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Abstract: Background/Objectives: The aim of this in vitro study was to analyze and compare the
Streptococcus mutans ability to adhere and form biofilm on the surface of light-cured VS heat-cured
dental composite resins; Methods: Three composite resins with different chemical formulations were
selected: GrandioSO (GR), Venus Diamond (VD) and Enamel Plus Hri Biofunction (BF). Disk-shaped
specimens were manufactured by light-curing the composite resins (light-cured subgroups) and
subjecting them to a further heat-curing cycle at 80◦ for 10 min (heat-cured subgroups). Speci-
mens were analyzed for planktonic CFU count (CFU/mL), sessile CFU count (CFU/mL) and for
biomass quantification (OD570nm); Results: The planktonic CFU count was higher in all the light-
cured subgroups than in the heat-cured subgroups (light-cured: GR = 7.23 × 106, VD = 2.14 × 107,
BF = 4.40 × 107; heat-cured: GR = 4.89 × 106, VD = 4.95 × 106, BF = 2.80 × 107), with a statistically
significant increase for BF and VD. Focusing on the sessile CFUs, both GR (light-cured = 7.49 × 106;
heat-cured = 3.97 × 106) and VD (light-cured = 2.93 × 107; heat-cured = 6.07 × 106) showed a signif-
icantly increased number of colonies in the light-cured subgroups. The OD570nm values recorded
for the light-cured BF subgroup (0.4280) were significantly increased compared to the heat-cured
BF subgroup (0.1931); Conclusions: A more complete polymerization protocol seems to lead to a
potential reduction in the risk of secondary caries.

Keywords: Streptococcus mutans; composite resins; light-cured; heat-cured; polymerization

1. Introduction

Dental decay is a disease with multifactorial etiology. It is caused by cariogenic bacteria
in the presence of fermentable carbohydrates, but is also influenced by external factors
and individual susceptibility. The Gram-positive Streptococcus mutans is one of the main
cariogenic bacteria. It survives at low pH and its pathogenesis is related to the production
of organic acids following carbohydrate metabolism [1,2]. Streptococcus mutans acid release
seems to act even on dental composites, thus predisposing pre-existing restorations to the
risk of secondary caries [3,4]. The longevity of the restoration can also be affected by the
shrinkage of the composite during polymerization, which may promote the occurrence of
tooth decay [5]. Depending on the more or less virulent microbial strain, the esterase activity
of Streptococcus mutans can deteriorate [6] and modify the surface morphology of composite
resins [7]. Also, it may inhibit the activity of glycolysis-related enzymes [8]. Streptococcus
mutans is able to form biofilm on solid surfaces [9–12] following glucosyltransferases (GTFs)

Biomedicines 2024, 12, 2235. https://doi.org/10.3390/biomedicines12102235 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines12102235
https://doi.org/10.3390/biomedicines12102235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-7369-2667
https://orcid.org/0000-0001-9281-5028
https://orcid.org/0000-0003-4755-5321
https://orcid.org/0000-0002-4797-4019
https://doi.org/10.3390/biomedicines12102235
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines12102235?type=check_update&version=1


Biomedicines 2024, 12, 2235 2 of 14

production to catalyze extracellular polysaccharides synthesis (EPS) [13,14]. Its ability to
form biofilm is greater than many other Streptococcus spp. that populate the oral cavity
environment [15,16]. Some specific adhesins of Streptococcus mutans, known as dual antigen
I/II, promote biofilm formation, mediating bacterial attachment to the tooth’s salivary
pellicle [17–19] and interacting with other bacteria and host proteins [17–20]. Biofilm
roughens and degrades the surfaces of composite resins [7], promoting bacterial colonization
at the tooth–composite interface [21] and resulting in secondary caries [22] and pulpal
disease [23]. Surface roughness (Ra) and surface free energy can affect bacterial adhesion [24].
A Ra greater than 0.2 µm is associated with greater bacterial colonization [25]. Lifshitz–Van
der Waals forces, acid-base and electrostatic interactions generally affect bacterial adhesion
to surfaces [26]. According to the DLVO (Derjaguin–Landau–Verweij e Overbeek) theory,
these forces can be combined [27].

