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A B S T R A C T

Networks can be built by using correlations between time series. The approach based on
correlations has many advantages which are essentially related to its simplicity. Nevertheless,
it is well known that time series may show strong dependence even if they are uncorrelated. In
this paper, we will advance a multivariate Markov chain model based on the Mixture Transition
Distribution (MTD) model to build networks between time series. The multivariate MTD is able
to consider the dependence between time series and, at the same time, reduce the number of
parameters to be estimated compared to the classical multivariate Markov chain. We show, by
a numerical example, that the multivariate MTD outperforms the classical correlation approach.
Moreover, using the same model, we build the network of the 30 constituents of the Dow Jones
index showing the usefulness of the methodology in real problems in financial markets.

1. Introduction

In recent years, the study of complex networks captured the attention of scholars in several scientific fields [see, e.g.,1–6]. In
particular, other authors considered the stock networks to study financial markets [see, e.g.,7–9] or economic networks [10]. Stock
networks are a kind of network in which the stocks represent the nodes and the relationships among the stocks are the links. In the
literature, the relationships are generally built from the stock return correlations, after the application of a filter to reduce the number
of links. One of the first examples of stock networks was proposed by Mantegna [7] who analyzed the returns of constituents of the
Dow Jones Industrial Average (DJIA) and Standard and Poor’s 500 (S&P 500) indexes. Starting from a measure of distance derived
from the returns correlations, the author built the network using the concept of minimum spanning tree (MST) which reduced the
number of links to 𝑛 − 1, being 𝑛 the number of stocks. The author found that the connected stocks are grouped according to the
relative industry. Similarly, Onnela et al. [11] introduced the dynamic asset graphs building the network of 477 stocks traded at
the New York Stock Exchange (NYSE). The networks are again based on the returns correlation, however, the authors decided to
keep only the first 𝑛 − 1 closest nodes. The consequence is that the resulting network is not a tree but a graph, or several graphs
not necessarily interconnected. A variation has been proposed by Tse et al. [8] who built the full network of US stocks, with 19 807
nodes. The authors considered two nodes connected if the correlation of their returns was above a certain threshold. More recent
work by Guo et al. [12] proposed a method based on the maximum likelihood estimation to select a different threshold value for
each stock. Moreover, Lyócsa et al. [13] proposed a different application of the minimum spanning tree. They employed the dynamic
conditional correlation (DCC) approach to compute the correlations over time and build the network of the S&P 100 constituents.
However, a comparison with the traditional moving window approach revealed that the latter is more robust and exhibits a higher
industry cluster.
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Departing from the correlations, Billio et al. [14] exploited the concepts of principal component analysis and pairwise Granger-
ausality to build the network of hedge funds, mutual funds, insurance companies, banks, and broker/dealers. A different approach
as been pursued by Yang et al. [15] who analyzed the cointegration relationships among 26 global stock market indices. Differently
rom the use of correlation, the advantage of these two methodologies is the possibility of building directed connections within the
etwork. However, because both methods employ a statistical test to assess the causality or cointegration, they are not able to assign
weight to the network edges. On the contrary, Su et al. [16] combined both the Granger-causality and the cointegration test in a

liding window setting to build a directed-weighted stock network via meso-scale. Also, Diebold and Yılmaz [17] built a weighted
nd directed network of the major US financial institutions based on the vector autoregression (VAR) variance decomposition. On a
imilar path, Yang et al. [18] constructed a sovereign default network and used some measures of centrality to detect whether the
etwork properties drive the currency risk premia. Finally, Chen et al. [19] proposed to build a three-layer network model based
n correlation coefficient, grey relational analysis, and maximum information coefficient.

In our paper, we introduce a new methodology to build the stock network. We assume that the stock returns are described
y a multivariate Markov chain modeled through the mixture transition distribution (MTD) initially proposed by Raftery [20] to
odel high-order Markov chain and extended to a multivariate setting by Ching et al. [21]. Several applications of the multivariate
TD approach to financial markets have been proposed in the literature, from the stock valuation to the price discovery and credit

isk [see, e.g.,22–27]. In this context, we apply the multivariate MTD to obtain a matrix of connectedness among the stocks which can
e employed to build the adjacency matrix of the network. We design a specific numerical example showing that the advantage of
sing such an approach is that it allows us to capture the dependencies among the stocks going beyond the simple linear correlations.
n application to the 30 constituents of the Dow Jones index, demonstrates the potential of the proposed methodology for real-life
pplications and allows to compute the asymmetric dependence structure among various stocks, along with some common centrality
easures, such as out- and in-degree centrality.

The paper is structured as follows. Section 2 presents the methodology, while Section 3 introduces the numerical example and
ome network measures. Following, Section 4 illustrates an application of the proposed methodology to the Dow Jones constituents.
inally, Section 5 concludes the manuscript.

. The model

In this section, we present briefly the concept of the Markov chain and its multivariate extension to introduce the notation and
he basic idea generating these stochastic models. A detailed theoretical treatment, with applications and examples, is available in
any textbooks on the subject [see, e.g.,28–30].

