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A B S T R A C T

The architecture of communication within the brain, represented by the human connectome, has gained a
paramount role in the neuroscience community. Several features of this communication, e.g., the frequency
content, spatial topology, and temporal dynamics are currently well established. However, identifying genera-
tive models providing the underlying patterns of inhibition/excitation is very challenging. To address this issue,
we present a novel generative model to estimate large-scale effective connectivity from MEG. The dynamic
evolution of this model is determined by a recurrent Hopfield neural network with asymmetric connections,
and thus denoted Recurrent Hopfield Mass Model (RHoMM). Since RHoMM must be applied to binary neurons,
it is suitable for analyzing Band Limited Power (BLP) dynamics following a binarization process.

We trained RHoMM to predict the MEG dynamics through a gradient descent minimization and we
validated it in two steps. First, we showed a significant agreement between the similarity of the effective
connectivity patterns and that of the interregional BLP correlation, demonstrating RHoMM’s ability to capture
individual variability of BLP dynamics. Second, we showed that the simulated BLP correlation connectomes,
obtained from RHoMM evolutions of BLP, preserved some important topological features, e.g, the centrality of
the real data, assuring the reliability of RHoMM.

Compared to other biophysical models, RHoMM is based on recurrent Hopfield neural networks, thus,
it has the advantage of being data-driven, less demanding in terms of hyperparameters and scalable to
encompass large-scale system interactions. These features are promising for investigating the dynamics of
inhibition/excitation at different spatial scales.
1. Introduction

The functional organization of the human brain at rest plays a
fundamental role in cognition. Network neuroscience and graph the-
ory (Bassett & Sporns, 2017) show that a healthy connectome has
a specific topology characterized by the presence of functional and
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structural modules connected through hubs with a specific temporal
dynamic (Carbo et al., 2017; de Pasquale, Corbetta, Betti, & Della
Penna, 2018; de Pasquale et al., 2012; de Pasquale, Della Penna,
Sporns, Romani, & Corbetta, 2016; de Pasquale, Spadone, et al., 2021;
Della Penna, Corbetta, Wens, & de Pasquale, 2019; Gu et al., 2015; Tang
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et al., 2017). This topology balances segregated and integrated brain
functions (Bullmore & Sporns, 2012; Sporns, 2013), and it represents
a trade-off between the cost of such properties and their functionality.
However, the complexity of this architecture makes it very challenging
to unravel its principles of organization (Betzel & Bassett, 2017). This
is the aim of network generative modeling, in which wiring rules
are identified and algorithmically implemented to produce synthetic
network architectures with the same properties, i.e., summary statistics
and topology, of the collected data (Magrans de Abril, Yoshimoto, &
Doya, 2018; Sporns & Kötter, 2004). Once trained, a generative model
can predict unobserved and out-of-sample data. Moreover, a generative
model can reveal mechanisms guiding the formation of a system and
its hierarchical structure. This feature is particularly important for the
ultimate and ambitious aim of neuroscience consisting of perturbing the
brain connectome in a targeted and predictable way (Gu et al., 2015)
(but see Tu, Rocha, Corbetta, Zampieri, Zorzi, & Suweis, 2018).

To identify a generative model, a set of neural models of commu-
nication must be trained, e.g., by exploiting the available knowledge
n the structural/functional connectivity or on the dynamics of activ-
ty. Different approaches can be found in the literature: assumption-
ased (Friston, Li, Daunizeau, & Stephan, 2011; Vidaurre, Smith, &
oolrich, 2017) or data-driven (Singh, Braver, Cole, & Ching, 2020)

enerative models; certain generative models form synthetic networks
y combining geometrical rules and topological properties (Betzel
t al., 2016); other micro-scale nonlinear models of spontaneous neu-
onal activity produce large spatial scale interactions (at the level of
erebral networks) spanning different temporal scales (Honey, Köt-
er, Breakspear, & Sporns, 2007). More recently, Graph Neural Net-
orks (GNN), i.e., deep neural networks that operate in the graph
omain Zhou et al. (2020), were proposed to model neural dynamics.
otably, the edges in a GNN would have to capture implicit knowledge
f the data and affect the dynamics in a non-trivial way as discussed
n Zang and Wang (2020) where the dynamical equation is modeled
y a GNN. This approach may be very successful, but we may not be
ble to interpret all the parameters provided by the GNN in addition to
he connectivity weights, as in the case of Monti, Fiorentino, Milanetti,
osti, and Tartaglia (2022).

Among these approaches, Neural Mass Models (NMMs), in their
tandard implementation, use an approximate model for small groups
f neurons to provide the activity dynamics within small portions
f the cortex or a limited number of portions, allowing the descrip-
ion of the local architecture. They are extremely powerful since they
onstitute the basic elements for modeling mesoscale brain networks
ased on their interactions (Breakspear, 2017). Different NMMs have
een developed to explain multiple aspects of Resting State Networks
RSNs) in fMRI data (Cabral, Kringelbach, & Deco, 2017; Deco, Jirsa,

McIntosh, 2011). Specifically, among the NMMs, a variant of the
uramoto model with coupled and delayed local oscillators was able

o reproduce both fMRI RSN patterns (Cabral, Hugues, Sporns, & Deco,
011), and the spectral content observed by MEG connectivity (Cabral,
ringelbach, & Deco, 2014). Another popular class of generative models

s Dynamic Causal Modeling (DCM). In this case, NMMs still represent
asic elements producing models of observable responses through the
stimation of effective connectivity (EC) within a Bayesian frame-
ork (Friston et al., 2011). An effective network is defined as one
f the networks associated with one or more minimal neural circuit
odels reproducing the observed time course dynamics, and quantify-

ng how the connected regions influence the activity dynamics of each
ther (Friston, 2011). DCM is widely used for fMRI (Friston et al., 2019)
nd EEG/MEG (Kiebel, Garrido, Moran, & Friston, 2008). Notably, both
lasses of models rely on a complex biophysical model of the NMMs and
ave expensive computational burdens, especially if applied to MEG
ata. Thus, these models are mostly used for small networks. Moreover,
n most cases, a set of simplifying assumptions is applied to reduce
heir computational complexity and to apply them to larger networks.
73

owever, these assumptions make the model less realistic.
Even though the above NMMs are suited for a limited number
of nodes, they are widely used to model mesoscale networks, while
a popular model for small-scale neuronal networks is the recurrent
Hopfield neural network (Hopfield, 1982). It is a network based on bi-
nary McCulloch-Pitts neurons (Amit, Gutfreund, & Sompolinsky, 1985;
Brunel, 2016; Folli, Gosti, Leonetti, & Ruocco, 2018; Gosti, Folli,
Leonetti, & Ruocco, 2019; Hillar, Chan, Taubman, & Rolnick, 2021;
Hillar & Tran, 2018; Leonetti, Folli, Milanetti, Ruocco, & Gosti, 2020),
in which every processing unit is connected to all the other ones
through a set of weights. Most of the literature considers fully con-
nected and symmetric Hopfield networks since this simplifies the
mathematical analysis of the model, although recently the investigation
of diluted networks (Brunel, 2016; Kim, Park, & Kahng, 2017) and
asymmetric networks (Folli et al., 2018; Leonetti et al., 2020) has
been introduced. In most cases, a recurrent Hopfield neural network
is typically trained by the Hebbian learning principle. This states that
the coactivation of two nodes, i.e., sharing the same state at the same
time, will strengthen their connection. This is inspired by biological
neural networks where the simultaneous activation of neurons leads
to increments in synaptic strength (Hebb, 1949). This training allows
the network to store many patterns or memories mimicking the ca-
pacity of an associative network (Amit et al., 1985; Folli, Leonetti, &
Ruocco, 2017). The Hebbian learning model is widely used to explain
local mechanisms of memory storage (Lansner, 2009). Although this
model was introduced some years ago, direct in-vivo applications
of a recurrent Hopfield neural network to identify learning rules in
a network of firing neurons were only recently reported (Pereira &
Brunel, 2018). Another approach for storing neural patterns using
recurrent Hopfield neural networks is based on Perceptron learning and
the minimization of an energy function (Brunel, 2016). This approach
has often been used to store stationary patterns. Further, it has never
been systematically studied to store dynamic sequences, although this
property was theoretically recognized.

In this work, we developed a novel coarse-grained generative model,
which is simpler than the above-discussed approaches to estimate the
effective connectivity that encodes the temporal dynamics of MEG
BLP. Specifically, we designed a binary mass model with dynamics
determined by a recurrent Hopfield network with asymmetric con-
nections. Thus, we denote this model as the Recurrent Hopfield Mass
Model (RHoMM). This approach is data-driven since it does not rely on
the adoption of a specific biophysical model or priors, e.g., structural
connectivity (Cabral, Luckhoo, et al., 2014; Frässle et al., 2017; Friston,
2011), and it is based on a minimal number of assumptions that
reflect specific features of the data. These assumptions are: (i) the BLP
data could be binarized preserving their natural nonlinearity and the
associated functional connectivity (FC) patterns estimated through BLP
correlation; (ii) the activity at a certain step is predicted only by the
previous one. Moreover, to make RHoMM a generative model that
is able to predict the BLP dynamics, we applied a strategy based on
prediction error minimization.

We applied RHoMM to BLP time courses from ten healthy subjects,
during fixation. Each unit was a node representing the activity of a
brain parcel belonging to one of a set of RSNs covering the entire cor-
tex. Finally, to validate RHoMM generative performance, we compared
the BLP correlation connectomes obtained from theoretical evolutions
produced by RHoMM with the experimental ones.

2. Materials and methods

The overall concept of RHoMM is described in Fig. 1. RHoMM is
a binary mass model applied to activities (binarized BLP time series)
generated by mesoscale regions (voxels) in the brain (Fig. 1 bottom
middle) to generate the output at time sample 𝑡 based on the previous
sample (𝑡 − 1). It implements a recurrent network with Hopfield-like
dynamics (Fig. 1, top left), where the network neurons are McCulloch-

Pitts all-to-all asymmetrically connected. At each time sample, the state
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Fig. 1. Conceptual layout of RHoMM. RHoMM is a recurrent network (top left) trained as a feedforward network on time sample pairs (with the sample (t-1) as input and the
sample t as output) (top right). The network neurons are associated with regions in the brain (bottom middle) and are regulated by a weighted sum of the inputs and an activation
function (bottom left). The predicted binary time series are compared to the experimental binarized BLP sequences to obtain the square predicted error which is used to compute
the number of incorrectly predicted items and the training cost function (bottom right).
of the network neurons (active-1 or rest-0) is set by a binary activation
function on the base of a weighted sum of the input connections (Fig. 1
bottom left). The model network is trained as a feedforward network
on the single transition (from the sample (t-1) to the sample t) using
backpropagation through time (Fig. 1 top right). The predicted and
experimental binary BLP sequences are compared to retrieve the model
parameters in the training set. Specifically, in this training phase, we
initialized RHoMM with random parameters. Then, we gradually tuned
the network until it recovered the observed brain dynamics with as few
errors as possible. The obtained EC matrix is applied to the test set to
produce predicted binary BLP sequences (Fig. 1 bottom right). Details
are provided in the following subsections.

The entire pipeline applied in this study is illustrated in Fig. 2 and
can be summarized as follows. First, MEG data were preprocessed, at
the source level, to obtain the Band Limited Power (MEG BLP) time
courses. Second, BLP time courses were binarized (0-resting, 1-active)
to be assumed as the activity of nodes of the network model. The
binarized data were divided into two chunks: the training and the test
set. Third, to train RHoMM, we minimized the prediction error on
the training set, and in this way, we estimated the model parameters.
Fourth, we tested the trained network on the remaining part of the data,
the test set. In this way, we estimated the effective connectivity among
the considered nodes. This estimated network was used to generate
BLP dynamics that should replicate the functional properties of the
acquired data. Thus, to validate the proposed approach, we derived BLP
correlation connectomes from both experimental and estimated time se-
ries. We compared them in terms of some topological features typically
reported in literature, e.g., the global architecture and betweenness
centrality.

