at the µ-Rhythm Frequency Highlights Coupling within the
Motor Network

EEG preprocessing evidenced that, on average, 23% of the channels and 18% of the
trials were contaminated by artifacts and were, therefore, excluded from the following
analysis. The average µ-rhythm peak frequency across subjects was 10.5 ± 1.5 Hz. For
each subject, a map of iPLV with respect to lM1 was obtained at the individual µ-rhythm
peak frequency; the grand average of these individual iPLV maps is shown in Figure 1. The
surface-based top view of Figure 1 in the middle panel shows the location of lM1 (black
dot), and the regions functionally connected to it are a color-coded representation in which
red indicates high connectivity to lM1. The orthographic views of Figure 1 in the left and
right panels better show the location for the red spots of Figure 1 in the middle panel and
highlight that lM1 is functionally connected to the left supplementary motor area (lSMA,
centroid MNI coordinates [−12 −11 74]) and to the right motor cortex (rM1, centroid MNI
coordinates [40 −25 52]). While recent EEG reports have detected a correlated pattern
of functional connectivity resembling the motor system at broadband [59] and at alpha
band [60] frequencies, the current findings indicate the emergence of the Motor Network
at the individual µ-rhythm peak frequency in baseline activity preceding TMS. For the
following analyses, lSMA and rM1 regions obtained with the described approach were
employed as the set of cROIs.
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3.2. MEP Amplitude Modulates with Functional Connectivity of the Motor Network

The modulation of the MEP amplitude in the lM1-lSMA HC trials, defined as the per-
centage change in the MEP amplitude with respect to the MEP mean value, was calculated
for each subject, and the average value and its standard error are shown in Figure 2A to-
gether with the modulation in lM1-lSMA LC trials. On average, a difference of 21.8 ± 2.5%
(mean ± standard error of the mean) in MEP amplitudes was observed for lM1-lSMA HC
trials with respect to lM1-lSMA LC trials (one tail paired-sample t-test, p = 0.03). This
result points towards the spontaneous facilitation effect of SMA on M1 at rest, i.e., a high
lM1-lSMA connectivity enhances MEP amplitude in line with the facilitation obtained by
conditioning M1 by stimulating SMA with a cortico-cortical-paired associative stimulation
protocol [61].
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by the high number of stimuli delivered in each experimental session. Similarly, MEP am-
plitudes in even versus odd trials were not significantly different (paired-sample t-test, p 
= 0.88), thus allowing to exclude chance effects induced by the trial’s spliĴing procedure. 
Finally, we calculated functional connectivity between lM1 and lSMA and between lM1 
and rM1 and their relation to MEP amplitudes for the theta (average value across subjects: 
5.0 ± 0.7 Hz) and beta (average value across subjects: 21 ± 3 Hz) frequencies. These analyses 
revealed no significant effect of functional connectivity between lM1 and lSMA or between 
lM1 and rM1 on MEP amplitude modulation for theta (lM1-lSMA: one tail paired-sample 
t-test, p = 0.10; lM1-rM1: one tail paired-sample t-test, p = 0.23) and beta (lM1-lSMA: one
tail paired-sample t-test, p = 0.47; lM1-rM1: one tail paired-sample t-test, p = 0.09) frequen-
cies.

Figure 2. MEP amplitude modulation and percentage values in trials with high (HC) and low
(LC) connectivity and median split-based definition. Bars indicate mean MEP amplitude in the
corresponding set of trials, which across all subjects and whiskers indicate the standard error of
the mean. (A) MEP modulation (one-tail paired sample t-test, * p = 0.03) for connectivity between
the left motor cortex (lM1) and the left supplementary motor area (lSMA). (B) MEP modulation
(one-tail paired sample t-test, * p = 0.01) for connectivity between lM1 and the right motor cortex
(rM1). (C) MEP modulation (one-tail paired sample t-test, * p = 0.01) in the subset of trials in which
connectivity between lM1 and lSMA and connectivity between lM1 and rM1 are simultaneously
low (LC_network) or high (HC_network). (D) A positive modulation of connectivity with MEP
amplitude (logarithmic value of MEP amplitudes is shown on the y-axis) was observed in the majority
of the subjects.
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Similarly, Figure 2B shows that modulation of 11.4 ± 1.0% is featured by an MEP
amplitude in the lM1-rM1 HC trials with respect to lM1-rM1 LC trials (one tail paired-
sample t-test, p = 0.01). It should be noted that, in general, lM1-lSMA HC trials are a
different subset than lM1-rM1 HC trials similar to LC trials and that the facilitatory effect of
lM1-rM1 connectivity found here is smaller in extent with respect to the lM1-lSMA effect,
which is in line with our observation that the overall functional connectivity between lM1
and rM1 is weaker than that of lM1 with lSMA.