.1. The discrete-time Markov chain

A sequence of random variables {𝑆𝑡}𝑡∈N taking values in the set  = {1,… , 𝑚} is called a Markov Chain when it satisfies the
following Markov Property

P(𝑆𝑡+1 = 𝑗|𝑆𝑡 = 𝑖, 𝑆𝑡−1 = 𝑖𝑡−1,… , 𝑆0 = 𝑖0) = P(𝑆𝑡+1 = 𝑗|𝑆𝑡 = 𝑖). (1)

When this condition is independent of the time 𝑡, then the process is called a Homogeneous Markov Chain (HMC), and the
probability to move from state 𝑖 to state 𝑗 at any point in time can be expressed as

P(𝑆𝑡+1 = 𝑗|𝑆𝑡 = 𝑖) = 𝑝𝑖𝑗 , ∀𝑡 ∈ N,∀𝑖, 𝑗 ∈ . (2)

All the possible combinations of changing from one state to another form the one-step transition probability matrix of the HMC:

𝐏 =

𝑆𝑡+1

⎡

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎦

𝑝11 𝑝12 ⋯ 𝑝1𝑚
𝑝21 𝑝22 ⋯ 𝑝2𝑚

𝑆𝑡 ⋮ ⋮ ⋱ ⋮
𝑝𝑚1 𝑝𝑚2 ⋯ 𝑝𝑚𝑚

, (3)

subject to 0 ≤ 𝑝𝑖𝑗 ≤ 1, ∀𝑖, 𝑗 ∈  and ∑𝑚
𝑗=1 𝑝𝑖𝑗 = 1, ∀𝑖 ∈ .

Given the transition probability matrix 𝐏 and the initial probability distribution 𝐀(0) ∶= [𝐴1(0),… , 𝐴𝑚(0)], where 𝐴𝑖(0) ∶= P
(

𝑆0 =
𝑖
)

and 𝑖 ∈ , we can define the probability distribution at each time 𝑡 as

𝐀(𝑡) ∶= [𝐴1(𝑡),… , 𝐴𝑚(𝑡)] (4)

where 𝐴𝑖(𝑡) = P(𝑆𝑡 = 𝑖), and compute it according to

𝐀(𝑡) = 𝐀(0)𝐏𝑡. (5)

Thus, the probability distribution of the random variable 𝑆𝑡 can be calculated by multiplying the initial probability distribution
2

with the power 𝑡 of the transition probability matrix 𝐏.
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2.2. The multivariate Markov process

As demonstrated by Ching et al. [21], the previous model can be extended into a multivariate setting, with more than one
ime series expressing the dynamic of the system’s components. Towards this end, we consider 𝐒 = (𝑆(𝛼)

𝑡 , ∀𝛼 ∈ 𝛤 = {1, 2,… , 𝛾}),
a multivariate sequence of random variables defined on an underlying probability space (𝛺, ,P). Each sequence {𝑆(𝛼)

𝑡 }𝑡∈N takes
values in the same finite state space . For every series 𝛼, the probability of being in state 𝑗 depends on the state 𝑖1,… , 𝑖𝛾 occupied
by all the available series one time step before. The Markov Property in (1) can be extended as follows

P(𝑆(𝛼)
𝑡+1 = 𝑗|(𝑆(1)

𝑡 = 𝑖(1)𝑡 , 𝑆(1)
𝑡−1 = 𝑖(1)𝑡−1,… , 𝑆(1)

0 = 𝑖(1)0 ),… ,

(𝑆(𝛾)
𝑡 = 𝑖(𝛾)𝑡 , 𝑆(𝛾)

𝑡−1 = 𝑖(𝛾)𝑡−1,… , 𝑆(𝛾)
0 = 𝑖(𝛾)0 )) (6)

= P(𝑆(𝛼)
𝑡+1 = 𝑗|𝑆(1)

𝑡 = 𝑖(1)𝑡 ,… , 𝑆(𝛾)
𝑡 = 𝑖(𝛾)𝑡 ).

The Property in (6) shows that there are multiple dependencies between the series. Therefore, the transition probability matrix of
the multivariate model must include each possible combination, 𝑚𝛾 , for the initial states, and every initial state must end in one of
the possible final combinations. The result is 𝑚𝛾 (𝑚𝛾 − 1) total parameters to estimate for the multivariate Markov model, given that
there are 𝑚𝛾 −1 independent probabilities in each row. Such a configuration is not practical in a real-world application because the
number of parameters will increase exponentially when the number of series and states increases.

Raftery [20] proposed the Mixture Transition Distribution model (MTD) to reduce the number of parameters to estimate for
high order Markov chains, and Ching et al. [21] applied it to the multivariate Markov chains. A review of the MTD model and its
application is available in [31]. Applying the MTD model the probability vector for series 𝛼 at time 𝑡 + 1 becomes

𝐀(𝛼)(𝑡 + 1) =
𝛾
∑

𝛽=1
𝐀(𝛽)(𝑡) ⋅ 𝜆𝛽,𝛼 ⋅ 𝐏(𝛽,𝛼), (7)

where 𝐀𝛼(𝑡) ∶= [𝐴(𝛼)
1 ,… , 𝐴(𝛼)

𝑚 ] and 𝐴(𝛼)
𝑖 (𝑡) ∶= P(𝑆(𝛼)

𝑡 = 𝑖).
According to this condition, we can build 𝛾2 transitions probability matrices 𝐏(𝛽,𝛼) = (𝑝(𝛽,𝛼)𝑖𝑗 )𝑖,𝑗∈, each one containing the

transition probabilities from state 𝑖 in series 𝛽 to state 𝑗 in series 𝛼, with 𝛼, 𝛽 ∈ 𝛤 ,

𝐏(𝛽,𝛼) =

𝑆(𝛼)
𝑡+1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑝(𝛽,𝛼)11 𝑝(𝛽,𝛼)12 ⋯ 𝑝(𝛽,𝛼)1𝑚

𝑝(𝛽,𝛼)21 𝑝(𝛽,𝛼)22 ⋯ 𝑝(𝛽,𝛼)2𝑚

𝑆(𝛽)
𝑡 ⋮ ⋮ ⋱ ⋮

𝑝(𝛽,𝛼)𝑚1 𝑝(𝛽,𝛼)𝑚2 ⋯ 𝑝(𝛽,𝛼)𝑚𝑚

. (8)

The parameters 𝜆𝛽,𝛼 are the scalar weights that combine all the series, and are subject to:
𝛾
∑

𝛽=1
𝜆𝛽,𝛼 = 1, 𝜆𝛽,𝛼 ≥ 0. (9)

They provide a measure of the degree of dependence among the different components of the systems. Large values of 𝜆𝛽,𝛼 imply
a strong influence of the component 𝛽 over the component 𝛼.