2.1. MEG data acquisition and preprocessing

In this study, a subset (10 subjects) of the data published in de
Pasquale et al. (2010) was used. Each subject underwent two or three
resting-state runs (lasting 3 or 5 min) during which the subjects main-
tained fixation on a small visual target. In total, we analyzed 24
runs. Neuro-magnetic signals (filter settings 0.16–250 Hz, 1025 Hz
sampling rate) were recorded using the 153-magnetometer MEG system
installed in a 4-layer magnetically shielded room at the University of
Chieti (Della Penna et al., 2000). Two ECG and two EOG channels
were recorded simultaneously with the MEG signals and were used
for offline artifact rejection. After each run, the subject’s head position
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relative to the MEG sensor was estimated from the field produced by
five coils placed on the scalp, whose positions were digitized together
with anatomical landmarks (nasion, left and right preauricular, vertex)
using a 3D digitizer (3Space Fastrak; Polhemus). A full description of
the preprocessing steps to obtain Band Limited Power (BLP) time series
can be found in Mantini et al. (2011) and it was extensively applied
to resting-state (de Pasquale et al., 2010, 2012; Marzetti et al., 2013),
and event-related (Favaretto et al., 2021; Larson-Prior et al., 2013;
Sebastiani et al., 2014) studies. Here, we summarize the basic steps.
First, environmental and physiological (e.g., cardiac, ocular) artifacts
were identified from the sensor space MEG time series using an ICA-
based approach, and only ICs that were not artifacts were retained for
further analysis. Then, the sensor maps of the non-artifactual ICs maps
were projected on a 3D Cartesian grid (64 mm3 cubic voxels) using a
Weighted Minimum Norm Least Square (WMNLS) estimation. For every
voxel in the 3D grid, the MEG activity was represented by a current
dipole with 3 orthogonal directions. The individual 3D grid was then
projected into the MNI 152 atlas space so that every voxel centroid
was assigned to a set of MNI coordinates. The 3 directions of the MEG
activity were obtained at each voxel from the linear combination of IC
time courses weighted by the corresponding source maps. Source-space
signals were filtered in the alpha [7-14 Hz] and beta [14–25 Hz] bands,
as in previous studies (Brookes et al., 2011; de Pasquale et al., 2018,
2012, 2016; Hipp, Hawellek, Corbetta, Siegel, & Engel, 2012) it was
shown that the strongest interactions within/across RSNs occur in these
bands. Source-space power time series were estimated over 200 ms
windows sliding every 20 ms to cover the entire resting-state run. In
this study, the BLP was extracted on a parcellation scheme composed
of 45 nodes belonging to 8 Resting State Networks (RSNs): Dorsal and
Ventral Attention (D/VAN), Visual (VIS), Somatomotor (SMN), Default
Mode (DMN), Fronto Parietal (FPN), Salience (SAL) and Executive
Control (EXE). Based on Yeo 17-network parcels (Thomas Yeo et al.,
2011), we selected seed voxels representing the geometrical centroid
of the selected parcels listed in Table 1. The selected voxels covered
the whole brain, as shown in Fig. A.1. The seed BLP time courses
constituted an 𝑛-dimensional vector 𝑥(𝑡) which defined a brain’s state
at time 𝑡, to be used to estimate the EC matrix.

2.2. Data binarization

The fundamental computational unit of our coarse-grained neural
mass model is the McCulloch-Pitts neuron, which was associated with
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Fig. 2. Analysis pipeline for effective matrix estimation and statistical analysis. (A) For a representative subject, BLP Time courses for each node. (B) Distance between the
individual correlation matrix for the continuous data 𝐶𝑐𝑜𝑛 and the one estimated from the binary data 𝐶𝑏𝑖𝑛(𝜏) as a function of the binarization threshold 𝜏. The red vertical line
illustrates the optimal threshold value 𝜏𝑜𝑝𝑡 for which the distance between 𝐶𝑐𝑜𝑛 and 𝐶𝑏𝑖𝑛(𝜏) is minimal. (C) Binarized signal, obtained setting all experimental values acquired, at
any time, to 0 or 1, compliant with the McCulloch-Pitts neuron model. In the insertion, it is reported the average of the incorrectly predicted items as obtained by the application
of the estimated EC matrices on corresponding experimental data as a function of the number of transitions (or time samples) used for training the matrices. This allows us to
identify the optimal number of samples that allows the effective matrix estimation. The average is calculated considering all runs for each subject. (D) Average estimated effective
matrix for a single subject computed on multiple subsets of data.
𝑠

each seed voxel. This can assume only two discrete values: zero when
at rest and one when active. Thus, we had to transform the BLP time
series into binary series. This was possible since, as demonstrated
by Tagliazucchi, Balenzuela, Fraiman, and Chialvo (2012) with fMRI
data, the BLP time course binarization most likely preserves the func-
tional connectivity dynamics. To determine the optimal threshold for
the binarization in each run, we proceeded as follows. First, for each
seed voxel 𝑖, we divided its BLP time series 𝑥𝑖(𝑡) by its maximum
value, so that all the time courses ranged between 0 and 1. Second,
we computed the binarized time course at a fixed threshold value 𝜏.
Third, we varied the threshold values to minimize the information
loss associated with the binarization of the BLP data. To this end, we
calculated the Euclidean distance between the BLP and the binarized
Pearson correlation matrices at each threshold value (Fig. 2B). The
optimal threshold value was associated with the minimal distance:

𝜏𝑜𝑝𝑡 = argmin
𝜏∈[0,1]

∑

𝑖𝑗
(𝐶𝑐𝑜𝑛 − 𝐶𝑏𝑖𝑛(𝜏))2, (1)

where 𝐶𝑐𝑜𝑛 and 𝐶𝑏𝑖𝑛(𝜏) are respectively the Pearson correlation matrices
of the BLP time series and the binarized time series. To train the
RHoMM, we used the optimally binarized BLP timeseries, 𝑠𝑖(𝑡).

2.3. The recurrent Hopfield mass model

We denote with 𝐽𝑖𝑗 the elements of the effective matrix indicating
the influence that node 𝑗 has on node 𝑖. This EC matrix, to be estimated
by RHoMM, should be able to reproduce the observed binarized time
course.

In this coarse-grained model (see Fig. 1 top left), at time step 𝑡,
the evolution of the brain state 𝑠𝑖(𝑡) in each McCulloch Pitts neuron
(see Fig. 1 bottom left) is described by a non-linear dynamic equation
determined by the recurrent Hopfield neural network

𝑠𝑖(𝑡) = 𝜃

[ 𝑛
∑

𝐽𝑖𝑗𝑠𝑗 (𝑡 − 1)

]

, (2)
75

𝑗=1
where 𝑛 is the number of neurons and 𝜃(𝑥), the activation function, is
the Heaviside step function (𝜃(𝑥) = 1 for 𝑥 ≥ 0, and 𝜃(𝑥) = 0 otherwise).
If the summation of the inputs on neuron 𝑖 is above zero, the neuron is
active, otherwise, it is silent.

2.4. Estimation of the effective network

We estimated the effective network by training RHoMM with Back-
propagation Through Time (BPTT) (see Fig. 1 top right) to minimize a
given cost function (Werbos, 1990). BPTT is a training method based
on a gradient descent approach that trains a given recurrent network
as a feed-forward neural network, with a database composed of the
observed system transitions (𝒔(𝑡 − 1), 𝒔(𝑡)), where 𝒔(𝑡) is a vector of all
the single neuron states 𝑠𝑖(𝑡). Thus, given an initial state 𝒔(𝑡 − 1), the
trained RHoMM will propose a prediction of the next system state 𝑠̄𝑖(𝑡)
as prescribed in the dynamical model, Eq. (2). More specifically, BPTT
aims at minimizing a cost function that measures the rate of incorrect
predictions. In our case, the cost function was the mean square error:

𝐸(𝑠𝑖(𝑡), 𝑠𝑖(𝑡)) =
1
𝑚

𝑚
∑

𝑡=2

𝑛
∑

𝑖=1
(𝑠𝑖(𝑡) − 𝑠𝑖(𝑡))2, (3)

where 𝑠𝑖(𝑡) and 𝑠̄𝑖(𝑡) are respectively the observed and predicted states
of the brain node 𝑖 at the time sample 𝑡, 𝑛 is the number of neurons
(i.e., nodes) in the network, and 𝑚 represents the time samples in the
time series. Given that 𝑠𝑖(𝑡) and 𝑠̄𝑖(𝑡) are binary, the mean square error
(Eq. (3)) is equivalent to the average number of incorrectly predicted
items at each time sample, because (𝑠𝑖(𝑡) − 𝑠̄𝑖(𝑡))2 = 1 only when 𝑠𝑖(𝑡) ≠
̄𝑖(𝑡), and it is zero otherwise. At each step of the iterative BPTT, the
prediction 𝑠̄𝑖(𝑡) is produced by the estimated 𝐽𝑖𝑗 by only considering
the previous state 𝑠𝑖(𝑡 − 1). According to the standard procedure for
gradient descent algorithms, to minimize the cost function 𝐸(𝑠𝑖(𝑡), 𝑠̄𝑖(𝑡))
we perturbed the estimated 𝐽𝑖𝑗 with the cost function gradient:

𝐽 ′
𝑖𝑗 = 𝐽𝑖𝑗 − 𝛼

𝑑𝐸 , (4)

𝑑𝐽𝑖𝑗
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Table 1
Selected seed voxels representing the parcel’s geometrical centroid and the network it belongs to.
Seed area Seed label Network MNI coordinates

(x,y,z)