A polymerization reaction is defined as the degree of conversion of monomers into
polymers. Direct resin composite restorations are light-cured chairside for 20–40 s, while
indirect restorations typically undergo additional extra-oral heat-curing cycles before an
effective intra-oral adhesive cementation [28–30]. Light-curing reactions never guarantee
total monomeric conversion [31]; in fact, up to 45% of unreacted monomers may remain
unpolymerized [32]. A heat-curing procedure promotes greater, even if not complete,
monomer conversion into polymer chains [33,34], enhancing properties such as micro-
hardness, flexural strength, fracture toughness, wear resistance, tensile strength and color
stability [35–38].

Heat-curing seems also to reduce monomer leachability into saliva [39], which appears
as relevant since previous research suggested that the release of ethylene glycol-dimethyl
acrylate (EGDMA) and triethylene glycol-dimethacrylate (Teg-GDMA) from composite
resins might supposedly enhance the growth of some Streptococcus spp. [40]. It has been
observed that the light-curing time may affect bacteria surface colonization on resin compos-
ites [41]. For Kraigsley and coll. [42], the degree of conversion of cross-linked dimethacry-
late polymers alters the biofilm metabolic activity. Furthermore, according to D’Ercole and
coll. [43], in vitro bacterial adhesion and proliferation can be affected by the composite
composition. Despite the well-known improvements in mechanical properties achieved
following heat-curing protocols, studies concerning their effects on bacterial adhesion and
proliferation are still lacking. Thus, the aim of this preliminary in vitro study was to analyze
and compare the ability of Streptococcus mutans to adhere, proliferate and form biofilm on
the surface of three commercially and nanohybrid available light- and heat-cured dental
composite resins (GrandioSO: GR; Venus Diamond: VD; Enamel Plus Hri Biofunction:
BF), each having different chemical formulations. These particular materials were selected
because they had been already tested in presence of another common commensal cario-
genic agent [44]. The null hypothesis was that no difference in terms of antibacterial and
antibiofilm properties among chemically different and differently cured resin composites
could be detected.

2. Materials and Methods

A summary of the experimental groups and subgroups, together with a list of the
materials included in the present experimental design, is given in Table 1.

Table 1. Summary of experimental groups and materials employed in the study.

Experimental
Group

Curing
Protocol Material Manufacturer Lot Number Composition

GR

Light-curing GrandioSO
Shade A2

(Nanohybrid)

Voco GmbH,
Cuxhaven,
Germany

2213772

89% fillers (1 µm glass filler); 20–40 nm
(silicon dioxide filler); pigments (iron oxide,

titanium dioxide).
Bis-GMA, Bis-EMA, TEGDMAHeat-curing
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Table 1. Cont.

Experimental
Group

Curing
Protocol Material Manufacturer Lot Number Composition

VD

Light-curing Venus Diamond
Shade A2

(Nanohybrid)

Kulzer GmbH,
Hanau, Germany K010201

64% fillers (5 nm–20 µm), barium aluminum
fluoride glass (Ø 0.7 max. <2 µm), discrete

nanoparticles.
TCD-DI-HEA, UDMA.Heat-curing

BF

Light-curing Enamel Plus
HRi Biofuntion

Shade BF2
(Nanohybrid)

Micerium SpA,
Avegno, Italy 2023000990

74% fillers (0.005 µm-0.05 µm silicon
dioxide), (0.2–3.0 µm glassy filler). UDMA,
Tricyclodecane dimethanol dimethacrylate.

Heat-curing

For all light-cured resin composites, a curing of 20 s on both specimen sides with a light-emitting diode curing
unit (Celalux 3, VOCO, Cuxhaven, Germany)—output 1300 mW/cm2—was realized. For all heat-cured resin
composites, after the light-curing process, a subsequent and further polymerization of 10 min in a heat-curing
unit (LaborLux, Micerium, Avegno, Genova, Italy) at 80 ◦C was realized.

2.1. Realization of Composite Disks

Disk-shaped specimens were manufactured by placing uncured composite resin in
polyvinylsiloxane molds (2 × 4 mm). The filled molds were positioned between two glass
slides held in place with a paper clip to extrude the surplus material. As summarized in
Table 1, for light-cured subgroups, a light-emitting diode curing unit (Celalux 3, VOCO,
Cuxhaven, Germany) with an 8 mm tip diameter and an output power of 1300 mW/cm2

was used to cure each disk for 20 s from the top surface and 20 s from the bottom surface [43].
Each composite disk had a total surface area of 50.27 mm2. All disks were washed in an
ultrasonic bath with distilled water for 10 min.