The MTD model permits to reduce the total number parameters to estimate from 𝑚𝛾 (𝑚𝛾 − 1) to 𝛾2𝑚(𝑚 − 1) + 𝛾(𝛾 − 1), the first
addend being the number of 𝐏(𝛽,𝛼) parameters and the second the number of weights 𝜆𝛽,𝛼 .

If the series represents financial returns, the equation in (7) tells us that the probability for a return change in series 𝛼 of being
in a specific state (e.g., negative, positive, or null) is a linear combination of all 𝛾 series of weighted transition probabilities from
each series initial states to the arrival state in series 𝛼. In other words, the 𝜆𝛽,𝛼 weights indicate how much series 𝛽 influences series
𝛼 in changing the return of the latter.

In general, there are 𝛾2 values of 𝜆𝛽,𝛼 subject to conditions (9) that can be organized in a matrix form,

𝚲 =

1 2 … 𝛾
⎡

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎦

1 𝜆1,1 𝜆1,2 … 𝜆1,𝛾
2 𝜆2,1 𝜆2,2 … 𝜆2,𝛾
⋮ ⋮ ⋮ ⋱ ⋮
𝛾 𝜆𝛾,1 𝜆𝛾,2 … 𝜆𝛾,𝛾

. (10)

Each element of the matrix (10) measures the price change influence that a series has on other series, thus revealing the
connectedness among the stocks. For example, element 𝜆1,1 is the portion of influence of series 1 on series 1, element 𝜆2,1 is the
portion of influence of series 2 on series 1, and so on. Each column of the matrix contains the influence shares from all series to a
specific series 𝛼, including the self-influence, and the sum of all column’s elements is equal to one. It is worth noting that if there
is no dependency between the price change series, the model still works but the matrix (10) becomes an identity matrix.
3
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The transition probabilities in 𝐏𝛽,𝛼 and the parameters 𝜆𝛽,𝛼 can be estimated with a two stage process. First, we estimate the
transition probabilities using the maximum likelihood estimator from [32]

�̂�(𝛽,𝛼)𝑖𝑗 =
𝑛(𝛽,𝛼)𝑖𝑗
∑𝑚

𝑗=1
𝑛(𝛽,𝛼)𝑖𝑗 ,

here 𝑛(𝛽,𝛼)𝑖𝑗 is the occurrences of transitions from state 𝑖 in series 𝛽 to state 𝑗 in series 𝛼.
Then, the parameters 𝜆𝛽,𝛼 can be estimated by maximizing the log-likelihood function of the multivariate model respecting

onstraints in (9) (see e.g., [31,33]),

𝑙𝑜𝑔𝐿(𝜦) =
𝑚
∑

𝑖1=1
…

𝑚
∑

𝑖𝛾=1

𝑚
∑

𝑗=1
𝑛𝑖1 ,…,𝑖𝛾 ,𝑗 𝑙𝑜𝑔

( 𝛾
∑

𝛽=1
𝜆𝛽,𝛼 �̂�

(𝛽,𝛼)
𝑖𝛽 ,𝑗

)

, (11)

here 𝑛𝑖1 ,…,𝑖𝛾 ,𝑗 is the observed number of sequences of the type 𝑆(1)
𝑡−1 = 𝑖1,… , 𝑆(𝛾)

𝑡−1 = 𝑖𝛾 , 𝑆
(𝛼)
𝑡 = 𝑗,.

Finally, for each series 𝛼, the constrained numerical optimization is performed using the Sequential Least SQuares Programming
SLSQP) algorithm from [34]. Moreover, as the cited algorithm is applied to each series 𝛼, we select the initial values of the
arameters 𝜆𝛽,𝛼 with 𝛽 ∈ 𝛤 , from a uniform distribution, i.e.

𝜆𝛽,𝛼 = 1
𝛾
, ∀𝛽 = 1, 2,… , 𝛾.

This decision is supported by the indifference principle based on the use of a non-informative prior distribution over the lambdas
because there was no initial information about the values of these parameters.

Among the estimation methodologies, Ching et al. [21] proposed to minimize the distance from the stationary distribution. In
the asymptotic situation, this approach may be useful for precise fitting; but, in the transient analysis, it may not be as effective.

3. The MTD network

As seen in the previous section, the multivariate MTD approach allows us to consider the dependence between time series by
reducing the total number of parameters to be estimated. Thanks to this captured dependence, we are able to build a network of
stocks. The weights matrix in (10) contains the influence of one series on another. The stronger the influence, the higher the value.
In network terms, we can consider higher values of the weights as stronger connections between the stocks. Therefore, we can use
the weights matrix as the adjacency matrix and construct the network accordingly. Moreover, contrary to the correlation network,
the matrix is not symmetric. Thus, it permits to build weighted and directed networks.

It is well known that many systems show zero correlations even though there is a strong dependence between their components.
Therefore, we are going to show, with the design of a numerical example, that if we are in the case where there exists a dependence
between uncorrelated time series, the classical approach based on correlations gives meaningless results if employed to build a
network. We design a hierarchical stochastic system of interacting components. In order to keep things as simple as possible, we
consider simple dynamics of the components that are based on autoregressive processes of the first order.