Left primary visual cortex V1 L_VI VIS −24 −79 −7
Left Fovea L_FOV VIS −8 −79 18
Right primary visual cortex V1 R_VI VIS 27 −77 −4
Right Fovea R_FOV VIS 13 −75 22
Left Posterior Intraparietal Sulcus L_PIPS DAN −22 −68 52
Left Middle Temporal visual area L_MT DAN −45 −59 −8
Left Frontal Eye Field L_FEF DAN −27 −6 55
Right Posterior Intraparietal Sulcus R_PIPS DAN 24 −64 53
Right Middle Temporal visual area R_MT DAN 49 −52 −11
Right Frontal Eye Field R_FEF DAN 25 −7 57
Left Central Sulcus L_CS MOT −23 −27 63
Supplementary Motor Area SMA MOT −1 −25 63
Left Secondary somatosensory area L_SII MOT −51 −16 16
Right Central Sulcus R_CS MOT 23 −24 63
Right Secondary Motor Area R_SII MOT 50 −12 15
Left Superior Temporal Sulcus L_STS VAN −59 −32 27
Left Middle Frontal Gyrus L_MFG VAN −44 0 1
Right Supramarginal Gyrus R_SMG VAN 61 −30 28
Right Ventral Inferior Frontal Gyrus R_vIFG VAN 44 17 3
Left dorsal Prefrontal Cortex L_dPFC SAL 2 24 33
Left anterior prefrontal cortex L_aPFC SAL −43 38 12
Left Insula L_Ins SAL −34 21 −1
Right Insula R_Ins SAL 39 23 1
Left Lateral Part of the prefrontal cortex L_lat_part SAL −62 −42 35
Right dorsal Prefrontal Cortex R_dPFC SAL −6 23 33
Right anterior Prefrontal Cortex R_aPFC SAL 32 46 28
Right Lateral Part of the prefrontal cortex R_lat_par SAL −6 −51 31
Left Medial Prefrontalcortex L_medial FPN −3 28 46
Left anterior Prefrontal Cortex L_ant_PFC FPN −43 23 40
Right Superior Part of the prefrontal cortex R_sup_par FPN 53 −51 47
Left Superior Part of the prefrontal cortex L_sup_par FPN −48 −54 50
Left dorsal Prefrontal Cortex L_dPFC EXE −43 13 28
Left Intra Parietal Sulcus L_IPS EXE/CON −38 −51 44
Right Intra Parietal Sulcus R_IPS EXE/CON 62 −38 35
Right dorso-lateral Prefrontal Cortex R_dlPFC EXE/CON 45 21 23
Right Intraparietal Sulcus R_IPS EXE/CON 42 −49 45
Left Posterior Cingulate L_PCC DMN −57 −12 −18
Left Inferior Temporal Gyrus L_ITG DMN −45 −68 38
Left Angular Gyrus L_AG DMN −22 28 46
Left Superior Frontal Sulcus L_SFS DMN −8 51 5
Left medial Prefrontal Cortex L_MPFC DMN 62 −6 −18
Right Inferior Temporal Gyrus R_ITG DMN 52 −57 29
Right Angular Gyrus R_AG DMN 24 36 44
Right Superior Frontal Sulcus R_SFS DMN 8 50 5
Right Medial prefrontal cortex R_MPFC DMN −24 −79 −7
To explicitly compute the cost function gradient, we had to reg-
larize the activation function, which in RHoMM is non-derivable.
onsequently, we computed the gradient 𝑑𝐸∕𝑑𝐽𝑖𝑗 through the pseudo-
erivative (see Appendix A), obtaining an equation analogous to the
erceptron Learning algorithm, which is a well-known feed-forward
eural network (Carpenter, 1989; Widrow & Hoff, 1960):

̄′
𝑖𝑗 = 𝐽𝑖𝑗 + 𝛼

𝑚
∑

𝑡=2

[

𝑠𝑖(𝑡) − 𝑠𝑖(𝑡)
]

𝑠𝑗 (𝑡 − 1), (5)

where 𝛼 is the learning rate of the algorithm. We used Eq. (5) to run
the BPTT using the training data, and for each training set and specific
hyper-parameterization, we initialized the 𝐽𝑖𝑗 matrix elements with
andom values from a uniform distribution between −1 and +1 and we
et the diagonal elements to zero. Consequently, for each training set
e estimated a single matrix 𝐽𝑖𝑗 . In this way, at each step, the BPTT
pdated the 𝐽𝑖𝑗 matrix locally minimizing the cost function by using
ll the transitions (Eq. (3)), and we checked the gradual improvement
f the cost function until it reached a plateau corresponding to the
btained minima. More precisely, given a learning rate 𝛼, we ran the
PTT algorithm for a certain number of steps (𝑁𝑠𝑡𝑒𝑝𝑠) until the cost
unction reached a plateau in which it steadily fluctuated around a
iven value (Bottou, 2012). This value, due to the approximations of
he model and the inherent noise of the data, might not be zero, which
ould correspond with the perfect prediction of the data. Furthermore,
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to correctly estimate the 𝐽𝑖𝑗 matrix we ensured that the cost function
minimum obtained with a certain 𝛼 was a good local minimum, imply-
ing that 𝛼 assumed an optimal value and that the BPTT was run for
a sufficiently large number of 𝑁𝑠𝑡𝑒𝑝𝑠, which in our case was 1000. If
𝛼 is too large the system may converge to a suboptimal solution, and
if 𝛼 is too small the system may not reach the good local minimum
in the given number of 𝑁𝑠𝑡𝑒𝑝𝑠. Consequently, we started from a large
𝛼 and decreased its value. If the BPTT, after 𝑁𝑠𝑡𝑒𝑝𝑠, reached a plateau
that corresponded to a suboptimal value of the cost function, this value
would decrease when decreasing the learning rate 𝛼. Otherwise, when
we decreased 𝛼, the BPTT converged to a plateau corresponding to the
same optimal value. Thus, we continued reducing 𝛼 until the value
of the minimized cost function corresponding to the plateau did not
decrease any-more.

Notably, RHoMM is invariant under the multiplication of each 𝐽𝑖𝑗 -
row by an arbitrary positive value 𝑎𝑖, because it does not change the
deterministic transitions between the states that produce the dynamics
of the system. This implies that the non-linear dynamics equation
(Eq. (2)) produces the same transition if we substitute 𝐽𝑖𝑗 with 𝑎𝑖𝐽𝑖𝑗
as long as 𝑎𝑖 > 0,

𝑠𝑖(𝑡) = 𝜃

[ 𝑛
∑

𝐽𝑖𝑗𝑠𝑗 (𝑡 − 1)

]

= 𝜃

[ 𝑛
∑

𝑎𝑖𝐽𝑖𝑗𝑠𝑗 (𝑡 − 1)

]

, (6)

𝑗=1 𝑗=1
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This invariance suggests that there exists a partition of the space
of all 𝐽𝑖𝑗 matrices determined by subsets of matrices which lead to
the same dynamics. Thus, in our protocol, at each gradient step, we
normalize the rows of the estimated matrix 𝐽𝑖𝑗 , with the equation

𝐽 ′
𝑖𝑗 =

𝐽𝑖𝑗
∑

𝑗 |𝐽𝑖𝑗 |
, (7)

This normalization prevents the network weights from growing too
large, and allows us to use gradient descent also with larger learning
rates (Zhang, Jiang, Wei, & Dai, 2015).

2.5. Performance evaluation

Once the MEG time-series data was binarized, each run was divided
into two parts. The first part, composed of 70% of the data, was used
as the training set. The second part, consisting of 30% of the data, was
used as the test set. The training set was used for the estimation of the
model parameters, thus, to compute the estimated network weights 𝐽𝑖𝑗 ,
which were then validated with the test set. In our implementation,
instead of using the whole training set to provide a single estimate of
𝐽𝑖𝑗 , we split the training set in 𝑁ℎ contiguous temporal subsequences,
which were used to estimate 𝐽ℎ𝑖𝑗 matrices with the BPTT method (ℎ
denotes the subsequence index). Each matrix 𝐽ℎ𝑖𝑗 was normalized by
the square norm. To estimate each matrix 𝐽ℎ𝑖𝑗 we used a learning rate
𝛼 = 8 × 10−5 and 𝑁𝑠𝑡𝑒𝑝𝑠 = 1000. These values were chosen after an
nitial hyperparameter search on the test set subsequences (we used
rid search hyperparameter tuning Bergstra & Bengio, 2012), and they
ere large enough to ensure the gradient descent convergence together
ith the identification of a good local minimum in the cost function. We

hen provided a robust estimation of the effective matrix as the average
f the 𝑁ℎ matrices, as a compromise between the predictive power and
he variability of the estimation (Fig. 2D). It is important to consider
hat for a small number 𝑁ℎ of time-series subsequences, we may get
n improved predictive ability of the single sequence network model.
owever, the standard errors of the final averaged matrix 𝐽𝑖𝑗 are less

statistically reliable. To determine the optimal subsequence size, and
thus 𝑁ℎ, we studied the average number of incorrectly predicted items,
using the cost function in Eq. (3) for different numbers of contiguous
subsequences 𝑁ℎ. Thus, we selected the optimal number 𝑁ℎ which
corresponded to the minimum number of subsequences where this
function reached a plateau, as shown in Fig. 3A.

2.6. Statistical analysis

From the 10 subjects in our data set, we estimated a total of 24 𝐽𝑖𝑗
atrices from the alpha-band binarized BLP, and 24 𝐽𝑖𝑗 matrices from

he beta-band. First, to assess the significance of the estimated 𝐽𝑖𝑗 ma-
rices, we compared the distributions of the incorrectly predicted items
btained from 𝐽𝑖𝑗 with the ones obtained from random EC matrices
𝑖𝑗 , testing whether these distributions were statistically different. The
𝑖𝑗 random subsequences were drawn from a normal distribution with

he same mean value as each 𝐽𝑖𝑗 . Then, for a given binarized state, we
sed the 𝐽𝑖𝑗 and 𝑅𝑖𝑗 matrices to predict the next time sample. We then
stablished the performance of 𝐽𝑖𝑗 and 𝑅𝑖𝑗 as the number of incorrectly
redicted items for the training set (first 70% of the signal) and the test
et (remaining 30%). Second, we compared the matrices in the alpha
nd beta band (alpha-alpha and beta-beta comparison) within and
cross subjects, through Pearson’s correlation coefficient. We expected
larger consistency for the within-subject comparison. As a control,
e ran the same analysis on the interregional BLP correlation matrices.
hen, we analyzed the relationship between the across-run variability
f the estimated 𝐽𝑖𝑗 matrices and the variability of the interregional BLP
orrelation matrices. To further examine the 𝐽𝑖𝑗 patterns, we compared
he alpha and beta 𝐽𝑖𝑗 matrices across runs, through Network Based
tatistics Directed (NBSdirected) (Zalesky, Fornito, & Bullmore, 2010).
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inally, for each band, we estimated the EC matrices at the RSN-level. i
These represent the relative RSN weights for each within-RSN or
cross-RSN effective interaction. They were computed as follows. For
ach band and matrix row, we averaged the elements of the group-level
𝑖̄𝑗 matrix across the columns corresponding to the same RSN. Then, we
ounted separately the number of excitatory and inhibitory averaged
inks over the rows, and we normalized them by the total number of
inks (in each RSN or for pairwise across-RSN interactions).

.7. Ground-truth validation of RHoMM

We first validated RHoMM through a ground-truth simulation. We
enerated synthetic binary sequences for the set of nodes used in this
aper, applying the Hopfield model on randomly generated EC matrices
𝑖𝑗 (our ‘‘target’’ matrices) and then applied RHoMM to retrieve the
elated estimated 𝐽𝑖𝑗 matrices. As ground-truth target matrices, we
elected three random graph architectures. In each target 𝐽𝑖𝑗 , the edge
eights were randomly drawn from a uniform distribution [−1, 1],
nd values smaller than a threshold, one for each random matrix
rchitecture, were set to zero. We selected the three thresholds 0.04,
.2, 0.4. Then, starting from different first guesses, we produced 𝑁ℎ =
9 subsequences, similarly to the experimental data. For each random
etwork, we repeated this procedure 5 times, starting from different
eeds. To show that the parameters we selected were not suboptimal,
e inspected error measures as a function of the number of time

amples.