For heat-cured subgroups, disk-shaped specimens were made following the same
protocol described for light-cured subgroups. Moreover, following the ultrasonic bath,
samples received additional heat-polymerization in a composite heat-curing unit at 80 ◦C
for 10 min (LaborLux, Micerium, Avegno, Genova, Italy).

The sample size for the present research was established, taking into account previous
similar studies [43,44]. On this basis, a total of 339 light-cured and 339 heat-cured composite
disks were manufactured for each different resin composite under investigation and used
for the subsequent experimental steps.

2.2. Saliva Collection

According to a previously described protocol, human saliva samples were taken
from healthy volunteers with an age > 18 years. The Ethics Committee of University “G.
d’Annunzio”, Chieti–Pescara, Italy (approval code SALI, N. 19 of the 10 September 2020),
approved the collection and the use of saliva [45].

Saliva was pooled, mixed, centrifuged (16.000× g for 1 h at 4 ◦C) and filtered from
microorganisms (filters diameters: 0.8 µm, 0.45 µm, and 0.2 µm). To consider saliva
samples sterile, no detected bacterial growth in both aerobic and anaerobic atmospheres
after incubation for 48 h at 37 ◦C is required [45]. Sterile saliva was collected and kept
frozen in sterile tubes until the study was carried out.

2.3. Bacterial Strain

The clinical bacterial strain Streptococcus mutans CH02 was isolated from the oral cavity
of patients at the dental clinic of the University “G. d’Annunzio”, Chieti–Pescara [43].
The frozen (−80 ◦C) strain was recovered in Brain Heart Infusion broth (BHI, Oxoid,
Milan, Italy) overnight at 37 ◦C under an anaerobic condition. The broth culture was
diluted 1:10 in BHI broth containing 1% (w/v) sucrose and refreshed for 2 h at 37 ◦C in
a shaking thermostatic water bath (120 rpm). Bacterial suspension was prepared using a
spectrophotometer (Eppendorf) to obtain an optical density of OD600 = 0.125 corresponding
to 9 × 106 CFU/mL.
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All composite disk specimens were placed in 96-well polystyrene microtiter plates
and the top and bottom surfaces were sterilized through the action of ultraviolet UV lights
for 30 min.

To form the protein pellicle layer on the surface, sterile specimens were inoculated for
2 h in saliva at 37 ◦C in a shaking incubator. Biofilms were grown on each composite disk
by inoculating 200 µL broth culture of Streptococcus mutans CH02 and incubating at 37 ◦C
for 24 h under anaerobic conditions, and then for another 24 h in an aerobic atmosphere.
As a negative control, salivary film-coated disks were incubated in bacteria-free culture
media to confirm the sterility of the disks and the adsorption of the biomass dye.

After incubation, microbial growth was quantitatively analyzed for the following
aspects:

(I) Planktonic CFU count of the bacterial cells (CFU/mL);
(II) Sessile CFU count of the cultivable cells on composite disks (CFU/mL);
(III) Biomass evaluation of the biofilm produced on composite disks using Hucker’s crystal

violet staining method (OD570nm).

Each quantitative test was performed in triplicate for three independent experiments.
Moreover, representative specimens from each subgroup were qualitatively analyzed

to assess the biofilm morphology via Scanning Electron Microscope (SEM) evaluation.

2.4. Planktonic CFU Count

For the planktonic CFU count, the planktonic bacterial phase removed from the wells
containing the resin disks was vortexed, diluted in PBS and spread on Tryptic Soy Agar
(TSA) plates. Then, it was incubated in anaerobic conditions for 48 h at 37 ◦C. The CFU/mL
count was performed. For the detection, 9 disks for the light-cured and 9 disks for the heat-
cured subgroups of each composite resin material in triplicate were analyzed (9 light-cured
GR and 9 heat-cured GR disks, 9 light-cured VD and 9 heat-cured VD disks, 9 light-cured
BF and 9 heat-cured BF disks) for a total of 81 light-cured and 81 heat-cured disks.