Let us consider the first level of the hierarchy of the random system by considering two random processes 𝑋(1)(𝑡) and 𝑋(4)(𝑡)
efined according to the next equations:

𝑋(1)(𝑡) = 𝜙𝑋(1)(𝑡 − 1) + 𝜖𝑡, 𝑋(1)(0) = 0, (12)

𝑋(4)(𝑡) = �̃�𝑋(4)(𝑡 − 1) − 𝜖𝑡, 𝑋(4)(0) = 0, (13)

here 𝜖𝑡 ∼  (0, 1) and |𝜙| < 1 and |�̃�| < 1 guarantee the stationarity of the two processes as well as the finiteness of the variance.
Clearly, the two components are dependent on each other due to the exposition to the same noise process 𝜖𝑡 with different

lgebraic signs. From these components, we introduce four additional components of the second level in the hierarchy. Precisely,
irst, we introduce two random variables 𝑊𝑎 and 𝑊𝑏 independent of each other and on the first level processes at any time 𝑡. We
ssume they have Rademacher distributions given by:

𝑊𝑎 =
{

𝑎 with probability 1∕2
−𝑎 with probability 1∕2,

(14)

𝑊𝑏 =
{

𝑏 with probability 1∕2
−𝑏 with probability 1∕2,

(15)

ith 𝑎 and 𝑏 real numbers.
Then, we introduce two additional components of the second level of hierarchy directly related to the component 𝑋(1):

𝑋(2)(𝑡) = 𝑊𝑎𝑋
(1)(𝑡),

𝑋(3)(𝑡) = −𝑊𝑎𝑋
(1)(𝑡),

(16)

nd similarly, two additional components directly related to the variable 𝑋(4):

𝑋(5)(𝑡) = 𝑊𝑏𝑋
(4)(𝑡),

(6) (4) (17)
4

𝑋 (𝑡) = −𝑊𝑏𝑋 (𝑡).
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Table 1
Correlation coefficients of the numerical example.

𝑋(1) 𝑋(2) 𝑋(3) 𝑋(4) 𝑋(5) 𝑋(6)

𝑋(1) 1 0 0 −0.934 0 0
𝑋(2) 0 1 −1 0 0 0
𝑋(3) 0 −1 1 0 0 0
𝑋(4) −0.934 0 0 1 0 0
𝑋(5) 0 0 0 0 1 −1
𝑋(6) 0 0 0 0 −1 1

In summary, the designed system has six components: two dependent on each other on the first level and four components on
he second level which are dependent on the specific root on the first order. Thus, by construction, both 𝑋(2) and 𝑋(3) are dependent

on their root 𝑋(1) and both 𝑋(5) and 𝑋(6) are dependent on their own root 𝑋(4).
Since our objective is to compare the network approach we are proposing, the one based on MTD against the classical one based

n correlations, we observe some particular features of the proposed random system expressed in terms of correlations.
First, we observe that even if the random components 𝑋(1) and 𝑋(2) are dependent, their correlation is zero. Indeed, for any time

𝑡 we have that:
E[𝑋(1)(𝑡) ⋅𝑋(2)(𝑡)] − E[𝑋(1)(𝑡)] ⋅ E[𝑋(2)(𝑡)] = E[𝑋(1)(𝑡) ⋅𝑊𝑎𝑋

(1)(𝑡)] − E[𝑋(1)(𝑡)] ⋅ E[𝑊𝑎𝑋
(1)(𝑡)]

= E[𝑊𝑎]E[(𝑋(1)(𝑡))2] − E[𝑊𝑎](E[𝑋(1)(𝑡)])2 = 0,

here the last equality is obtained from the independence of 𝑊𝑎 on 𝑋(1) and the fact that 𝑊𝑎 has zero expectation. The fact that
he covariance function is zero immediately provides a zero correlation coefficient i.e. 𝜌(𝑋(1) ,𝑋(2))(𝑡) = 0. A symmetric argument gives
he same result for the correlation structure between the random components 𝑋(1) and 𝑋(3), i.e. 𝜌(𝑋(1) ,𝑋(3))(𝑡) = 0. It is also simple
o realize that 𝜌(𝑋(2) ,𝑋(3))(𝑡) = −1 because they are just one the opposite each other. Similarly, we obtain the correlations for the
emaining series, as reported in Table 1.

It is interesting now to assess the correlation structure between the random components 𝑋(1) and 𝑋(4) which form the first level
f the hierarchical model. Let us start by computing the covariance function.

𝐶𝑜𝑣[𝑋(1)(𝑡), 𝑋(4)(𝑡)] = E[(𝜙𝑋(1)(𝑡 − 1) + 𝜖𝑡) ⋅ (�̃�𝑋(4)(𝑡 − 1) − 𝜖𝑡)]

− E[𝜙𝑋(1)(𝑡 − 1) + 𝜖𝑡] ⋅ E[�̃�𝑋(4)(𝑡 − 1) − 𝜖𝑡]

= 𝜙�̃�E[𝑋(1)(𝑡 − 1)𝑋(4)(𝑡 − 1)] − 𝜙E[𝑋(1)(𝑡 − 1)]E[𝜖𝑡] + �̃�E[𝑋(4)(𝑡 − 1)]E[𝜖𝑡] − E[(𝜖𝑡)2]

−
[

(

E[𝜙𝑋(1)(𝑡 − 1)] + E[𝜖𝑡]
)

⋅
(

E[�̃�𝑋(4)(𝑡 − 1)] − E[𝜖𝑡]
)

]

= 𝜙�̃� ⋅ 𝐶𝑜𝑣[𝑋(1)(𝑡 − 1), 𝑋(4)(𝑡 − 1)] − 1.