.8. Comparison between interregional BLP correlation patterns obtained
rom experimental and simulated data

To further validate the method, for each band, we compared the
orrelation matrix estimated from the binarized experimental signals
𝐶𝑜𝑏𝑠) with the one obtained from simulated runs using RHoMM (𝐶𝑠𝑖𝑚).
or the generation of the simulated data, we applied the following
rocedure. For each run, we applied the associated RoHMM to an initial
andom state, consisting of 45 binary elements. The initial state evolved
ntil it reached an attractor or a stationary state producing a binary
ime sequence with variable duration. This procedure was repeated
000 times, and the resulting time sequences were concatenated to
roduce a simulated run. We then estimated 𝐶𝑠𝑖𝑚 for each run. To
valuate the statistical significance of the comparison between simu-
ated and experimental connectivity matrices, we applied the Bramila
antel test (Mantel, 1967) on the average z-score of connectivity,

btained as the difference between the correlation value in each el-
ment and the mean over the correlation matrix, normalized by its
tandard deviation. Further, to check if 𝐶𝑠𝑖𝑚 preserved the fundamental
opological features of 𝐶𝑜𝑏𝑠, we associated a weighted graph to each
roup-averaged z-score connectivity matrix obtained from the experi-
ental and simulated signals. We based our comparison on three graph
etrics: the Degree, the Betweenness Centrality, and the Clustering
oefficient (Rubinov & Sporns, 2010). Specifically, for the Degree
e adopted the undirected-weighted Degree definition (Rubinov &
porns, 2010). For the Clustering Coefficient, we adopted Constan-
ini and Perugini’s generalization of the Zhang and Horvath formula
see Costantini & Perugini, 2014; Onnela, Saramäki, Kertész, & Kaski,
005; Zhang & Horvath, 2005). This allows us to consider simultane-
usly both positive and negative weights, and it is particularly sensitive
o non-redundancy in path information based on the sign. Finally, for
he Betweenness Centrality, we computed the weighted Betweenness
entrality defined as the fraction of all shortest paths in the network
assing through a given node (Brandes, 2001). Since these measures are
ll at the nodal level, to compare simulated vs. experimental centrality,
e computed the Pearson correlation coefficient among the obtained
rofiles of Degree, Clustering Coefficient, and Betweenness Centrality.
lthough these measures cannot encompass the richness of information
ontained in the original connectomes, they indeed capture some very

mportant features of the architecture of communication. In fact, large
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Fig. 3. Algorithm performance. (A) Box plot of incorrectly predicted time samples from the test set for 𝐽𝑖𝑗 matrices estimated for different time intervals as a function of the
number of time samples for alpha- and beta-bands. (B-C) Averaged density distributions of incorrectly predicted items for training and test sets in the alpha and beta bands,
respectively. The distribution of randomly generated 𝑅𝑖𝑗 is reported as a reference.
body of literature has shown how efficient models of integration rely
on the presence of central regions in the brain, denoted functional
hubs. Their spatial location, temporal dynamics, and integration seem
to capture fundamental axes of integration across distinct functional
domains. In the clinical field, today, many brain pathologies are being
reconsidered as disconnection syndromes, e.g., stroke, and the altered
behavior of functional hubs seem to correlate with the patients’ con-
ditions (see de Pasquale, Chiacchiaretta, et al., 2021). Further, several
works showed that cortical hubs captured connectome modifications
that could be related to specific genetic variants and disease-related
changes. In line with the analyses proposed in this work, previous stud-
ies adopted a measure of centrality to obtain an implicit representation
of the voxel-level connectivity matrix, see for example Preti and Van
De Ville (2017). Basically, connectomes were collapsed into profiles of
eigenvector centrality and based on them dynamic states of integration
in the brain were extracted. The results show that the obtained dynamic
brain parcellations were consistent with those reported in the literature.

3. Results

3.1. Evaluation of algorithm performance

First, we set RHoMM hyperparameters through automatic, data-
driven procedures. We already mentioned that we used a learning rate
𝛼 = 8*10−5 and a number of training steps 𝑁𝑠𝑡𝑒𝑝𝑠 = 1000, which
were obtained from a grid search on all the model hyperparameters
taking into account the two bands and the different 𝑁ℎ values (the
number of sub-sequences to train the network). To estimate the opti-
mal 𝑁ℎ, the number of intervals to train the network, we minimized
the number of incorrectly predicted items as a function of 𝑁ℎ. This
value guaranteed a statistically reliable estimate of the average 𝐽𝑖𝑗 . As
shown in Fig. 3A, the performance reached a stable plateau when we
trained the network with a number of time samples larger than 350.
When we trained the network with a small number of time samples
(e.g., 5), corresponding to a shorter window length, we obtained an
average value of incorrectly predicted items only slightly better than
from random matrices (shown in Fig. 3B-C). When we increased the
number of time samples, the predictive ability of the network grew
until it converged to a stable value, which was considerably lower than
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random matrices (see distributions of incorrectly predicted items for the
training and test set using 350 time samples in Fig. 3B-C). In terms of
frequency specificity, as it can be noted in Fig. 3A, alpha and beta bands
show similar performance and an equivalent optimal number of time
samples, corresponding approximately to a window length of 7 s. In
Fig. 3B,C, we report the density distribution of the incorrectly predicted
items obtained on the 𝐽𝑖𝑗 matrix estimated on 350 time samples both
for alpha and beta bands. To assess the algorithm output compared to a
random network, for each run and subject, we plot together the density
distributions of 𝐽𝑖𝑗 with those randomly generated, 𝑅𝑖𝑗 (see Materials
and Methods). As expected, the random network correctly predicted
about 50% of the items, depending on the specific distribution of the
on-off states of each run. Interestingly, the networks trained with the
BPTT algorithm correctly predicted, on average, more than 70% of
items (notwithstanding in most cases, considering the median value
of correctly predicted items, the performance reached approximately
80%). Moreover, the resulting estimated networks show a comparable
prediction performance both in the training and test sets (Fig. 3B-C),
with a slightly better performance in the training set. This assures us
that the model is not overparameterized and that it is not overfitting.

3.2. The reliability of the estimated effective connectivity matrices

In Fig. A.2, we show the obtained 𝐽𝑖𝑗 matrices for each subject, run,
and frequency band. We first assessed the similarity of the 𝐽𝑖𝑗 matrices
for each frequency band by estimating the correlation among the
obtained 𝐽𝑖𝑗 within and across subjects (Fig. 4A shows the correlation
distributions). The average correlation within-subject was 0.35 ± 0.18
and 0.44 ± 0.14 in the alpha and beta bands, respectively. This sim-
ilarity value suggests a good consistency across runs in the same
subject, and shows that the algorithm produces reliable estimates of the
effective connectivity at least over time epochs lasting as the run dura-
tion (few minutes), although a non-negligible variability is detected.
These correlation values significantly decreased to 0.21 ± 0.12 and
0.29 ± 0.10 respectively when comparing 𝐽𝑖𝑗 matrices across-subjects
(𝑝 < 0.004 and 𝑝 < 0.0007 respectively, Kolmogorov–Smirnov test).
In analogy with the previous analysis, we then computed the Pearson
correlation among the experimental BLP correlation connectomes, for
all subjects and bands (Fig. 4B). The average correlation between runs
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Fig. 4. Comparison between effective connectivity and BLP correlation matrices. Correlation histograms within and between subjects for EC (A) and BLP correlation (B)
matrices in alpha (left panel) and beta bands (right panel). The correlations between different runs of the same subjects are reported in red while the correlations across subjects
are in blue. (C) Scatter plot of correlation values between EC matrices and correlation values between corresponding BLP correlation matrices. The within-subject comparisons are
displayed in red, and the blue dots represent the across-subject comparisons.
from the same subjects was 0.69 ± 0.21 and 0.75 ± 0.15 in the alpha
and beta bands, respectively. Also in this case, these values significantly
decreased to 0.51 ± 0.15 and 0.61 ± 0.11 respectively, when comparing
the BLP correlation matrices across subjects (𝑝 < 0.0001 and 𝑝 < 0.002
respectively, Kolmogorov–Smirnov test). Notably, the dispersion of the
across-run correlation is not small, as in the case of the EC matrices.

Finally, we investigated the relationship between the similarity
values obtained over the effective connectivity and the corresponding
BLP correlation matrices. In Fig. 4C, we show the scatter plot of
the similarity between each pair of EC matrices and the correspond-
ing similarity between BLP correlation matrices. The within-subject
comparisons are reported in red. Notably, a clear, significant, linear
relationship can be observed (𝑟 = 0.59, 𝑝 < 2×10−16). This suggests that
lower similarities among the effective connectivity patterns are associ-
ated with lower similarities between the corresponding BLP correlation
matrices, explaining the across-run variability of the EC matrices even
within the same subject. In summary, these control analyses seem to
suggest that the effective connectivity estimated through our algorithm
describes subject-level dynamics, capturing individual characteristics
to be associated with information provided by functional connectivity,
which are here measured through BLP correlation.

3.3. Topography of the estimated effective connectivity matrices

Next, we analyzed the topography of the excitatory and inhibitory
edges among the network nodes associated with brain parcels. We
show in Fig. 5 the output of the developed algorithm. In Fig. 5(A,D),
the estimated EC matrices averaged across runs (in the alpha and
beta bands) are reported. Qualitatively, in these bands, some common
patterns of inhibitory (red tone colors) and excitatory (blue tone colors)
connections can be noted. Visual (VIS) and Dorsal Attention (DAN)
nodes seem to have a widespread inhibition role in both bands, whereas
nodes in the other RSNs seem to play an excitatory role. While in the
beta band, we notice few stronger inhibitory links involving the VIS
towards the other networks, the alpha inhibition seems more spread
than beta, consistently with the inhibition role played by these two
bands (Klimesch, 2012). To highlight the most representative effective
interactions between pairs of brain regions in a quantitative framework,
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we thresholded the strongest excitatory and inhibitory edges separately
using a common threshold in the two bands, which was selected to
show a reasonable number of links (> 50% of the total edges) for the
sake of clarity. Then, the EC matrices were visualized as circular graphs
for the excitatory (Fig. 5B,E; blue links) and inhibitory (Fig. 5C,F; red
links) parts of the network. The main difference is that the excitatory
connectivity is more homogeneously distributed across the brain while
the inhibitory one is mostly dominated by nodes in the Visual network
(and, to a lesser extent by nodes in the DAN and other networks)
down-regulating the activity of the other regions.

To quantitatively assess possible differences between the 𝐽𝑖𝑗 matri-
ces obtained in the alpha and beta bands, we compared them through
a topological analysis through NBSdirected. As can be seen in Fig. 5G
(red directed links), a significant connected component suggested that
the 𝐽𝑖𝑗 matrices topologically differ across bands. Specifically, up to a
𝑡-value = 3.5, we obtained a significant component from NBSdirected
(𝑝 < 0.007), which at this threshold comprised few edges (10) and
nodes (11) representing a stronger inhibition in beta as compared to
alpha. Interestingly, this analysis shows that the stronger inhibitory
links originating especially from the VIS in the beta EC matrix and
circular plots involve edges of connected components, linking VIS/DAN
nodes with receiving nodes in the other networks. As far as it concerns
the excitatory links, the two bands did not show statistically different
results in terms of connected components.

