energies

Article

Forecasting the Power Generation Mix in Italy Based on Grey
Markov Models

Guglielmo D’Amico **

check for
updates

Citation: D’Amico, G.; Karagrigoriou,
A.; Vigna, V. Forecasting the Power
Generation Mix in Italy Based on Grey
Markov Models. Energies 2024, 17,
2184. https://doi.org/10.3390/
en17092184

Academic Editor: Ahmed Abu-Siada

Received: 29 March 2024
Revised: 27 April 2024
Accepted: 1 May 2024
Published: 2 May 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Alex Karagrigoriou

2,t t

and Veronica Vigna

Department of Economics, “G. d’Annunzio” University, 65127 Chieti, Pescara, Italy

Department of Statistics and Insurance Science, University of Piraeus, 18534 Piraeus, Greece;
alex.karagrigoriou@gmail.com

Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University, 66100 Chieti,
Pescara, Italy; veronica.vigna@unich.it

Correspondence: guglielmo.damico@unich.it

These authors contributed equally to this work.

Abstract: This study considers an application of the first-order Grey Markov Model to foresee the
values of Italian power generation in relation to the available energy sources. The model is used
to fit data from the Italian energy system from 2000 to 2022. The integration of Markovian error
introduces a random element to the model, which is able now to capture inherent uncertainties and
misalignments between the Grey Model predictions and the real data. This application provides
valuable insights for strategic planning in the energy sector and future developments. The results
show good accuracy of the predictions, which could provide powerful information for the effective
implementation of energy policies concerning the evolution of energy demand in the country. Results
show an improvement in the performance of more than 50% in terms of Root Mean Squared Error
(RMSE) when the Markov chain is integrated in the analysis. Despite advancements, Italy’s 2032
energy mix will still significantly rely on fossil fuels, emphasizing the need for sustained efforts
beyond 2032 to enhance sustainability.
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1. Introduction

Grey systems theory (GST) was initiated by Julong Deng in 1982 [1] and further
developed in [2]. It represents an approach aimed at forecasting systems characterized by
small sample sizes and poor information. This methodology excels in managing systems
where only fragments of information are known by identifying, unearthing, and refining
the valuable data present. Grey systems theory has proven to be an effective strategy
for handling uncertainty in information. In applied sciences, it is common to encounter
systems that are not fully understood and are supported by minimal datasets and vague
information, highlighting the need to apply this theory.

Since its inception, GST has witnessed consistent expansion in terms of cross-disciplinary
applications and in the diversity of its methodologies. In particular, the proposal of
novel approaches and techniques for addressing data that are unknown, incomplete,
or inadequate is at the core of recent developments. GST has been employed across a broad
spectrum of fields, for example, in predictive scientometrics [3], energy and environmental
emissions [4,5], materials science [6], engineering disciplines [7], the development of electric
vehicles [8], environmental studies [9], the management of water leaks [10], and the fields
of economics and social sciences [11], and additional examples are illustrated in [12,13].

Generally, the Grey Model GM (M, N) comprises M-order partial differential equa-
tions and N variables. The principle of Grey modeling is founded on the assumption
that a process’s underlying mechanisms can be abstracted by a specific, standard partial
differential equation, which mirrors the method’s degree of complexity. The estimation
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of model parameters is conducted through the analysis of accident data. This modeling
framework is distinguished by its ability to use just four pieces of data to project future
events [14]. In the literature, two single-variable Grey Models are predominantly utilized:
the first-order GM(1, 1) and the second-order GM(2,1).

In practice, observed data are frequently subject to various random influences, leading
to data series that exhibit unpredictability and volatility. The GM(1,1) forecasting model is
an effective tool for data sequences with minimal data, but it struggles with sequences that
exhibit significant fluctuations [15]. To overcome this issue and to increase forecast preci-
sion, the Grey Markov Chain Model MCGM(1,1) was created to correct the residual errors
produced by GM(1,1). This model merges the first-order single-variable GM(1,1) Grey
forecasting model with a Markov-chain (MC) model that adjusts for residuals [16,17]. This
integration of models has been widely applied to datasets that are small in size but charac-
terized by randomness and fluctuation [18-20]. The core concept behind the MCGM(1,1)
model involves identifying discrete states for the residual errors from GM(1,1) and com-
puting Markov probability transition matrices to grasp the statistical properties of these
random residuals. Subsequently, adjustments are made based on these Markov matrices to
refine the forecasting accuracy of the original GM(1,1) model.