Thus, an iteration of the previous computation with respect to the time variable and the deterministic nature of 𝑋(1)(0) and
(4)(0) gives:

𝐶𝑜𝑣[𝑋(1)(𝑡), 𝑋(4)(𝑡)] = −
𝑡−1
∑

𝑙=0
(𝜙 ⋅ �̃�)𝑙 . (18)

Since our processes are stationary we have

𝐶𝑜𝑣[𝑋(1), 𝑋(4)] ∶= lim
𝑡→∞

𝐶𝑜𝑣[𝑋(1)(𝑡), 𝑋(4)(𝑡)] = −
∑

𝑙≥0
(𝜙 ⋅ �̃�)𝑙 = − 1

1 − (𝜙 ⋅ �̃�)
. (19)

Furthermore, we observe that the variances for the series 𝑋(1) and 𝑋(4) are

𝑉 (𝑋(1)(𝑡)) =
𝑡−1
∑

𝑟=0
(𝜙2)𝑟 and 𝑉 (𝑋(4)(𝑡)) =

𝑡−1
∑

𝑟=0
(�̃�2)𝑟,

nd passing to the limit we get

𝑉 (𝑋(1)) ∶= lim
𝑡→∞

𝑉 (𝑋(1)(𝑡)) = 1
1 − 𝜙2

and 𝑉 (𝑋(4)) ∶= lim
𝑡→∞

𝑉 (𝑋(4)(𝑡)) = 1
1 − �̃�2

.

Finally, we get

𝜌(𝑋(1) ,𝑋(4))(𝑡) =
−
∑𝑡−1

𝑙=0(𝜙 ⋅ �̃�)𝑙
√

∑𝑡−1
𝑟=0(𝜙2)𝑟 ⋅

√

∑𝑡−1
𝑟=0(�̃�2)𝑟

,

𝜌(𝑋(1) ,𝑋(4)) ∶= lim
𝑡→∞

𝜌(𝑋(1) ,𝑋(4))(𝑡) =
− 1

1−(𝜙⋅�̃�)
√

1 ⋅
√

1
.

(20)
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Table 2
Average of the correlation coefficients of the 1000 Monte Carlo simulations.

𝑋(1) 𝑋(2) 𝑋(3) 𝑋(4) 𝑋(5) 𝑋(6)

𝑋(1) 1.000 −0.001 0.001 −0.935 0.002 −0.002
𝑋(2) −0.001 1.000 −1.000 0.000 0.006 −0.006
𝑋(3) 0.001 −1.000 1.000 −0.000 −0.006 0.006
𝑋(4) −0.935 0.000 −0.000 1.000 −0.002 0.002
𝑋(5) 0.002 0.006 −0.006 −0.002 1.000 −1.000
𝑋(6) −0.002 −0.006 0.006 0.002 −1.000 1.000

Table 3
Average values of 𝜆𝛽,𝛼 from the MTD estimation of 1000 Monte Carlo simulations.

𝑋(1) 𝑋(2) 𝑋(3) 𝑋(4) 𝑋(5) 𝑋(6)

𝑋(1) 0.795 0.343 0.343 0.214 0.094 0.094
𝑋(2) 0.000 0.221 0.221 0.000 0.091 0.091
𝑋(3) 0.000 0.221 0.221 0.000 0.091 0.091
𝑋(4) 0.205 0.103 0.103 0.786 0.318 0.318
𝑋(5) 0.000 0.056 0.056 0.000 0.203 0.203
𝑋(6) 0.000 0.056 0.056 0.000 0.203 0.203

Given the proposed numerical example, we perform a Monte Carlo simulation fixing the values for the parameters of the models,
uch as 𝜙 = 0.9, �̃� = 0.8, and 𝑎 = 1, and 𝑏 = 1. Then, we simulate the following random system:

𝑋(1)(𝑡) = 0.9 ⋅𝑋(1)(𝑡 − 1) + 𝜖𝑡
𝑋(2)(𝑡) = 𝑊𝑎 ⋅𝑋

(1)(𝑡),

𝑋(3)(𝑡) = −𝑊𝑎 ⋅𝑋
(1)(𝑡)

𝑋(4)(𝑡) = 0.8 ⋅𝑋(4)(𝑡 − 1) − 𝜖𝑡
𝑋(5)(𝑡) = 𝑊𝑏 ⋅𝑋

(4)(𝑡),

𝑋(6)(𝑡) = −𝑊𝑏 ⋅𝑋
(4)(𝑡),

which represents a particular vector autoregressive (VAR) model, designed in such a way that its six components show some
uncorrelations while being dependent by construction.

All series in the proposed example assume values in a general state space, however, the application of the MTD model requires
a discrete state space. Therefore, we apply a discretization of the series into a 3-state space. Specifically, as the processes are
stationary, we set a central state which includes all values within a half standard deviation radius from zero, and two external
states corresponding to the higher and lower values.

The averaged values of the correlation coefficient and MTD weights are reported in Tables 2 and 3, respectively. The values
of the correlations computed on the Monte Carlo simulations are perfectly in line with the theoretical values given by previous
computations. For example, a substitution of the values 𝜙 = 0.9 and �̃� = 0.8 inside Eq. (20) produces a value of 𝜌(𝑋(1) ,𝑋(4)) = −0.934.
The simulation is performed using a Monte Carlo method with 1000 simulations of length 1000 from which we compute the values
of 𝜆𝛽,𝛼 as in (11).