Now, to further characterize the obtained 𝐽𝑖𝑗 , we estimated the
EC matrices at the RSN-level by averaging the 𝐽𝑖𝑗 columns for each
row within and across RSNs, and counting the number of positive and
negative contributions (see Materials and Methods). These matrices
obtained in the alpha and beta bands are reported in Fig. 6 together
with the related bar plots representing the total relative inhibitory
and excitatory weight for each RSN. If we focus on the bar plots
concerning the excitatory links (blue bars), we notice a considerably
reduced contribution of the VIS and DAN compared to the other RSN,
for both bands. Moreover, the relative number of excitatory links in
beta is larger than in alpha. Conversely, VIS and DAN still play a strong
inhibitory role, with a smaller contribution of the DAN in the beta band.
Furthermore, the RSN-based inhibition/excitation matrices (Fig. 6B,
D) suggest that both bands show a common strong excitatory activity
within the VIS, from DAN and DMN onto VIS, from MOT and EXE

onto DAN, from VAN, SAL, and EXE onto MOT, from MOT onto VAN,
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Fig. 5. Resting state effective connectivity. (A-C) Alpha and (D-F) beta bands effective connectivity. (A) shows the averaged EC matrix for the alpha band. The columns represent
the sender, and the rows the receivers. (B,C) the circular graphs of the supra-threshold excitatory (blue) and inhibitory (red) networks, respectively. (D) The average effective
connectivity for the beta band. (E,F) The circular graphs of respectively the supra-threshold excitatory (blue) and supra-threshold inhibitory (red) networks. (G) Significant graph
component representing the few stronger inhibitory connections in the beta compared to the alpha band.
and SAL, from EXE onto DMN. Interestingly, the MOT, SAL, and EXE
show widespread excitatory activity towards all the other RSNs in the
beta band. This clear excitatory role in the beta compared to the alpha
band is obtained only at the RSN-level, and not at the component-level,
probably reflecting the variability of excitatory edges across subjects, as
expected from the similarity patterns in Fig. 4. Notably, the frequency-
specific effective connectivity patterns in the RSN-level matrix agree
with the results reported in studies on effective connectivity based
on fMRI data (Razi et al., 2017), such as the exclusive within-VIS
excitatory role found in alpha, the only mild excitatory role of DMN and
the excitatory contribution of SAL and EXE, in beta. As far as it regards
the inhibition (red bars) instead, it can be noted a common pattern in
the two bands. Apart from itself and DAN, the VIS network seems to
inhibit all the other RSNs. A similar inhibition pattern also occurs for
the DAN, especially in the alpha band. Further, the EXE seems to show
an internal inhibition. Differently from beta, in the alpha band, the VIS
is inhibited by the MOT, VAN, SAL, and FPN.
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3.4. RHoMM predictive power on synthetic data

In Fig. 7 we show four measures of the ability of RHoMM to recover
the ‘‘target’’ network on synthetic data. Two of these are measures
of similarity, the Pearson correlation between the target 𝐽𝑖𝑗 and the
estimated 𝐽𝑖𝑗 , and the mean squared error between the absolute-value
normalized target 𝐽𝑖𝑗 and the estimated 𝐽𝑖𝑗 . The results show that for
any of the three target matrices, the similarity is considerably high
and asymptotically tending to the optimal value even for 300 time
samples. A third parameter is the stability of the estimates over the
𝑁ℎ sequences measured through the mean over all edges 𝑖, 𝑗 of the
𝐽ℎ𝑖𝑗 ’s standard deviation. This measure decreases with the number of
time samples, suggesting that 350 samples or even some more could
provide stable 𝐽𝑖𝑗 estimates. Finally, we show the trend of the number
of incorrectly predicted test items, suggesting that 350 time-samples
should be adequate to predict the test subsequence.
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Fig. 6. Excitatory and inhibitory patterns at the RSN-level. (A) Total relative excitatory (blue) and inhibitory (red) weights were obtained as the means over the rows of the
RSN-level matrix in the alpha band. (B) same as (A), beta band. A more pronounced inhibitory role is evident in the alpha band, while the beta band plays a stronger excitatory
role. (C, D) RSN-level excitation matrices and inhibition matrices representing the normalized number of excitation-inhibition links. Senders are arranged in columns and the
receivers are the rows.
3.5. Comparison between simulated and experimental dynamics

To test the ability of the presented method to estimate a dynamical
network model reproducing the observed MEG signals, we generated a
set of sequences from the RHoMM estimated on each run. Then, we es-
timated the average binarized-BLP correlation matrix and compared it
to the experimental one. To this aim, we investigated their topological
properties.

First, for both real and simulated binary data we computed the z-
score (zs) of functional connectivity from the correlation matrices. In
Fig. 8, we report the average zs matrix in the alpha band from real
(Fig. 8A) and simulated (Fig. 8B) data. The same quantities, obtained
in the beta band, are reported in Fig. 8C, D. The difference between the
real and the simulated matrices are shown in Fig. A.6. To compare the
corresponding functional matrices, we applied a Mantel test. For both
bands, we obtained a significant similarity through Pearson correlation
(corr = 0.76, 𝑝 < 0.0001 in alpha and corr = 0.63, 𝑝 < 0.00001
in beta). We also estimated the difference between the normalized
FC patterns, since we expected smaller FC values for the simulated
data, due to reduced leakage effects (see Discussion). These differences
shown in Fig. A.6, are tiny, consistently with the Mantel test results.
Therefore, we conclude that the estimated effective connectivity can
reproduce signals with reciprocal statistical dependencies similar to
those obtained from real data.

Moreover, to compare the architectures of the two binarized-BLP
correlation connectivity matrices, we estimated the weighted Degree
Centrality, the weighted Betweenness Centrality, and the weighted
Clustering Coefficient at the nodal level. The profiles obtained in the
alpha (beta) band are reported in Fig. 9A, B, and C (Fig. 9D, E, and F).
We computed their similarity by adopting the Pearson correlation as the
distance metric. Notably, these profiles are significantly correlated both
in the alpha band (corr = 0.39, 𝑝 < 0.04, corr = 0.31, 𝑝 < 0.03, corr =
0.55, 𝑝 < 0.0001) and in the beta band (corr = 0.48, 𝑝 < 0.0001 for DEG,
and corr = 0.67, 𝑝 < 0.0001 for CLU) except for the BC. These findings
suggest that the real and simulated data share a similar topological
architecture of functional hubs, suggesting that the 𝐽𝑖𝑗 matrix can
model the salient characteristics of the nodal dynamics.
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Finally, we evaluated the ability to model the experimental dynam-
ics also by comparing the similarity between the FCs obtained from the
real and simulated dynamics, for RHoMM and an autoregressive dy-
namical model using the Langevin form of the DCM evolution equation
(SPM 12 manual Ashburner et al., 2021), over a subset of nodes and
runs (see details in Appendix B). We chose to compare RHoMM to an
autoregressive dynamic model based on the Langevin form of the DCM
evolution equation (instead of other DCM models) since this model is
more suited for circuits with a size ≥ 10 nodes (as in our case) and for
the slowly varying BLP time course (see Appendix B for a more detailed
motivation for this selection). The 𝐽𝑖𝑗 matrices obtained with the two
methods (see Fig. A.5) show a small overlap (e.g., the inhibitory role of
nodes of the VIS and DAN). The FC similarity obtained with RHoMM
is in general larger than for the autoregressive dynamical model.

4. Discussion

In this work, we present RHoMM, a generative model which es-
timates meso-scale effective connectivity from source-level MEG BLP.
RHoMM consists of a neural mass model featuring a dynamic evolution
determined by a recurrent Hopfield network (Amit et al., 1985; Brunel,
2016; Folli et al., 2018; Gosti et al., 2019; Hillar et al., 2021; Hillar &
Tran, 2018; Hopfield, 1982; Leonetti et al., 2020). This model was ap-
plied to binary sequences obtained from thresholded BLP time courses
which preserve the original functional connectivity topography. We
trained RHoMM to predict the evolution in time of the network activity
by means of backpropagation through time (BPTT) (Werbos, 1990)
and perceptron learning (Carpenter, 1989; Widrow & Hoff, 1960).
RHoMM produced EC matrices for each band, showing specific patterns
of inhibitory and excitatory links at the nodal- and RSN-level. Finally,
RHoMM generated theoretical evolutions of binarized-BLP sequences,
and from these, we computed BLP correlation connectomes. Several
findings suggest that the developed model is reliable. First, the es-
timated network outperformed the corresponding random one and
captured the individual variability. Second, the effective connectivity
revealed patterns consistent with the inhibitory role of the alpha/beta
band. Third, the BLP correlation connectomes generated by RHoMM
largely reproduced the topological properties of the measured ones.
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Fig. 7. Comparison between ground-truth and estimated effective connectivity matrices. (A) Examples of randomly generated ground-truth target networks for three different
threshold values: 0.04, 0.2, 0.4. (B) Dependence of RHoMM on the number of time samples. For the three ‘‘target’’ networks, obtained with thresholds 0.04 (blue), 0.2 (orange)
and 0.4 (cyan), we show the Pearson’s correlation between the estimated and target matrix, the mean squared error between the estimated and the absolute-value normalized
target matrix, the mean standard deviation over the 𝑁ℎ sequences of the 𝐽𝑖𝑗 elements, and the incorrectly predicted items. The standard deviation for each measure is estimated
from the 5 different generated networks.
Several novel aspects characterize this study. As compared to other
models, RHoMM is completely data-driven as it does not require any
prior assumptions on the data structure or the underlying generative
mechanisms. RHoMM is based on Hopfield networks, but while these
have been typically adopted at the microscale level (Amit et al., 1985;
Brunel, 2016; Folli et al., 2018; Gosti et al., 2019; Hillar et al., 2021;
Hillar & Tran, 2018; Hopfield, 1982; Leonetti et al., 2020), our model
was designed for studying excitation/inhibition at the mesoscale level
(e.g., in BLP connectomes). It thus allows us to investigate, at different
spatial scales, the excitation/inhibition balance which plays a funda-
mental role in shaping brain dynamics and connectivity. In fact, several
computational models show that, in a criticality regime, such balance
drives the emergence of neuronal avalanches and joint oscillations
that underlie resting state networks (Poil, Hardstone, Mansvelder, &
Linkenkaer-Hansen, 2012). These are typically studied through bio-
physical models that are highly sensitive to parameters’ perturbations
82
and need fine-tuning (Abeysuriya et al., 2018). Conversely, our model,
being simpler (fewer parameters and hypotheses involved) and scalable
to larger sizes, could pave the way for new studies on the mechanisms
of interaction in the healthy and affected brain.

4.1. RHoMM validation

4.1.1. Network performance and effective connectivity
Our findings seem to suggest that RHoMM is accurate and can model

MEG BLP time sequences. First, we successfully determined, through a
data-driven procedure, the minimum number of time samples required
to obtain a valid estimate of the effective connectivity. We found
that the duration of the time epoch corresponding to this number of
samples was approximately 7 s. With this choice, the estimated effective
connectivity predicts the activation state systematically better than a
random matrix, both for the training and test datasets. Notably, this
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Fig. 8. Comparison between experimental and simulated functional connectivity matrices. The experimental connectivity matrices in alpha (A) and beta (C) bands. The
simulated connectivity matrices in the alpha (B) and beta (D) bands.
Fig. 9. Comparison between experimental and simulated weighted centrality measures. Experimental (blue) and simulated (red) weighted Degree Centrality in alpha (A)
and beta (D) bands. The weighted Betweenness Centrality in the alpha (B) and beta (E) bands. The weighted Clustering Coefficient in the alpha (C) and beta (F) bands. All these
centrality measures obtained from the simulated matrices are significantly correlated with the experimental ones.
duration agrees with the reported slow dynamics of RSN functional
interactions (Brookes et al., 2011; de Pasquale et al., 2010). Interest-
ingly, we obtained similar time epochs in alpha and beta bands. This
is compliant with the experimental findings showing that these RSN
slow dynamics are shared in beta and alpha bands, both during rest
83
and task conditions (Betti et al., 2013; de Pasquale et al., 2010; O’Neill
et al., 2017).

Second, we obtained promising results on the reliability of the
estimated EC matrices. Specifically, we compared the patterns of the
effective connectivity obtained from runs recorded from the same
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participant and across subjects. We found that the similarity esti-
mated on the same subject was significantly larger than the similarity
across subjects. This supports the notion that the pattern of intrinsic
connectivity (both effective and functional) is built on individual expe-
rience representing priors for task-evoked activity (Betti, Corbetta, de
Pasquale, Wens, & Penna, 2018; Raichle, 2011; Spadone et al., 2015)
However, over a backbone of stable effective connectivity, we noticed
a non-negligible variability within the same individual. Such variability
is in line with the variability of the corresponding BLP correlation
connectivity matrices (see Fig. 4). Patterns of intrinsic functional con-
nectivity have been reported to be dynamically changing over slow
time scales (de Pasquale et al., 2012, 2016; de Pasquale, Spadone, et al.,
2021; O’Neill et al., 2018) This might reflect temporal fluctuations and
synchronization of different connectivity states (Cocchi, Gollo, Zalesky,
& Breakspear, 2017). In this perspective, it is reasonable to expect
that the EC matrix obtained by RHoMM, which can replicate the BLP
dynamics, may change over time to explain the variability of functional
connectivity. The developed RHoMM fulfills this condition. However,
since at the current stage, we did not model the temporal dynamics of
MEG connectivity, we acknowledge that future studies are needed to
investigate time-resolved versions of RHoMM and to evaluate effective
connectivity modulations over shorter time scales or induced by task.