Figure 2C shows the MEP modulation in the subset of trials in which lM1-lSMA and
lM1-rM1 functional connectivity trials are both above or below their corresponding median
level. The overlap between HC trials for lM1-lSMA and that for lM1-rM1, across all subjects,
was 57% (median value) with an interquartile range of 7%, meaning that the number of
trials in which the consistent high or low coupling of the whole network (HC_network or
LC_network trials) is observed is above the chance level. A significant increase of about
27.9 ± 2.3% for MEP in the HC_network trials was observed with respect to LC_network
trials (one-tail paired-sample t-test, p = 0.01). The network-level MEP modulation was,
thus, increased by about 28% with respect to the largest modulation observed for single
node pairs, i.e., lM1-lSMA connectivity.

Finally, Figure 2D shows the modulation of MEP in the HC_network and LC_network
at the individual level for the eight subjects. While for some of the subjects, the positive
relation was more evident, others did not show a clear effect. Interestingly, the subjects that
show weak or no effect are those that feature low cortico-spinal excitability, as indicated by
their low MEP amplitude values (subj3, subj5, subj8).

Notably, no significant difference was observed between MEP amplitudes in the first
half versus the second half of the trials in the recording (paired-sample t-test, p = 0.20). This
analysis allowed us to rule out possible habituation or potentiation effects induced by the
high number of stimuli delivered in each experimental session. Similarly, MEP amplitudes
in even versus odd trials were not significantly different (paired-sample t-test, p = 0.88), thus
allowing to exclude chance effects induced by the trial’s splitting procedure. Finally, we
calculated functional connectivity between lM1 and lSMA and between lM1 and rM1 and
their relation to MEP amplitudes for the theta (average value across subjects: 5.0 ± 0.7 Hz)
and beta (average value across subjects: 21 ± 3 Hz) frequencies. These analyses revealed
no significant effect of functional connectivity between lM1 and lSMA or between lM1 and
rM1 on MEP amplitude modulation for theta (lM1-lSMA: one tail paired-sample t-test,
p = 0.10; lM1-rM1: one tail paired-sample t-test, p = 0.23) and beta (lM1-lSMA: one tail
paired-sample t-test, p = 0.47; lM1-rM1: one tail paired-sample t-test, p = 0.09) frequencies.

3.3. Coupling Directionality Reveals the Top-Down Control of SMA on Bilateral M1

The MPSI analysis revealed that in the high functional connectivity trials, coupling direc-
tionality, averaged across subjects, indicates connectivity from lSMA to lM1 (pseudo-Z = −3.61,
p = 3 × 10−4) and to rM1 (pseudo-Z = −2.53, p = 0.01). Conversely, no significant direction-
ality was assessed for the connectivity between lM1 and rM1 (pseudo-Z = −1.88, p = 0.06).
Similar results were obtained for low connectivity trials (lSMA-lM1 pseudo-Z = −4.78,
p = 2 × 10−6; lSMA-rM1 pseudo-Z = −2.48, p = 0.01; lM1-rM1 pseudo-Z = −1.21, p = 0.23).

3.4. A Linear Regression Model That Relies on Network Connectivity and the lM1 Phase Best
Predicts MEP

The results for the comparison between a linear regression model at the single subject
level, in which the MEP amplitude is predicted only by the functional connectivity between
lM1 and lSMA, and a model in which the functional connectivity of lM1-rM1 is added as
a second independent variable (i.e., Motor Network model), are reported in the Supple-
mentary Material Tables S1 and S2. These data indicate that the Motor Network model
performs overall better than the lM1-lSMA model.

In the following, we further compare, in terms of their respective AIC values, the Motor
Network model with different linear regression models in which the MEP amplitude is



Biomedicines 2024, 12, 955 9 of 15

predicted only by the phase at lM1 (Table 1, column 3), as a model in which MEP is predicted
by network-level functional connectivity (Table 1, column 4), and a model in which both
are used as independent variables to predict MEP (Table 1, column 5). Additionally, the
AIC of MEP prediction using a constant model is reported (Table 1, column 2). Column 6 of
Table 1 indicates the preferred model according to the criteria defined in (Burnham and
Anderson, 2004 [58]).