2.5. Sessile CFU Count

The disks were placed in a sterile test tube containing 1 mL PBS. Then, each test tube
was placed in a 4 kHz ultrasonic water bath (Euronda, Vicenza, Italy) for 3 min, followed by
vortex mixing for 2 min to detach the Streptococcus mutans CH02 adhering to the surface of
each disk. The live/dead analysis was carried out to evaluate the non-negative effect of the
sonication and the vortex. The samples were diluted with PBS and spread on TSA plates.
Finally, they were incubated for 48 h under anaerobic conditions at 37 ◦C, followed by the
counting of CFU/mL. For this detection, 9 disks for the light-cured and 9 disks for the heat-
cured subgroups of each composite resin material in triplicate were analyzed (9 light-cured
GR and 9 heat-cured GR disks, 9 light-cured VD and 9 heat-cured VD disks, 9 light-cured
BF and 9 heat-cured BF disks) for a total of 81 light-cured and 81 heat-cured disks.

2.6. Biomass Quantification by Optical Density (OD570nm)

Crystal-violet (CV) staining [44,46–48] was used to evaluate relative biofilm biomass
formed by Streptococcus mutans CH02 on composite surfaces after 48 h for biofilm formation.
The disks were washed three times with PBS, left to air dry, stained with crystal-violet 0.1%
(Sigma–Aldrich, Milan, Italy) for 1 min and washed with PBS. Then, the CV was eluted
with ethanol and the biofilm formation was quantified by measuring absorbance at 570 nm
with a microplate reader (SAFAS, Munich, Germany). For this detection, 18 disks for each
light-cured and 18 disks for each heat-cured subgroup were analyzed in triplicate, including
negative controls (9 light-cured GR and 9 light-cured GR negative controls, 9 heat-cured
GR and 9 heat-cured GR negative controls, 9 light-cured VD and 9 light-cured VD negative
controls, 9 heat-cured VD and 9 heat-cured VD negative controls, 9 light-cured BF and
9 light-cured BF negative controls, 9 heat-cured BF and 9 heat-cured BF negative controls),
for a total of 162 light-cured and 162 heat-cured disks.
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2.7. Scanning Electron Microscope (SEM) Analysis

After 48 h of in vitro biofilm formation, representative specimens from each subgroup
were fixed for 1 h in 2.5% glutaraldehyde, dehydrated in six ethanol washes (10%, 25%,
50%, 75% and 90% for 20 min and 100% for 1 h), and dried overnight in a bacteriological
incubator at 37 ◦C. Then, they were observed using a SEM (EVO 50 XVP LaB6, Carl Zeiss
SMT Ltd., Oberkochen, Germany) at 15 kV, under 500×, 1000× and 2000× magnifications
after gold-sputter coating (Emitech K550, Emitech Ltd., Montigny Le Bretonneu, France). A
total of 5 composite disks for each light-cured subgroup and 5 disks for each heat-cured
subgroup were addressed via SEM analysis.

2.8. Statistical Analysis

Means and standard deviations for data coming from the quantitative experiments
(planktonic CFU count, sessile CFU count, biomass quantification by OD570nm) were cal-
culated in each subgroup. Statistical analysis was performed using SPSS for Windows
version 21 (IBM SPSS Inc., Armonk, NY, USA), by means of Two-Way Analysis of Variance
(ANOVA) and Tukey tests for post hoc intergroup comparisons. p-values less than 0.05
were considered significant.

3. Results

The detailed results (means and standard deviations) of the quantitative tests per-
formed on the three composites that were analyzed and polymerized according to the two
curing protocols under investigation are summarized in Table 2.

Table 2. Means (and standard deviations) for SM planktonic CFU count (CFU/mL), sessile CFU
count (CFU/mL) and biomass quantification by optical density (OD570nm).

-Planktonic CFU Count (CFU/mL)

Material

Curing protocol GR VD BF

Light-cured 7.23 × 106 c
1

(8.05 × 105)
2.14 × 107 b

1
(4.03 × 106)

4.40 ×1 07 a
1

(6.13 × 106)

Heat-cured 4.89 × 106 b
1

(7.65 × 105)
4.95 × 106 b

2
(9.19 × 105)

2.80 × 107 a
2

(4.33 × 106)

-Sessile CFU Count (CFU/mL)

Material

Curing protocol GR VD BF

Light-cured 7.49 × 106 b
1

(7.88 × 105)
2.93 × 107 a

1
(6.31 × 106)