Considering this undeniable heterogeneity, we evaluated the sig-
nificance of the estimated EC. For this reason, we estimated the 𝐽𝑖𝑗
tandard Error (SE) given the null hypothesis that the edge weight
s zero. We expected that given a certain degree of normality, the SE
ould be estimated by the standard deviation of the edges 𝐽𝑘𝑖𝑗 obtained

or different subsequences. Thus, we confirmed that the SE could be
stimated in this way regardless of the underlying heterogeneity (see
ppendix C and Fig. A.7). This implies that the edges with weight in
bsolute value greater than twice the SE are significantly different from
ero and have a sign that does not change even if RHoMM is estimated
n different subsequences. Figs. A.7B,C show the edge weights that are
n absolute value larger than twice the SE.

A final consideration pertains to the higher within- and across-
ubject similarity of functional connectivity compared to the effective
onnectivity, together with the different topology of the two types of
atrices. This is not surprising. Functional connectivity similarity is

lso driven by the anatomical distance, while this is not reported for
ffective connectivity. This dependency on the anatomical distance is
n part intrinsic to the data, as already shown also in fMRI studies
Lord, Horn, Breakspear, & Walter, 2012; Salvador et al., 2005) and
iven the anatomical similarity within and across subjects, this con-
ribution inflates the functional connectivity similarity. Furthermore,
unctional and effective connectivity provide different quantities and
t is plausible that pairwise functional connectivity is detected even if
he corresponding effective connectivity is zero. Moreover, the former
s symmetrical, while the latter is not. As an example, in Friston (2011)
toy example using DCM and coherence, demonstrated how 2 regions
ithout any causal relationship (EC=0) were functionally connected as
easured by coherence (FC was up to 0.78). These connections are

alled spurious correlations. This profound difference in connectivity
atterns also transfers to experimental data, as in our case. Never-
heless, we acknowledge that future studies should deeply investigate
ossible relationships between FC and EC obtained by RHoMM.

.1.2. Inhibitory/excitatory patterns in the alpha-beta band
The EC matrices produced by RHoMM showed a clear inhibitory

attern involving the VIS network and the posterior part of the DAN
ith the other RSNs in both bands with different patterns. While

n beta a stronger, localized inhibition was observed from selected
odes in the VIS to the other RSN (see Fig. 5D), a more spread
nhibition was observed in alpha mainly in VIS and DAN, and in other
etworks to a lesser extent (see Fig. 6). These results contribute to
orroborating our approach since they are in line with the current
84

iterature especially on the inhibitory role of the alpha band in the e
ccipital cortex. Since the seminal work of Berger (1929) showing
hat alpha power increases/reduces when closing/opening the eyes, a
arge amount of literature assigned to alpha oscillation an inhibitory
ole (Haegens, Nácher, Luna, Romo, & Jensen, 2011; Klimesch, 2012;
furtscheller, Stancák, & Neuper, 1996). Specifically, the extent and
ower of alpha oscillatory activity have been associated with cortical
isengagement from inputs of the body and the environment (Buzsáki,
006), supporting the idea of gating by inhibition (Jensen & Mazaheri,
010). This idea, that alpha oscillations relate to blocking off task-
rrelevant pathways, is reflected in the diffuse inhibition exerted by
he parieto-occipital cortex on all the other RSNs, as observed in
ur 𝐽𝑖𝑗 matrices during resting state. In line with our results, the
eta band has often been associated with mechanisms typically ob-
erved in the alpha band Spitzer and Haegens (2017). It has also been
inked to communication feedback (Bastos, Vezoli, et al., 2015), and
nhibitory processes (Gajewska-Dendek, Wróbel, Bekisz, & Suffczynski,
019) involving the VIS.

In general, inhibition is crucial for shaping neural activity and re-
ponse properties in the mature cortex, such as stimulus discrimination,
nd network stabilization (for reviews, see Ferguson & Cardin, 2020
nd Isaacson & Scanziani, 2011). A large body of psychophysical and
hysiological evidence has suggested that our visual system encodes
he retinal image by means of local mechanisms, responding selectively
o bandpass-localized stimuli, such as short bars or Gabor patches. Lo-
ally, in the columnar visual cortex, inhibitory neurons actively shape
esponse selectivity (Wilson, Scholl, & Fitzpatrick, 2018). However,
ecent evidence indicates that visual regions participate in a richer
etwork integrating information over much larger parts of the cortex
hrough excitation and inhibition with a predominance of inhibitory
onnections, see for example (Adini, Sagi, & Tsodyks, 1997). In network
odels, this property has been explained by the need of stabilization

y inhibition. Even in the absence of any sensory stimulation, in animal
odels, it has been shown that in some networks such as the visual,

omatosensory and motor networks, strong excitatory coupling leads
o unstable dynamics unless stabilized by inhibition. These networks
re denoted inhibition stabilized networks, see Sanzeni et al. (2020).

Interestingly, we also found a strong within-VIS excitatory role con-
omitant with the external inhibitory pattern. This excitation/inhibition
alance is in line with the evidence that, during vision, the VIS partic-
pates in a broader network involving multiple RSNs, where inhibition
s predominant (see, e.g., Adini et al., 1997). As an example, using
pectral DCM, Razi et al. (2017) found a clear excitation within VIS
nd a mild inhibition from VIS to the rest of the brain, as in our case.
urthermore, using regression DCM, Frässle et al. (2021) also showed
clear excitatory pattern within VIS, so that this RSN seemed to be

xtremely segregated due to this balancing between internal excitation
nd external inhibition. The authors interpreted this pattern in terms of
hierarchical organization ranging from unimodal (e.g., VIS) to trans-
odal (e.g., FPN, EXE, etc.) networks, as supposed by Mesulam (1998).
otably, functional connectivity studies (e.g., Agcaoglu, Wilson, Wang,
tephen, & Calhoun, 2019) also found a highly internally connected
IS, segregated from the rest of the brain. This pattern, in agreement
ith our functional and effective connectivity results, was related to

he condition of fixation as compared to eyes closed.
Finally, based on our findings, the beta band plays a strong ex-

itatory effect, apart from the VIS network. Within a framework of
ommunication through coherence, it has been suggested that top-
own attentional influences, estimated through effective connectiv-
ty, are mediated by beta-band synchronization (Fries, 2015). In this
erspective, the excitatory role played by the beta band at the RSN-
evel (see Fig. 6), nicely links with the increased connectivity and
he presence of hubs previously reported in this band (Betti, Penna,
e Pasquale, & Corbetta, 2021; de Pasquale et al., 2012, 2016; Hipp

t al., 2012) .
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4.1.3. RHoMM as a generative model
An additional validation of RHoMM tackles the generative capa-

bility of the model by (i) comparing the target and estimated EC
matrices through a ground-truth simulation; (ii) comparing the BLP
correlation connectomes obtained from the acquired data vs. the ones
estimated over the synthetic sequences generated by RHoMM. For the
first validation, we demonstrated that RHoMM can recover the ground-
truth parameters and suggest that our generative model could reliably
estimate the EC matrix underlying binarized power time courses. For
the second type of validation, we obtained the predicted signals by
applying the associated RoHMM multiple times to different starting
random states. The results were encouraging: a Mantel test showed
a significant similarity between the binary-BLP correlation matrices
obtained from measured and generated data. This suggests that the
estimated effective connectivity was able to reproduce the functional
architecture observed in the real data. This comparison is in analogy
with the work of Cabral, Luckhoo, et al. (2014), where the profiles of
the functional connectivity generated via the developed model and the
real ones were correlated. In this case, depending on the choice of the
optimal parameters, the obtained correlation values ranged between
0.3 and 0.4. Notably, these values are even lower than the ones we
obtained in the alpha and beta bands.

Furthermore, we analyzed the topological properties of the gen-
erated matrices, focusing on integration. In fact, it has been shown
that the topology of the architecture of interactions is fundamental
in ensuring efficient integration among brain regions (de Pasquale,
Spadone, et al., 2021). This relies on the temporal dynamics of a set
of central nodes (hubs) ensuring an efficient integration in the brain.
For this reason, here we evaluated and compared the patterns of nodal
centrality obtained in generated vs. measured connectomes. All the
considered measures are significantly correlated, i.e., real and simu-
lated data share a similar architecture of functional hubs. This suggests
that RHoMM, although relying on a reductionist model, can model and
generate salient characteristics of the nodal dynamics, without applying
any oversimplifications. Our results are in line with the work of Betzel
et al. (2016), where, to compare simulated vs. real connectomes, the
distributions of the same measures of centrality that we adopted here
were considered. However, in Betzel et al. (2016) specific network
growth mechanisms were considered to constrain either geometric
wiring rules based on the node distance or topological features. For
this reason, the observed agreement is not unexpected. Differently, in
RHoMM no constraint on any network growth mechanisms or topolog-
ical properties of the expected connections are considered. Thus, the
observed similarity between observed vs. simulated centrality seems
very promising.

4.2. Methodological considerations

4.2.1. Computational burden
An important aspect of any generative approach that estimates the

effective connectivity is the scalability to large network sizes. Notably,
RHoMM was applied to source-level MEG BLP time courses, with a
temporal resolution of the order of 10 ms, that is a number of points
about 100 times larger than fMRI data. This greater temporal resolution
implies an increase in computational time since we could use many
temporal samples (about 14,700 corresponding to ∼ 5 min). This al-
lowed us to divide the recordings into many segments 𝑁ℎ and estimate
the mean effective connectivity from them. In our case, we analyzed
45 nodes and the optimal 𝑁ℎ corresponded to sequences of about
350 binary vectors, obtained from a total of about 14,700 temporal
samples. To understand how the execution time grows with the number
of nodes in RHoMM given a certain MEG BLP time course, we ran a
simulation on an 8-core processor using the 30 segments of the training
set (comprising 350 transitions each) from a sample run.

For the simulation, we applied RHoMM to the binarized MEG BLP
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time course of the 45-node set, and then we reduced the number of
nodes 𝑛 to inspect the effect of network size on the execution time.
We aimed to obtain a relationship between the number of nodes and
execution time, to extrapolate the computational burden for larger
network sizes. Specifically, we tested 𝑛 = 8, 16, 32, 45. Since our al-
gorithm solution depends on the selection of the learning rate 𝛼 and
the gradient descent number of steps 𝑁𝑠𝑡𝑒𝑝𝑠, we performed an a priori
hyperparameter search and found that 𝑁𝑠𝑡𝑒𝑝𝑠 = 1000 worked for all
network sizes and the optimal learning rates were 𝛼 = 10−4, 10−4, 9 ×
0−5, 8 × 10−5 for 𝑛 = 8, 16, 32, 45.