Table 1. Akaike Information Criterion (AIC) for the tested models.

Subject # AIC
Constant Model

AIC
lM1 Phase

AIC
Motor Network

AIC
Motor Network and lM1 Phase Preferred Model

1 2106, 5 2004, 8 2071, 6 1971, 0 Motor Network
and lM1 phase

2 1416, 8 1414, 6 1299, 5 1298, 6 Motor Network
and lM1 phase

3 1724, 4 1716, 9 1726, 9 1719, 1 lM1 Phase

4 1867, 0 1863, 6 1858, 4 1855, 5 Motor Network
and lM1 phase

5 1931, 0 1933, 8 1932, 9 1935, 7 Constant

6 1823, 4 1830, 1 1822, 4 1824, 8 Motor Network

7 2178, 2 2180, 3 2173, 6 2176, 2 Motor Network

8 1626, 0 1622, 9 1602, 1 1597, 7 Motor Network
and lM1 phase

Overall, the model with the Motor Network and lM1 phase as independent variables
was preferred in 4 out of 8 subjects, while a model with the Motor Network only as an
independent variable was preferred in 2 out of 8 subjects. In the remaining 2 subjects, either
the phase-only model or the constant model are preferred.

Table 2 shows the plausibility of all the tested models.

Table 2. Plausibility of the tested models.

Subject # Constant Model lM1 Phase Motor Network Motor Network and lM1 Phase

1 Not plausible Not plausible Not plausible Preferred

2 Not Plausible Not Plausible Plausible Preferred

3 Not plausible (Mildly) Preferred Not plausible Plausible

4 Not Plausible Not Plausible Plausible Preferred

5 Preferred Plausible Plausible Plausible

6 Plausible Not Plausible Preferred Plausible

7 Not Plausible Not Plausible Preferred Plausible

8 Not plausible Not plausible Not plausible Preferred

Overall, Tables 1 and 2 indicate that including local (lM1 phase) and long-range (Motor
Network) characteristics of the source space EEG signal results in the best or a plausible
predictive model for single-trial MEP amplitudes.

4. Discussion

In the present proof-of-concept study, we show that the EEG-derived long-range
connectivity of the primary motor cortex in the pre-stimulation period at an individual
µ-rhythm peak frequency is largely congruent with the Motor Network and that the
connectivity state of this network modulates the motor responses evoked by the transcranial
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magnetic stimulation of the primary motor cortex. Specifically, the stronger coupling of left
M1 with the left supplementary motor area and right M1, measured by the phase locking
of µ-rhythm oscillations, was related to larger motor-evoked potential amplitudes and
vice versa. These findings indicate that corticospinal excitability is associated with the
coordinated interaction among key areas of the Motor Network rather than only with the
local activity of M1. Importantly, the observed positive relation between Motor Network
connectivity and MEP amplitudes holds at the individual level, even if not for all subjects.
Subjects that do not show the effect feature an overall low cortico-spinal excitability, as
indexed by low MEP values, across the whole recording. Thus, we speculate that this lack
of modulation is due to a generally low responsiveness and not to the relation to Motor
Network connectivity.

Previous work investigating an association between the MEP amplitude and pre-
stimulus EEG phase-locking, as measured by the coherence magnitude, observed a coupling
between the stimulated primary motor cortex and a large swath of the centro-parietal cortex
in the delta band and the frontal cortex in the high beta band [42]. Yet, the present findings
indicate that brain connectivity states affect corticospinal excitability in a topographically
selective (i.e., Motor Network) fashion. Our result was likely obtained using a source-level
functional connectivity approach based on a metric robust-to-field spread and volume
conduction effects [26] compared to the approach used by [42]. The more recent study
from Vetter et al. [43] investigated, in a real-time EEG-TMS experiment, the association
between the MEP amplitude and pre-stimulus EEG phase-locking between two specific
EEG channels (after the application of a Hjorth montage) located approximately above the
motor cortices. Overall, this study concludes that functional connectivity was predictive of
cortico-spinal excitability together with power and phase. Nevertheless, this study employs
seed-based sensor-level connectivity analysis, which makes it impossible to assess whether
the considered signals actually come from motor areas. Similarly, the real-time setting
available for the experiment did not allow us to consider more than two channels and, thus,
to investigate the potential augmentation of the observed effect when more than just two
regions in a network are connected.