When applying a correlation-based network, the results are unsatisfactory because it is not able to interpret the true relationships
among the variables. On the contrary, the network built on the weights matrix 𝜦 of the MTD model captures these nonlinear
dependencies. In particular, the values 𝜆𝛽,𝛼 clearly capture the dependence among the series. For example the series 𝑋(1) has an
effect of magnitude 0.343 on series 𝑋(2) and 𝑋(3) but lower on 𝑋(5) and 𝑋(6) as they directly depend on 𝑋(4). A similar effect is
noticeable from series 𝑋(4) to 𝑋(5) and 𝑋(6) and to 𝑋(2) to 𝑋(3). Moreover, the model is able to capture the interdependence between
𝑋(2) and 𝑋(3) with a value of 𝜆 = 0.221 and between 𝑋(5) and 𝑋(6) with 𝜆 = 0.203. Both values are lower than the direct dependence
from 𝑋(1) and 𝑋(4) respectively. Finally, the model shows no dependence from 𝑋(2) or 𝑋(3) to 𝑋(1) and from 𝑋(5) or 𝑋(6) to 𝑋(4) as
expected. However, there is a minimal dependence from 𝑋(5) and 𝑋(6) to 𝑋(2) and 𝑋(3) and vice-versa.

Fig. 1 shows two possible networks implied by the correlations built from the application of the minimum spanning tree as
in Mantegna [7]. We point out that the trees reported in Fig. 1 are not the unique trees with the minimum weight, due to the
symmetry of the numerical example. However, in all cases it is not possible to identify a direct dependency among the series. In
particular, in the first network on the left of the picture, we do not capture the dependency between series 𝑋(3) from 𝑋(1), and 𝑋(5)

rom 𝑋(4). A similar situation is clear from the tree on the right, where we miss the dependency between 𝑋(2) from 𝑋(1), and 𝑋(6)

rom 𝑋(4). On the contrary, we can see the full dependence captured by the MTD approach using the weights matrix as an adjacency
atrix in Fig. 2. It is clear from the picture that the MTD network represents a faithful reproduction of the real system because it

aptures the non-linear dependencies as well as the hierarchical structure characterizing the system.
As shown, the multivariate MTD model clearly outperforms the correlation approach. However, even though the proposed model

s useful in reducing the number of parameters to estimate compared to the full multivariate Markov chain, it still comes with the
ost of performing a maximum likelihood estimation to obtain the values of the adjacency matrix. Therefore, it is computationally
ore expensive compared to the correlation-based network, which simply requires computing correlations.
6
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Fig. 1. Examples of correlation networks of the numerical example with the application of the Minimum Spanning Tree algorithm from [7].

Fig. 2. MTD network of the numerical example.

4. Application to financial markets

For the empirical application, we consider the thirty constituents of the Dow Jones Industrial Average index. Details of the
companies included in the index are reported in Table 4.

We compute the 1-min interval log-returns of each series. Then, as the application of the model requires a discrete state space,
we apply a discretization of the returns into three states. Specifically, as previously reported in the numerical example, we set a
central state corresponding to the null return which includes all returns within a half standard deviation radius from zero, and two
external states corresponding to the positive and negative returns. Finally, we perform the estimation of the lambda values of the
MTD model on a weekly basis. The dates start from 1 August 2022 to 30 October 2022 for a total of 13 weeks and are sourced from
the Thomson Reuters Tick History database.

We perform the estimation of the adjacency matrix for each week. As an example, the first week results are reported in Table 5.
Respecting constraints in (9), all values are non-negative, and all columns sum to one. For example, in the first column, we observe
the share of influence of AAPL on other series (i.e., 0.029 on CSCO, 0.076 on HON, 0.242 on KO, 0.303 on MCD, and 0.35 on
7
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Table 4
Details of the 30 companies of the Dow Jones Industrial Average index.
id Name Market Industry

MMM 3M Company NYSE Conglomerate
AXP American Express NYSE Financial services
AMGN Amgen NASDAQ Pharmaceutical industry
AAPL Apple Inc. NASDAQ Information technology
BA Boeing NYSE Aerospace and defense
CAT Caterpillar Inc. NYSE Construction and Mining
CVX Chevron Corporation NYSE Petroleum industry
CSCO Cisco Systems NASDAQ Information technology
DOW Dow Inc. NYSE Chemical industry
GS Goldman Sachs NYSE Financial services
HON Honeywell NYSE Conglomerate
IBM IBM NYSE Information technology
INTC Intel NASDAQ Information technology
JNJ Johnson & Johnson NYSE Pharmaceutical industry
JPM JPMorgan Chase NYSE Financial services
MCD McDonald’s NYSE Food industry
MRK Merck & Co. NYSE Pharmaceutical industry
MSFT Microsoft NASDAQ Information technology
NKE Nike NYSE Apparel
PG Procter & Gamble NYSE Fast-moving consumer goods
CRM Salesforce NYSE Information technology
KO The Coca-Cola Company NYSE Food industry
HD The Home Depot NYSE Retailing
TRV The Travelers Companies NYSE Financial services
DIS The Walt Disney Company NYSE Broadcasting and entertainment
UNH UnitedHealth Group NYSE Managed health care
VZ Verizon NYSE Telecommunication
V Visa Inc. NYSE Financial services
WBA Walgreens Boots Alliance NASDAQ Retailing
WMT Walmart NYSE Retailing

Table 5
Lambda matrix estimated on the 1-min returns of the Dow-Jones constituents. Week starting on 1 August 2022.