We found that RHoMM takes less than 3 s to converge to a solution
for time series of approximately 350 transitions and 45 nodes. This
value should be multiplied by 30 because it is repeated on each time
series segment, thus it would require 90 s in total for 10,500 temporal
samples. From our simulation (see Fig. A.3) we obtained that the exe-
cution time scales approximately linearly (𝑟 = 0.9999) with the network
size. In this perspective, for networks of 100 or 150 nodes, which is the
size typically used in MEG functional connectivity, RHoMM would take
approximately 6 s and 9 s respectively. To provide further predictions
on the computational burden for network sizes larger than 45 nodes,
we added results from simulated data. We used simulated data since it
is easier to scale the network, as we know the ground-truth and we can
control RHoMM convergence. We simulated random graph networks
with edge weights randomly drawn from a uniform distribution [−1,1]
and set to zero the weights below a threshold of 0.04. We selected the
suitable hyperparameters ensuring convergence for the different node
sizes. Specifically, we used 𝑁𝑠𝑡𝑒𝑝𝑠 = 10000 for all the network sizes
and 𝛼 = [.4, .6, .8, 1.0, 1.5, 2.] for the network sizes 𝑛 = [8, 16, 32,
45, 100, 150]. The trend of the obtained curve is not linear, but it is
close to the experimental trend up to 45 nodes and more conservative
computational times are obtained than with the linear assumption.

In contrast, Frässle et al. (2018) reports that, when applied to a 104
region whole-brain BOLD fMRI acquisition of 230 functional images,
rDCM with sparsity constraints takes approximately 10 min on a single
core and 1 min with 16 processor cores on an HPC cluster. Further-
more, Frässle et al. (2017) reports that on 940 functional images from
fMRI acquisitions, the execution time for a 6-node network was around
0.24s with rDCM without sparsity constraints, and around 10 min with
the standard DCM variational Bayesian approach under the Laplace
approximation, while in Frässle et al. (2021) it took on average 0.6 s on
15-node networks for rDCM without sparsity constraints. It is important
to consider that rDCM without sparsity constraints is faster than with
sparsity constraints (Frässle et al., 2018, 2017). Notably, these times are
approximate indicators as they highly depend on the specific hardware
used. Although we acknowledge that a detailed comparison between
a gradient descent algorithm (RHoMM) and an algorithm which is
based on ordinary least squares (rDCM) is questionable, because the
number of iterations has a strong correlation with the convergence to
the optimal solution, we can state that the execution rate of RHoMM
is competitive, or maybe better than rDCM. In the future, we plan
to implement a GPU version of RHoMM that will take advantage of
the straightforward parallelization of the BPTT algorithm and will
considerably reduce the execution time for networks with more than
100 nodes.

4.2.2. Leakage effects on the effective connectivity matrix
A methodological issue deeply discussed and dealt with when es-

timating functional connectivity, and in some cases directed connec-
tivity, is the effect of leakage or linear mixing on the interaction
patterns. In MEG, first-order leakage is inherent to the inverse approach
used to project channel-level signals into the source space, and may
produce over-connectivity at 0-phase lag, especially close to the seed.
Several methods were proposed to reduce leakage effects on functional
interaction measures, either operating on the leakage pattern intro-
duced by the specific inverse approach, e.g., the Geometrical Correction
Scheme (Della Penna et al., 2019; Wens et al., 2015) or operating on

the signal by reducing 0-lag phase interactions and highlighting lagged
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connections, e.g., the orthogonalization method (Brookes, Woolrich, &
Barnes, 2012; Hipp et al., 2012) for the slow band-limited power and
the imaginary part of coherence or the MIM (Marzetti et al., 2013;
Nolte et al., 2004) and PLI (Stam, Nolte, & Daffertshofer, 2007) for the
fast signal. In principle, first-order leakage should not affect directed
interaction estimates. Since these estimates evaluate the influence of
past activity of the seed on the target’s future activity, the effects
of linear mixing on lagged interactions are inherently leakage-free,
as for Phase Transfer Entropy (Lobier, Siebenhühner, Palva, & Palva,
2014) and MPSI (Basti et al., 2018). However, some of the mea-
sures estimating causal interactions rely on multivariate autoregressive
models of the seed and target signals, which are influenced by their
correlation and thus are indirectly affected by leakage. This applies
for example to Granger Causality and its spectral version (Bressler &
Seth, 2011; Kaminski & Blinowska, 1991; Spadone, Wyczesany, Della
Penna, Corbetta, & Capotosto, 2021). In the case of effective connec-
tivity estimation, such as our approach or DCM and any approach
fitting to the experimental data to estimate the model parameters,
first-order leakage does not affect the results. However, whichever
is the connectivity measure, spurious interactions may occur due to
second-order leakage effects, caused by induced connectivity among
regions close to truly connected ones, occurring also at non-0 lag and
thus affecting directed and effective connectivity (He et al., 2019;
Palva et al., 2018). Removing such effects, which are inherent to any
connectivity estimate, is a hard task, and although a few strategies to
remove them were proposed (Wang et al., 2018), these deserve further
investigation in terms of stability, reliability, and generalization. As a
first step, here we tested how second-order leakage might affect the
estimation of the 𝐽𝑖𝑗 matrix, which in principle depends on all the
nodes of the connectome. We selected a subset of 16 nodes that were
placed at a distance larger than 3.5 cm, using a Monte Carlo method.
At this distance, the contribution of first-order leakage was shown to
significantly decrease (de Pasquale et al., 2010), and this should reflect
in a lower contribution of the second-order leakage. We then estimated
the EC matrix again from a subset of 5 subjects and we analyzed the
relationship with the corresponding 𝐽𝑖𝑗 values of the full-size matrix,
involving the same node pairs. As shown in Fig. A.4, the relationship
is linear, as stated by the significant Pearson’s correlation coefficient
(r=0.67, p< 2.2 × 10−16). Notably, different scaling does not affect the
dynamics generated by the 𝐽𝑖𝑗 matrix, thus we can state that the 𝐽𝑖𝑗
ubsets are similar, although the range of the 𝐽𝑖𝑗 values is different.
urthermore, if the signals of the nodes excluded from the subset were
ndirectly influencing the effective connectivity estimation, we would
ot obtain a linear relationship between the two subsets. Thus, this
nalysis suggests that these 𝐽𝑖𝑗 values are not biased by second-order
eakage and represent reliable effective connectivity.

.3. Advancement with respect to the current literature

RHoMM is a recurrent neural network, with Hopfield-like dynamics,
art of a larger class of generative approaches (Betzel & Bassett, 2017;
anza, Di Angelantonio, Gosti, Ruocco, & Folli, 2021; Magrans de Abril
t al., 2018). Hopfield network models were originally introduced to
odel memory storage and recall (Hopfield, 1982). Recurrent neural
etworks were used to describe brain activity during different cognitive
asks, e.g., to model the neuronal population in the prefrontal cortex
nd elucidate mechanisms of selection and integration of task-relevant
nputs (Mante, Sussillo, Shenoy, & Newsome, 2013). Further, in the
remotor cortex, they unveiled a mechanism benefitting from temporal
xpectations in perceptual detection (Carnevale, de Lafuente, Romo,
arak, & Parga, 2015). In general, recurrent neural networks were
ostly used to model small-scale neuronal populations. Only recently

hey were applied to larger scales in a few studies (Hahn et al.,
019; Singh et al., 2020). As an example, a non-predictive model that
eproduced functional connectivity using DTI to constrain the network
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onnectivity and gradient descent to minimize the cost function was t
eveloped (Hahn et al., 2019). In addition, a recurrent neural network
nspired by neural mass models (MINDy) was applied to meso-scale
MRI data, and it was able to estimate the effective connectivity and
eproduce brain dynamics at the meso-scale level (Singh et al., 2020).

popular class of generative approaches, widely applied to estimate
ffective connectivity, is dynamic causal modeling (DCM, Friston, Ka-
an, Biswal, & Razi, 2014). This is based on linear dynamic equations
o model the behavior of neural regions. DCM was typically applied
o a small set of brain regions, and successfully modeled brain activity
nder different conditions (Bastos, Litvak, et al., 2015; Friston et al.,
014; Makuuchi & Friederici, 2013). Recently, a modified version of
CM, named regression DCM, was introduced to analyze a larger
umber of nodes. This was achieved, especially in fMRI, by introducing
convolution kernel on the BOLD signals to retrieve its functional

elationship with the neural activity (Frässle et al., 2021, 2018, 2017).
o the best of our knowledge, on MEG data, DCM was used only in
he context of small networks and mainly in the comparison of two
xperimental conditions (David et al., 2006; Jafarian, Litvak, Cagnan,
riston, & Zeidman, 2020; Kiebel et al., 2008; Lu et al., 2012). Here,
s a quick comparison with RHoMM over resting state data in the
ource space, we applied an autoregressive dynamical model using the
angevin form of the DCM evolution equation to retrieve the EC matrix
rom the source space BLP and generate simulated evolutions. The
𝑖̄𝑗s show a small overlap, while it seems that RHoMM outperforms
he autoregressive dynamical model in reproducing the FC matrices.
owever, the comparison is not possible at the level of the predicted

equences, which are different due to binary or not-binary values. We
cknowledge that more extensive comparisons between RHoMM and
CM or similar would be of interest and could be the topic of future
ork.

Analogously to Singh et al. (2020), our recurrent neural network
s designed to model and predict meso-scale activity and connectivity
hrough a data-driven approach that intrinsically models the non-
inearity of neural dynamics. Moreover, similarly to Singh et al. (2020),
HoMM minimizes the prediction error at the single transition level.
everal features make our approach different from the models cur-
ently available in the literature. First, RHoMM is substantially less-
onstrained than other assumption-based models, e.g., DCM, the model
n Hahn et al. (2019), and MINDy, since the EC matrices are estimated
ithout any constraint or biases on topology, directionality, and sparse-
ess. Thus, any configuration could potentially be retrieved. Moreover,
HoMM does not assume the gaussianity of the model parameters,

hus allowing non-linear dynamics of the state variables, and it could
apture features that other linear approaches, such as DCM, might
iss. Second, differently from Hahn et al. (2019), RHoMM provides

he effective connectivity together with a prediction of the neural
ynamics. Third, differently from other approaches, a considerably
mall number of hyperparameters (only 3, i.e., number of steps in the
radient descent, learning rate and number of epochs to infer the EC
atrix) are involved in the model training while no parameters are
sed for regularization. While these features reduce possible risks of
nstability in the obtained network, these are tailored for the modeling
f MEG BLP, providing a temporal resolution and richness of informa-
ion considerably higher than fMRI data. Fourth, the network design
s optimized for high temporal resolution data (MEG, EEG) through
he analysis of binary states (active or inactive) and the dynamics of
n/off transitions for each brain node. This allowed the inference of EC
atrices (with about 50 nodes), and the prediction of their dynamics,
ith the possibility of scaling to a larger number of neurons (hundreds).
inally, we designed RHoMM, based on a well-established small-scale
odel (Hopfield model). This fosters future research on the dynamics

f inhibition/excitation at different spatial scales using similar models
e.g., self-similarity between micro and meso-scale). In fact, the appli-
ation of RHoMM to the meso-scale requires a fundamental change of
cale and a different interpretation of the model design. First of all,

he activation and rest of McCulloch Pitts neurons in RHoMM are not
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Fig. A.1. Distribution of seed voxels over the MNI template. The seed voxels are color labeled based on the RSN they belong to.
associated anymore with the generation of spike trains from a single
cerebral neuron, but to the emergent binary BLP of a brain region
(i.e., its above- and below-threshold BLP). For this reason, the binary
sequences of the network nodes also consider their inherent nonlinear
dynamics. Furthermore, most of the research on Hopfield networks
is based on symmetric networks with Hebbian learning. Conversely,
to model the meso-scale whole-brain excitation/inhibition pattern, we
considered the added complexity of asymmetric networks that, with
few exceptions, are often overlooked (Folli et al., 2018; Leonetti et al.,
2020). Moreover, we applied BPTT and perceptron learning as opposed
to Hebbian learning to generate a model capable of reproducing the
brain activity dynamics.