In this article, one of the main contributions is the implementation and full retraction
of the model described above for forecasting the mix of primary energy consumption in
mature industrial economies, using Italy as an ideal representative case.

The importance of this topic lies in the strategic planning and policymaking to meet
environmental goals and energy security. Forecasting the energy mix enables the assessment
of future energy scenarios, including the adoption of renewable energy sources, and helps
in evaluating their impact on carbon emissions reduction and energy security. A recent
application study to the Australian framework is discussed in [21].

For Italy, as part of the European Union (EU), forecasting the energy mix is crucial for
aligning with the ambitious targets of the EU for reducing greenhouse gas emissions and
increasing the share of renewable energy in total energy consumption by 2030 and beyond.
Moreover, the relevance of Italy as a case study is due to its status as a mature industrial
economy:. Italy’s unique geographical position makes it particularly sensitive to shifts in
renewable energy sources and the implications of having no nuclear power facilities. These
aspects are crucial, as they influence both the national energy strategy and the broader
European energy landscape. Understanding the future energy mix aids in planning for the
necessary infrastructure developments, such as grid upgrades and energy storage solutions,
to accommodate an increased share of variable renewable energy sources like wind and
solar power; see [22]. This prediction is also important, as it directly informs strategies for
carbon sequestration, an essential component in mitigating CO, emissions from the deple-
tion of fossil sources. Understanding the scale of carbon sequestration required enables
us to align our strategies with international efforts to reduce the environmental impact of
energy production, thereby contributing to the global sustainability objectives [23].

Moreover, forecasting the energy mix is essential for identifying potential challenges
and opportunities within the energy transition. For instance, it can highlight the need for
Italy to diversify its energy sources to reduce dependence on imported fossil fuels, thus
enhancing energy security. It also allows for the identification of economic opportunities
related to the energy transition, including job creation in the renewable energy sector and
potential for technological innovation [24].

Furthermore, an accurate forecast of the energy mix is vital for ensuring the reliability
and stability of the energy supply. As Italy moves towards a more sustainable energy sys-
tem, understanding the balance between supply and demand, the integration of renewable
energy and the role of energy efficiency becomes increasingly important. This insight is
critical for maintaining a stable energy supply while meeting environmental targets.

In conclusion, forecasting the energy mix is of paramount importance for Italy as it
navigates its energy transition. It supports strategic planning, policy development, and in-
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frastructure investment decisions aimed at achieving a sustainable, secure, and competitive
energy system.

Given the absence of prior applications of this model for this specific purpose in the
literature, we have endeavored to outline its implementation steps towards the applied results.

This study provides an insightful look into Italy’s future energy composition, using a
forecasting model that integrates the Grey system theory with Markov chains to address the
uncertainties in energy prediction. The obtained results reveal a significant trend towards
the adoption of renewable energy sources while indicating that fossil fuels will still play
a dominant role in Italy’s energy mix by 2030. This dual dependence underscores the
complexity of transitioning to a sustainable energy framework and highlights the critical
need for Italy to enhance its efforts in renewable energy development. The results serve as
a call to action for policymakers, suggesting that while strides are being made towards a
greener energy future, more aggressive policies and investments are required to reduce
fossil fuel dependency significantly. This study not only sheds light on the potential energy
landscape of Italy in the coming years but also emphasizes the importance of innovative
forecasting techniques in planning and policymaking for energy transition.

The paper is organized as follows. In Section 2, we present the model. Specifically,
in Section 2.1, we illustrate the steps of the Grey Model GM(1,1), and in Section 2.2, we
explain how to apply the Markov chain for error adjustment. Subsequently, in Section 3, we
introduce our case study focused on forecasting the consumption of primary energy from
each energy source for Italy until 2032 and we demonstrate the accuracy of our forecasts
and the robustness of our models through a sensitivity analysis as well. In Section 4, the
conclusions of our work are given.