AAPL AMGN AXP BA CAT CRM CSCO CVX DIS DOW GS HD HON IBM INTC JNJ JPM KO MCD MMM MRK MSFT NKE PG TRV UNH V VZ WBA WMT

AAPL – 0.106 – – – 0.072 – – 0.245 – – 0.234 – – – – – 0.058 – – – – 0.008 – – – – – – –
AMGN – 0.169 – – – – – – – – – – – – – – – – – 0.019 – – – – – – 0.168 – – –
AXP – – 0.442 – – – – 0.350 – – 0.195 – 0.099 0.054 – – – 0.111 – – – – – – – – 0.132 – – –
BA – – – 0.297 – – 0.063 – – – – 0.110 0.230 – 0.082 – 0.041 0.132 – – – – – 0.134 0.323 – – – – –
CAT – – – 0.023 0.361 – – 0.015 – 0.123 – – – 0.036 – – – 0.118 – – – 0.409 – 0.148 0.010 0.077 – 0.307 0.390 –
CRM – – – – – – – – – 0.187 0.041 0.011 – – – – – – – – – – 0.046 – – – – – – –
CSCO 0.029 0.054 – – – 0.209 – – 0.364 0.195 0.424 – – – – – – – 0.078 0.029 – – – – – – – – 0.179 –
CVX – – – – – 0.450 – – – – – – – 0.076 – 0.279 – 0.166 – 0.033 0.260 0.314 – – – 0.277 – 0.085 – –
DIS – – – 0.033 – – – – 0.125 – – – 0.043 – – 0.343 – – 0.112 – – – 0.118 – – – – – – –
DOW – 0.199 – – 0.009 – – 0.045 – 0.327 – – – – – – – – – 0.213 – – – – 0.342 – 0.376 – – –
GS – – – – – – – – – – 0.023 – – – – – – – – – 0.437 – – – – – – – – –
HD – – – – – – – – – – – – – – – – – – 0.065 – – – – – – – – – – –
HON 0.076 0.103 – – – – 0.222 – – – – – 0.424 – – 0.190 0.069 – – – – 0.222 0.067 – – – – – – –
IBM – – – – – – – – – 0.092 – 0.023 – – – – – – – 0.109 0.024 – 0.033 – – – – – – –
INTC – – – – – – – – – – – 0.482 0.204 – 0.108 – – – 0.384 0.361 – – 0.029 0.116 – – 0.143 – – 0.132
JNJ – – – – – – – – – – – – – 0.367 – – – – – – – – – – – – – – – –
JPM – – – – – 0.028 – – – – – – – – – – 0.740 – – – – – – – – – – – – –
KO 0.242 – 0.139 – – – – – – – – – – – – – – 0.337 – 0.134 – – – – 0.252 – – – – –
MCD 0.303 – – – – – – 0.084 – – – – – – – – – 0.003 0.009 – – – – – – – – – – 0.205
MMM – – – – – 0.060 – – – – 0.118 – – – 0.256 – – – – – – – – – – – – – – –
MRK – 0.347 – – – – – – – – – – – – – – 0.150 – – – – – – – – – – – – –
MSFT – – – – – – – – – – – – – 0.179 0.035 – – 0.074 – – 0.073 – 0.455 – – 0.099 – – – –
NKE – 0.022 – 0.284 0.294 0.044 0.093 0.213 – – 0.011 – – 0.288 – – – – – – 0.094 0.055 0.019 – – – – – – –
PG – – 0.226 – – – 0.177 0.293 – 0.076 – 0.140 – – – – – – 0.099 – – – – 0.602 – – – 0.163 0.379 0.141
TRV – – – – – – – – – – – – – – – 0.053 – – – 0.102 – – – – – – – – – –
UNH – – 0.032 0.363 0.279 0.053 0.445 – 0.067 – – – – – – – – – 0.035 – 0.046 – – – 0.073 0.515 – 0.098 – –
V – – – – – – – – – – – – – – 0.218 – – – 0.218 – – – – – – 0.024 – 0.105 – –
VZ 0.350 – 0.163 – 0.057 0.084 – – – – – – – – 0.301 0.135 – 0.001 – – – – 0.225 – – 0.008 – 0.242 – –
WBA – – – – – – – – 0.199 – 0.188 – – – – – – – – – 0.066 – – – – – 0.181 – 0.052 –
WMT – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 0.522

VZ). On the rows, we can read the received share of influence from a single stock, e.g., APPL is influenced by AMGN (0.106), CRM
(0.072), DIS (0.245), HD (0.234), KO (0.058), and NKE (0.008). As stated in Sections 2 and 3 the matrix is not symmetric as for
the case of the correlations. Thus, we can build a two-way directed graph, which considers the influence of the price series on each
other with different weights, e.g., 0.242 of APPL on KO versus 0.058 of KO on AAPL.

From the collected data, we compute the adjacency matrix for each week and then compute the respective network for a total of
3 networks. For each of them, we compute the out-degree and in-degree centrality associated with each node, i.e. the number of
dges going out of and into a node respectively. A standardized out-degree is a simple measure of node centrality, generally called
ut-degree centrality.
8
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Fig. 3. MTD network of the Dow-Jones constituents represented by two different network layouts. Week starting on 1 August 2022.

The network associated with the first week adjacency matrix is reported in Fig. 3. To show different aspects of the stock network,
we report two visualizations of the same network. The top graph is organized based on the standardized out-degree centrality. Nodes
with higher connections (darker color) are more central and therefore positioned at the center of the network. On the contrary, the
shape of the second graph at the bottom allows us to concentrate our attention on the connections and their relative weights. Darker
links correspond to higher weights from the adjacency matrix, thus indicating a closer connection between the stocks.

In Tables 6 and 7 we report the weekly evolution of both the out-degree and in-degree centrality associated with each node. The
bold values represent the price series with the highest out-degree and in-degree for each week.
9
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Table 6
Weekly out-degrees of the Dow-Jones constituents network built with the MTD approach.