5. Conclusions

In summary, the application of a recurrent Hopfield neural network
on source-level MEG power time courses allowed us to estimate the
effective connectivity and to generate predictions of the experimental
data. RHoMM is a fundamentally data-driven approach that is based on
the assumption that BLP time courses can be associated with sequences
of binary states with non-linear dynamics. Notably, since recurrent
Hopfield neural networks are simple discrete-time recurrent neural
networks with binary neurons, RHoMM state space is finite. This prop-
erty, together with the limited number of model parameters decreases
the computational burden of RHoMM, which can be run also on any
standard PC. We validated RHoMM on a set of experimental MEG data
showing its capability to capture the individual variability and repro-
duce the salient characteristics of BLP dynamics. Importantly, RHoMM
minimalist approach leads to a more constructive framework that could
be enriched by additional parameters that might improve the model’s
predictive ability. This framework is suitable for extensive application
in system neuroscience, to derive the inhibition/excitation patterns of
larger sets of experiments in order to investigate the complex interplay
among different brain regions during different experimental conditions,
in the healthy and affected population.
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Appendix A. Cost function gradient derivation

Eq. (2) is singular, thus in principle the gradient 𝑑𝐸
𝑑𝐽𝑖𝑗 is not defined.

Nevertheless, we can linearize the model and derive an approximate
pseudo-derivative for the gradient function. With this aim, we define
the activity strength which acts on any node 𝑖 as the sum of the
weighted inputs of the nodes that are linked to 𝑖 and are active at the
time 𝑡 − 1:

𝜓𝑖(𝑡) =
𝑛
∑

𝑗=1
𝐽𝑖𝑗𝑠𝑗 (𝑡 − 1)

This allows us to write the derivative of Eq. (2) with respect to 𝐽𝑖𝑗
as following:

𝑑𝐸
𝑑𝐽𝑖𝑗

= 𝑑
𝑑𝐽𝑖𝑗

[ 2
𝑚

𝑚
∑

𝑡=2

𝑛
∑

𝑖=1
(𝑠𝑖(𝑡) − 𝜃(𝜓𝑖(𝑡)))2] (A.1)

𝑑𝐸
𝑑𝐽𝑖𝑗

= 2
𝑚

𝑇
∑

𝑡=2
(𝑠𝑖(𝑡) − 𝑠𝑖(𝑡))(

𝑑𝜃(𝜓𝑖(𝑡))
𝑑𝜓𝑖(𝑡)

)[ 𝑑
𝑑𝐽𝑖𝑗

(𝐽𝑖𝑗𝑠𝑗 (𝑡 − 1))]

Using the rough linearization 𝜃(𝜓𝑖(𝑡𝑘)) ≈ 𝜓𝑖(𝑡𝑘),

𝑑𝐸
𝑑𝐽𝑖𝑗

= 2
𝑚

𝑚
∑

𝑘=2
(𝑠𝑖(𝑡) − 𝑠𝑖(𝑡))[

𝑑
𝑑𝐽𝑖𝑗

(𝐽𝑖𝑗𝑠𝑗 (𝑡 − 1))]

𝑑𝐸
𝑑𝐽𝑖𝑗

= 2
𝑚

𝑚
∑

𝑘=2

[

𝑠𝑖(𝑡) − 𝑠𝑖(𝑡)
]

𝑠𝑗 (𝑡 − 1)

Thus, we obtain the update rule used for the BPTT algorithm,
Eq. (5).
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Fig. A.2. Individual effective connectivity matrices. For each subject (row) and run (column) the EC matrices are shown for the alpha (left) and beta (right) bands. Excitatory
(positive) values are coded in blue, and inhibitory (negative) in red. The senders are the columns, and the receivers are the rows.
Appendix B. Model comparison

The primary contribution of RHoMM is to propose a nonlinear
predictive generative model based on NMMs capable of estimating
the EC for BLP source space data. To compare RHoMM with a previ-
ously established method we used an autoregressive dynamical model
based on the Langevin form of the DCM evolution equation (SPM 12
manual Ashburner et al., 2021). We chose to compare RHoMM to an
autoregressive dynamic model based on the Langevin form of the DCM
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evolution equation (instead of other DCM models) for the following
reasons. First, we did not select any of the DCM models for MEG/EEG
available in SPM 12 (Ashburner et al., 2021; David et al., 2006; Jafarian
et al., 2020; Kiebel et al., 2008; Lu et al., 2012) for two reasons.
The first one is that all of them consider small circuits comprising
few connections, while we wanted to compare a larger network for
the sake of generality. Secondary, these models were designed for
the analysis of evoked signals and induced responses, which were not
the best choice for our comparison, since we analyzed resting state
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Fig. A.3. Computational burden. This plot shows an estimate of the computational burden when scaling RHoMM. The blue points represent the measured execution time for
different sizes of the RHoMM network (𝑛 = 8, 16, 32, 45). The red lines show the linear fit of the measured values, and it represents an extrapolation of the running times for larger
networks. For network sizes larger than 45 nodes, we show the execution time for simulated dynamics obtained from synthetic 𝐽𝑖𝑗 matrices (orange line).
Fig. A.4. Control on second-order leakage effects. (a) Binary matrix based on the spatial euclidean distance calculated between different areas of the brain. The matrix shows
how node pairs used in this simulation were selected. Blue elements mark the node pairs closer than 3.5 cm, otherwise, the pairs are white. A subset of 16 nodes at distance >
3.5 cm was selected. (b) Scatterplot between the 𝐽𝑖𝑗 elements of the full-size matrix and the corresponding matrix obtained from the 16 nodes subset. On the vertical axis, we
report the 𝐽𝑖𝑗 matrix values obtained using only the MEG signals for which the minimum spatial distance from each other is greater than 3.5 cm. On the horizontal axis we report
the values obtained from the original 𝐽𝑖𝑗 connectivity matrix but considering only the rows and columns corresponding to the 16 nodes subset. The linear relationship suggests
that these values were similar and that they were not affected by second-order leakage.
data without any external input and/or external condition to explain
the spontaneous fluctuation of the oscillatory Band Limited Power,
which are only captured as stochastic noise terms. Two other DCM
models (cross-spectral DCM (Friston et al., 2012), and phase coupling
DCM Penny, Litvak, Fuentemilla, Duzel, & Friston, 2009) were designed
for modeling the fast oscillatory activity. While in principle it would
be possible to apply these models to our BLP time courses, this is not
straightforward and would imply some manipulation of the models,
which would not be a benchmark anymore. Inspecting the models for
fMRI, the one closer to our requirements resulted in the spectral DCM
(spDCM Friston et al., 2014; Razi et al., 2017) which is suitable for
modeling intrinsic dynamics during resting state. An important reason
is that spDCM can deal with wider circuits than the MEG models. This
model consists of a Langevin form of the evolution equation (motion)
and a non-linear forward model for the hemodynamic response. An-
other important reason is that, in our case, the Langevin form of the
evolution equation (motion) is a simple equation that seems suitable
to be applied to BLP, as the hidden states are assumed to conceptually
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represent the slow fluctuations of neuronal activity, which are in effect
measured through the BLP (see, e.g., Logothetis, Pauls, Augath, Trinath,
& Oeltermann, 2001 on the link between the BLP and the BOLD signal).
We thus used a discretized version of the Langevin evolution equation
in DCM, 𝛥𝑥(𝑡) = 𝐽𝑥(𝑡) + 𝜐, and linear regression to estimate the 𝐽𝑖𝑗
matrix.

We used a subset of 16 nodes (the nodes are the same as in Fig. A.4)
and a subset of 5 subjects. The first 4 nodes of the subset included 2
nodes from the Visual network and 2 from the DAN. Since we analyzed
the BLP time courses associated to nodes in the source space, we did
not need forward and inverse equations to invert the ensuing model.
Thus, we applied the discretized version of the Langevin evolution
equation to the BLP signal in the alpha band. The 𝐽𝑖𝑗 proposed by both
approaches for each sample run and their average over the runs are
shown in Fig. A.5 together with the similarity between the experimental
and simulated FC measured through Pearson’s correlation, for RHoMM
and the autoregressive dynamical model. In the 𝐽𝑖𝑗 matrices, the first
2 nodes are Visual ones, and the second pair are from the DAN. The
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Fig. A.5. Model Comparison. (A) Estimated 𝐽𝑖𝑗 matrices for 5 representative runs, obtained by RHoMM (left) and the Autoregressive Dynamical Model (right). (B) Mean 𝐽𝑖𝑗
matrices over the 5 runs, for RHoMM (left) and Autoregressive Dynamical Model (right). (C) Similarity between the FC matrices obtained with the two generative models, and
the experimental FC, estimated by Pearson’s correlation.

Fig. A.6. Comparison between experimental and simulated FC matrices. Normalized experimental (left) and simulated (middle) matrices, together with their difference (right).
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Fig. A.7. Effective Connectivity Significance. (A) Scatter plot of the average SE measured over the target edges that were zero, and the average standard deviation of the 𝐽ℎ𝑖𝑗
measured over the 𝑁ℎ subsequences, for different numbers of subsequences 𝑁ℎ = 29 (pink), 39 (purple), 40 (black). The dashed line is the x=y line. (B) and (C) Ranked weights
of the experimental average alpha and beta 𝐽𝑖𝑗 . The gray regions represent the edges within one and two SE.
autoregressive dynamical model partially confirms the inhibitory role
on the Visual and DAN networks found in alpha with RHoMM, first
and fourth node in the 𝐽𝑖𝑗 matrix, as can be appreciated from the mean
𝐽𝑖𝑗 matrices in Fig. A.5B obtained respectively with RHoMM and the
Autoregressive Dynamical Model.

Furthermore, RHoMM generally outperforms the Autoregressive Dy-
namical Model in retrieving the BLP dynamics, as suggested by the
FC similarity bar plot. Notably, there are also some differences among
the two matrices, but the comparison between the 2 models is chal-
lenging since RHoMM predicts the binary BLP sequences, whereas the
Autoregressive Dynamical Model predicts the not-binarized BLP. As
a consequence, a comparison at the level of predicted sequences is
not possible. Thus, we acknowledge that more extensive comparison
between RHoMM and DCM/Autoregressive Dynamical Model or Bio-
physical Network Model (BNM) would be of interest and could be
the topic of multiple papers in the next future, requiring a dedicated
research work.

Appendix C. Effective connectivity significance

In this Appendix, we discuss the statistical significance of the esti-
mated edges. For this aim, we demonstrated that the standard deviation
of the single estimated connections, std 𝐽ℎ𝑖𝑗 , gives us an estimate of the
standard error (SE) of the edge population given the null hypothesis 𝐽𝑖𝑗
= 0. We generated synthetic data by constructing an objective network
𝐽𝑖𝑗 as in Section 2.7. We drew from a uniform distribution [−1, 1] the
weights for all 𝐽𝑖𝑗 connections. We set to zero the edges with weights
smaller than the threshold 0.4. Then, we obtained the estimated net-
work training RHoMM on different numbers of subsequences 𝑁ℎ = 29,
39, 40. We use 𝑚 = 355 and𝑁𝑠𝑡𝑒𝑝𝑠 = 3×105, and 𝛼 = 10−6. Fig. A.7 shows
the average SE of 𝐽ℎ𝑖𝑗 conditioned on 𝐽𝑖𝑗 = 0 as a function of the average
std 𝐽ℎ𝑖𝑗∕

√

𝑁ℎ. This plot suggests that the obtained values are distributed
around the 𝑦 = 𝑥 line. This validates our hypothesis that we can use the
average std 𝐽ℎ to estimate if a single 𝐽 is significantly different from
91

𝑖𝑗 𝑖𝑗
zero, that is if its absolute value is larger than the threshold given by
2 SE, with the SE = average (std 𝐽ℎ𝑖𝑗∕

√

𝑁ℎ).
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