6.71 × 106 b
1

(8.55 × 105)

Heat-cured 3.97 × 106 a
2

(8.70 × 105)
6.07 × 106 a

2
(8.19 × 105)

6.38 × 106 a
1

(4.90 × 105)

-Biomass Quantification by Optical Density (OD570nm)

Material

Curing protocol GR VD BF

Light-cured 0.1325 b
1

(0.0207)
0.1457 b

1
(0.0376)

0.4280 a
1

(0.0907)

Heat-cured 0.1464 a
1

(0.0287)
0.1731 a

1
(0.0241)

0.1931 a
2

(0.0490)
Different superscript letters indicate a statistically significant difference between the levels of “Material” factor.
The superscript letter “a” indicates highest values. The superscript letter “b” indicates higher values than “c”.
The same numbers in subscript indicate no significant differences among the levels of “Curing protocol” factor.
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The planktonic CFU counts recorded for BF (light-cured = 4.40 × 107 CFU/mL;
heat-cured = 2.80 × 107 CFU/mL) were significantly higher than those obtained for GR
(light-cured = 7.23 × 106 CFU/mL; heat-cured = 4.89 × 106 CFU/mL) and VD (light-
cured = 2.14 × 107 CFU/mL; heat-cured: 4.95 × 106 CFU/mL), concerning both curing
protocols. No statistically significant differences were recorded between the heat-cured
GR subgroup and the heat-cured VD subgroup (p < 0.05).

The sessile CFU counts recorded on both GR (light-cured = 7.49 × 106 CFU/mL;
heat-cured = 3.97 × 106 CFU/mL) and VD (light-cured = 2.93 × 107 CFU/mL; heat-
cured = 6.07 × 106 CFU/mL) were significantly higher in the light-cured subgroups com-
pared to the heat-cured subgroups. No significant differences were recorded between the
light-cured (6.71 × 106 CFU/mL) and heat-cured (6.38 × 106 CFU/mL) BF subgroups
(p < 0.05). Specifically, the light-cured VD subgroup had the highest CFU count for the
sessile phase cells ever.

The biomass quantification by optical density recorded in the light-cured BF sub-
group (0.4280 OD570nm) was significantly higher than for the same heat-cured material
(0.1931 OD570nm) (p < 0.05). No significant differences were recorded between the light-
cured (0.1325 OD570nm) and the heat-cured (0.1464 OD570nm) GR subgroups and between
the light-cured (0.1457 OD570nm) and the heat-cured (0.1731 OD570nm) VD subgroups.

SEM microphotographs, taken at 1000× and 3000× magnifications, showing the
Streptococcus mutans CH02 cells adherent on the surface of the three light and heat-cured
composite resins, are given in Figures 1–3. An increased number of sessile colonies were
observed in the light-cured subgroups.
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Figure 1. Representative SEM microphotographs of Streptococcus mutans colonies formed on disk-
shaped specimens from light-cured GR subgroup, at 1000× (A) and 3000× (B) magnifications, and
from heat-cured GR subgroup, at 1000× (C) and 3000× (D) magnifications. Arrows in 3000× SEM
images indicate examples of Streptococcus mutans colonies.
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4. Discussion

The null hypothesis tested in the present study had to be rejected. In the present
study, significant differences in terms of bacterial growth and biofilm formation in the
presence of chemically different and differently cured resin composites were recorded. Both
the specific composite resins composition and the polymerization protocol proved to be
relevant factors, able to significantly influence the behavior of Streptococcus mutans.

In the present study, the three composite resins tested (Table 1) were selected because
they are well-known and widely used nanohybrid dental composites that significantly
differ one another in terms of formulation, both concerning the resin matrix chemicals
and the filler load, size and composition. Furthermore, previous research [44] has recently
analyzed the effect of these three resin composites on the adhesion and proliferation of
a common commensal cariogenic agent, Candida albicans [49–52], making it relevant to
further investigate the behavior of the main cariogenic bacteria, Streptococcus mutans, in the
presence of the same materials.