Stocks 2022–08–01 2022-08-08 2022–08–15 2022-08-22 2022–08–29 2022-09-05 2022–09–12 2022-09-19 2022–09–26 2022-10-03 2022–10–10 2022-10-17 2022–10–24

AAPL 6 2 1 7 1 0 1 1 0 0 1 0 8
AMGN 3 4 4 2 1 4 4 11 6 7 3 15 3
AXP 7 9 15 3 8 2 4 5 8 3 14 3 3
BA 9 7 2 5 7 9 4 11 6 1 14 5 12
CAT 12 15 8 17 8 14 3 5 5 10 11 18 25
CRM 4 14 4 11 4 16 10 14 10 6 4 6 12
CSCO 9 4 6 0 2 5 1 1 0 2 2 2 3
CVX 9 6 2 12 0 6 13 3 10 19 5 4 3
DIS 6 6 6 5 4 8 10 5 6 3 9 3 4
DOW 7 8 11 6 5 7 12 4 1 8 9 9 4
GS 2 10 8 11 1 8 8 4 2 10 3 6 10
HD 1 7 9 5 13 12 1 3 3 7 3 1 14
HON 8 3 6 0 9 4 4 5 1 5 5 4 9
IBM 5 1 3 1 5 2 0 1 0 7 5 4 3
INTC 9 6 1 16 2 0 1 1 5 0 5 2 5
JNJ 1 2 6 2 6 5 13 17 3 16 12 9 1
JPM 2 2 0 4 4 1 6 4 2 2 3 3 3
KO 5 0 2 3 2 10 0 4 2 2 1 3 2
MCD 5 6 4 8 6 6 9 3 3 5 10 2 1
MMM 3 1 2 2 7 1 4 0 17 4 8 0 2
MRK 2 11 3 3 7 5 6 22 2 2 2 5 0
MSFT 6 4 7 17 4 5 6 12 8 4 1 9 7
NKE 11 9 1 2 2 0 2 13 4 3 9 11 6
PG 10 2 2 6 1 2 10 1 2 7 7 10 3
TRV 2 3 4 1 16 1 7 1 5 1 8 14 11
UNH 11 6 5 7 14 13 4 2 8 9 3 7 5
V 4 2 8 7 2 1 5 13 10 5 7 2 12
VZ 10 17 3 3 6 2 10 2 1 4 3 11 3
WBA 5 3 4 4 6 8 3 6 1 3 7 4 0
WMT 1 6 17 1 3 9 7 7 9 8 10 3 1

Table 7
Weekly in-degrees of the Dow-Jones constituents network built with the MTD approach.

Stocks 2022–08–01 2022-08-08 2022–08–15 2022-08-22 2022–08–29 2022-09-05 2022–09–12 2022-09-19 2022–09–26 2022-10-03 2022–10–10 2022-10-17 2022–10–24

AAPL 5 5 5 6 6 5 6 5 6 5 5 7 7
AMGN 7 5 4 6 5 5 8 4 4 4 6 4 7
AXP 5 5 3 6 6 6 6 6 3 4 6 5 4
BA 5 7 8 6 5 8 4 9 6 6 3 6 5
CAT 5 6 4 6 4 5 6 7 5 7 6 4 6
CRM 8 7 7 5 6 6 7 5 3 4 5 6 6
CSCO 5 5 5 5 7 4 6 5 7 5 6 7 6
CVX 6 7 7 7 6 5 4 6 4 6 6 5 7
DIS 5 5 5 4 5 6 4 10 5 6 8 6 6
DOW 6 8 4 6 6 5 5 5 8 5 8 8 5
GS 7 5 6 7 7 7 5 7 3 6 7 7 6
HD 6 6 4 4 6 7 4 6 6 5 4 7 5
HON 5 5 6 4 6 5 4 6 4 8 8 5 4
IBM 6 8 5 6 4 6 6 6 5 7 6 4 9
INTC 6 8 4 10 5 5 5 7 4 5 6 7 5
JNJ 5 8 5 5 5 8 6 6 3 6 5 6 8
JPM 4 6 5 6 6 5 6 5 6 5 6 5 7
KO 9 5 5 6 3 4 7 7 3 3 4 5 6
MCD 8 4 4 4 4 5 6 4 5 6 7 7 4
MMM 8 6 4 6 3 4 5 7 7 7 7 7 4
MRK 7 4 4 5 5 4 5 7 7 6 6 4 5
MSFT 4 4 7 5 4 7 4 5 5 4 8 5 7
NKE 9 4 6 4 7 6 5 6 6 6 5 6 10
PG 4 6 7 5 4 5 4 4 4 5 4 5 5
TRV 5 6 4 5 7 8 6 5 3 5 5 6 6
UNH 6 6 8 8 5 6 4 7 4 5 7 4 4
V 5 6 7 4 3 5 7 5 3 6 8 9 4
VZ 6 6 2 8 6 6 8 5 3 4 7 7 6
WBA 4 5 3 5 6 3 9 7 4 8 6 5 5
WMT 4 8 6 7 4 5 6 7 4 4 9 6 6

The centrality measures show a high variability of the network over time with some of the stocks passing from a central position
o a more peripheral one. However, some of the stocks maintain a stronger position in terms of out-degree centrality, e.g., CAT,
RM, CVX, or DOW, while others keep a lower profile, e.g., AAPL, IBM, or HON.

. Conclusion

We proposed a new methodology to build networks. Our approach is based on a multivariate Markov chain built on the Mixture
ransition Distribution model. Using a numerical example, we demonstrated that, contrary to the correlation approach, our model

s able to capture the dependence among the stocks. Thus, it allows us to build meaningful networks. In the application section, we
howed the network of the 30 Dow Jones constituents and its dynamics over time along with some measures of centrality.

Future research might explore the other characteristics of the network, for example, other measures of centrality or distance
etween the nodes. Moreover, even though the proposed model outperforms the classical correlation approach, it presents some
imitations. More specifically, it appears to be computationally more expensive because it requires performing a numerical maximum
ikelihood estimation.
10
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