The positive relationship between MEP amplitude and pre-stimulus Motor Network
connectivity is consistent with the neurophysiological and neuroimaging lines of evidence
from functional Magnetic Resonance Imaging, indicating that such functional interactions
are relevant for MEP [62] and for hand function in healthy individuals [63]. Clinically, it has
been observed that intra-hemispheric M1-SMA [64,65] and inter-hemispheric M1-M1 [64,66]
functional connections are behaviorally relevant for recovery after motor stroke as well as
predictive of the functional improvement induced by a repetitive TMS stimulation [67,68].
Moreover, our results for coupling directionality within the Motor Network indicate an
overall stable intrinsic coupling directionality from lSMA to lM1 and rM1, which is in line
with previous evidence of SMA’s conditioning effect on M1 excitability [61] as well as with
dynamic causal modeling-based or Granger-causality SMA control over primary motor
cortices [63,69].

In addition, the lack of dominant directionality between the two motor cortices in the
resting brain is in line with Grefkes et al. [70].

Furthermore, our individual analysis results show that, for the majority of the subjects,
a model including both long-range phase-locking within the Motor Network and the phase
of M1 oscillation results in a better prediction of MEP amplitudes than either one of these
factors alone. A model based on Motor Network connectivity alone is, in general, more
plausible than a model based on the M1 phase alone. Of note, in contrast to previous works
investigating the role of the phase in predicting MEP amplitudes, e.g., [11], we did not
select trials on a power-based criterion; this might justify the difference between our results
and previous ones for phase-based prediction.

Finally, our findings pair to the work by Stefanou et al. [71] in supporting the idea
that functional connectivity can be directly exploited to design-paired with multi-coil
stimulation protocols in which the stimulation is delivered when nodes in the network
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are phase-coupled. Indeed, the functional connectivity approach used in our paper can
be extended to real-time estimation [72–74] and, thus, translated into protocols for state-
dependent connectivity-based stimulation with the ability to influence post-stimulation-
evoked responses [75].

It should be noted that functional connectivity before the stimulation might be in-
fluenced by the previous pulse (or pulses) in a way that is still debated in the literature.
Post-stimulation increases have been observed in Pieramico et al. [35], while a reduction in
global EEG connectivity was observed in the healthy subject’s cohort of Vlachos et al. [76].
Nevertheless, even if the observed Motor Network connectivity pattern was influenced by
the previous stimulation, this still represents the actual connectivity state of the network,
which we found to be related to the MEP amplitude.

Although we acknowledge that a limitation of this study is the limited size of our
cohort, it must be noted that our data rely on a high number of trials for each subject (with
the overall number of trials at around 8000). The final aim of our study was to provide
a proof-of-concept of the possibility of extracting an EEG-based Motor Network from
EEG-TMS data, as well as to assess the relationship between Motor Network connectivity
and cortico-spinal excitability at a single subject level and to possibly take advantage of
our results for individualized connectivity targeted stimulation. For this reason, relying on
many trials per subject allowed us to perform such an investigation in a robust manner in
this study in which a subset of trials with high or low functional connectivity had to be
considered for these purposes. A further limitation of our study is that we only checked
for a linear relationship between brain state features and MEP amplitude. Although
we acknowledge that non-linear effects might provide additional information to derive
innovative brain-state-dependent stimulation protocols, their study is beyond the scope of
this work.

5. Conclusions

To the best of our knowledge, this is the first study that investigates to what extent
the connectivity state of a brain network in source space prior to transcranial magnetic
stimulation influences its outcome. Here, we specifically addressed this question for the
network linked to the left primary motor cortex at the individual peak frequency of the
sensorimotor µ-rhythm. We demonstrate that a high-connectivity state within this network,
which largely overlaps with the Motor Network topography, features a facilitation effect on
the amplitude of the motor-evoked potential induced by left primary motor cortex stimula-
tion. Notably, the increase in MEP amplitude with enhanced Motor Network connectivity
supports the idea that connectivity-informed real-time state-dependent stimulations may
have a high potential, including therapeutic efficacy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12050955/s1, Table S1: Model comparison; Table S2:
Model plausibility.
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