Specific characteristics of each different material, surface properties in particular,
may influence bacterial adhesion [25]. A reduced organic matrix microhardness favors
inorganic fillers exposure following material wear by attrition [53]. Nanometric-sized
composite fillers lead to superior esthetic characteristics due to their reduced dimensions
and better distribution [54,55]. Also, the amount, shape and size of the filler can affect the
bacterial adhesion to the composites surface [53,54,56]. A larger filler dimension promotes
greater roughness [55,57–60]. Smooth surfaces show a reduced bacterial adherence and
accumulation than rough surfaces [59], retarding biofilm adherence and growth [61]. In
the present study, the small size of the micrometric filler in GR (max 1 µm) and BF (max
3 µm) composites compared to the VD composite (max 20 µm) could hypothetically justify
the increased sessile proliferation of Streptococcus mutans CH02 on the latter material. In
order to limit surface differences, in the present protocol, all composite disks were light-
cured within polyvinylsiloxane molds and between two glass slides, which guaranteed
standardized and predictably smooth surfaces, with no need of any final polishing steps.
Consequently, it was possible to exclude the potential confounding effect of any difference
in surface roughness among hand-polished materials, focusing the attention just on the two
variables under investigations (i.e., curing protocol and composite formulation). Moreover,
the use of molds and glass slides allowed to prevent the composite material from coming
into contact with oxygen, avoiding the formation of any oxygen inhibition layer (OIL) on
the composite surface. OIL may negatively affect the polymerization reaction, reducing the
monomeric degree conversion [62–66]. Additionally, the tested composite samples were
coated with salivary film, which promotes oral bacteria binding to salivary receptors [67].

Low volumetric shrinkage, good reactivity and mechanical properties are among the
main features that justify the use of bisphenol A-glycidyl methacrylate (Bis-GMA) as the
most common monomer for dental composite formulation [68]. However, in resin-based
dental materials, Bis-GMA is generally mixed with other monomers, such as TEG-DMA
and EGDMA, in order to optimize its low viscosity [69–74]. In recent years, concerns
have been raised as a result of the observed estrogenic action of bisphenol A (BPA) [75]
following the salivary hydrolysis of Bis-GMA-based resins [76]. Thus, Bis-GMA free dental
resin composites have been introduced, replacing Bis-GMA with different monomers that
do not release BPA, such as urethane-dimethacrylate (UDMA). Bis-GMA replacement
still needs further investigation [77]. Based on Kim et al., Bis-GMA seems to inhibit the
planktonic growth and the viability of Streptococcus mutans [78]. Accordingly, Lin et al. [79]
recorded a reduced Streptococcus mutans activity and biofilm formation in the presence
of Bis-GMA. For these reasons, in the present study, a (Bis-GMA)-based (GR) and two
(Bis-GMA)-free dental resin composites (VD and BF) were selected. Hansel et al. [40],
on the other hand, observed that the release of other co-monomers (such as TEGDMA
and EGDMA) could be somehow able to promote the growth of some Streptococcus spp.
This second mechanism, combined with the well-known reduction in monomers released
from heat-cured composites [80], might hypothetically justify the reduced number of
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sessile Streptococcus mutans colonies herein observed on heat-cured materials. Regarding
the planktonic CFU count, data recorded on the (Bis-GMA)-free BF were significantly
higher than those obtained on the (Bis-GMA)-based GR, both in light-cured and heat-cured
subgroups, supporting the potential inhibitory role of Bis-GMA. However, significantly
reduced planktonic colonies were observed also with the (Bis-GMA)-free VD, suggesting
that such a planktonic Streptococcus mutans decrease could also be related to the action
of other monomers, or a combination of them [43]. Focusing on the Streptococcus mutans
sessile colonies, the light-cured VD (Bis-GMA-free) resulted in a significant increase in
the CFU/mL count compared to the light-cured BF (Bis-GMA-free as well) and to the
light-cured GR (Bis-GMA-based).

Various heat-curing protocols have been described in the literature, whose times
ranged between 10 and 6 h, with different maximum temperature values [81–84]. A 10 min
heat-curing treatment has been shown to be adequate to increase composite properties [85].
Also, in the oral cavity, temperatures can change [86]. Dental materials that resist oral
cavity variations up to a temperature of 77.4 ◦C (i.e., drinking hot fluids) daily can preserve
their physical and chemical properties [86]. High temperatures can be responsible of an
irreversible deformation and changes in the materials properties [86], justifying the chosen
temperature (80 ◦C) used in our experimental study. Heat-curing protocols promote greater
monomer-to-polymer conversion [33,34], limiting monomer leaching [87–89]. Brambilla
et al. [41] already showed how reduced curing times could be responsible for the increased
in vitro colonization of composite surfaces by Streptococcus mutans. The authors suggested
that this phenomenon could be related to the presence of unpolymerized monomers on the
material surface, but the exact biomechanical mechanisms were not fully clarified [90,91].
The results of the present preliminary in vitro study confirmed a general trend towards the
reduction for both sessile and planktonic CFUs of heat-cured resin composites.

Regarding the biomass quantification by optical density (OD570nm), data recorded in
the light-cured BF subgroup were significantly higher than for the same material subjected
to a heat-curing protocol. Bacterial colonization is the main agent for caries onset [41].
Streptococcus mutans is one of the main promoters of biofilm formation by controlling
the matrix development formed by insoluble exopolysaccharides as α1,3-glucans [92,93].
Insoluble exopolysaccharides prevent saliva neutralization [13]. Secondary agents in caries
lesions process, such as Candida albicans [51], may also promote exopolysaccharide increase
and accumulation, enhancing the formation of microcolonies by Streptococcus mutans [50,94].
A reduced biofilm biomass is considered less resistant to the effect of a salivary buffer [43].
The long-term outcome of composite restorations is negatively affected by the presence of
thick biofilms [95]. Acids and bacteria enzymatic degradation can jeopardize the function
and the esthetic longevity of a restoration [96–98]. Further composite degradation is related
to the Streptococcus mutans esterase gene that can catalyze the uncured monomers, causing
degradation and marginal bacterial colonization [99], as well as an alteration of surface
topography [7].

As already mentioned, Streptococcus mutans is not the only microorganism involved in oral
biofilm formation and decay development. In recent studies, the high prevalence of Candida
albicans was recovered in bacterial biofilms together with Streptococcus mutans [49,50,100,101].
The presence of Candida albicans induces the expression of Streptococcus mutans glucosyltrans-
ferases and genes to withstand environmental stress [50]. Indeed, a greater biofilm complexity
makes microorganisms more tolerant to environmental stresses [44]. Further studies should
better investigate Candida albicans adhesion and proliferation on differently cured composite
resins, mainly focusing on the potential interactions between Streptococcus mutans and Candida
albicans. Among the limitations of this study, the use of a mono-species and static bacterial
model could limit the generalizability of the obtained findings. Further studies should be
carried out to confirm the adhesion properties with multispecies clinical biofilms.

The clinical relevance of the present results should be carefully interpreted, also
considering other paramount properties related to the peculiar composition of any dif-
ferent resin-based materials. Whenever a material comes into contact with live tissues
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and cells they can interact, generating a biological response, and many components of
composite resins have shown potential cytotoxic activity [102]. For instance, the residues
of free methacrylate monomers following polymerization may trigger the production of
prostaglandin E2, cyclooxygenase 2 (COX2) and an increase in interleukin-1B (IL-1B),
IL-6 and nitric oxide (NO) [103–105]. Residual monomers may be eluted after composite
placement [106,107] following both chemical and physical degradation over time [108].

In the present research, composites were treated using already known and well ref-
erenced methodologies. Nevertheless, the improvement of the study is related to the
observed effect of the different curing treatments on the interaction between the composite
disks and Streptococcus mutans.

The results obtained in this preliminary in vitro study highlight further potential
benefits from an effective resin composite heat-curing cycle. Besides the already known
advantages in terms of mechanical properties such as microhardness, flexural strength,
wear resistance, tensile strength, fracture toughness and color stability [35–38], the present
results highlighted the following:

• The intrinsic ability of Streptococcus mutans to proliferate seems impaired in the pres-
ence of composites subjected to additional heat-curing protocols, with a general trend
towards a reduction in both sessile and planktonic CFUs;

• Where there is an inability to reduce sessile CFUs, heat-curing still seems to inhibit the
production of biofilm glycoproteins.

From a clinical perspective, a reduced adhesion, proliferation and/or matrix produc-
tion by Streptococcus mutans, achieved as a result of additional heat-curing polymerization
protocols, could significantly decrease its pathogenicity, thereby reducing the risk of sec-
ondary caries. A significant role seems also to be played by the filler particle size, with
small-sized fillers leading to reduced Streptococcus mutans proliferation.
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