2. The Model

The GM(1,1) model employs a first-order differential equation to describe the fore-
casting target, and it stands as a primary tool in Grey system forecasting. Additionally,
the enhanced MCGM(1, 1) approach, merging the principles of the GM(1,1) model with
those of the Markov chain, delivers improved statistical assessments for datasets that
demonstrate significant fluctuations. The Grey Markov Model does not require restrictive
assumptions concerning the relationships between variables and data stationarity [25].
However, for reasonable outcomes, its deterministic component should be able to explain
the data trend, while the Markov chain should enhance the deterministic predictions.

2.1. GM(1,1) Model

The GM(1,1) model is widely recognized for its ability to generate reliable short-term
forecasts using a limited dataset of non-negative values. In this section, we will discuss the
steps required to implement this model.

Let X(O) be the vector representing the original data sequence containing 1 observations:

x0 — (xgo),xéo), . ,x,(f)))T. (1)

Firstly, we perform a one-time accumulated generating operation in the following
way:
1 £ 0
x,E):in( ),k:1,2,...,n, )
=1

in order to create the X(1) array

X = (¢ 1) (1) ()7 3

X1 7,%5 e Xy Xy

It should be observed that the first element of the vector in Equation (1) corresponds

(0) (1)

to the first element of the vector in Equation (2), symbolically represented as x; * = x; .
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Then, set Z(1) = (zél), z:(,,l), e, z,(f)) as the vector of the background values computed

as follows:
x(1)+ 1)

X
z,ﬁl):%, k=2,...,n )

(1)

This is equivalent to stating that the general element z, "’ is the arithmetic mean of the
two neighboring data points.
The GM(1,1) equation is defined as follows:

x,(co) + az,(cl) =D (5)

where a is the developing coefficient and b is the Grey effect.
Next, the cumulative values xgl), xél), el x,(f) can be approximated by the first-order
Grey differential equation:
dx®
dt

Based on the principles of Least Square Estimation (LSE), the estimation of parameters
4 and b can proceed in the following way:

+ax® = p, (6)

[a,6]" = (B"B)~'B"y, 7)
where
2V xgo)
T i P L ®)
ol L

To calculate an estimate of the Standard Error (SE) associated with the parameters 4
and b, we compute

2
- — ) (B™B)7!, )

| (ma

~ ~

7! = (x%o) - Z) et B _qp, (10)

Therefore, the predicted values of X(%) are:

g =gl - gl = (1-¢) <x§0> - Z)e—ﬁ<’<—1), k=2,..., (11)
given the assumption that the first value is known, that is 20 = xgo).

2.2. Markov Chain Residual Modification

Observed data often fluctuate due to various random influences. Consequently, ac-
curate forecasts with the GM(1,1) model are difficult to obtain. To overcome this prob-
lem, we integrate a Markov chain approach to refine the residual errors. In particular,
the MCGM(1, 1) model merges the Grey forecasting approach of GM(1,1) with a Markov
chain mechanism to adjust for residual errors. The core concept behind the MCGM(1,1)
involves first identifying discrete states for the residual errors from GM(1,1), then cal-
culating Markov probability transition matrices to understand the statistical behavior of
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these residuals, and finally applying corrections based on these matrices. This process
enhances the original forecasting accuracy of the GM(1, 1) model. The step-by-step residual
modification is described in the current section.

First, we define which residuals to be used. There are examples in the literature that
show the use of absolute errors [25] and others that show the use of relative errors [20,26].
In our investigation, we focus on relative errors represented in the form

20 _ 40

MON

re = k=1,2,...,n. (12)

Let e, = (e1,¢€,...,€,) be the chosen series of residual values, ¢,,;,, be the minimum,
and €4y be the maximum. We split the range of residuals [€,,, €max] into g intervals of the
same length. The generic interval is denoted by

(wil)@;emzn%,w@ , w:lrl..’q_ (13)

Tw = |€min +

Each of them is assumed to be a state. In particular, state 1 is the interval with the
lower bound equal to ¢,,;,,, and state g is the one with &, as the upper bound.

This means that the sequence of residual values is converted into a sequence of states
assuming values in the set E = {r1,75,...,7;}. The state of residual ¢; depends on which
interval it belongs to. The specific number of state divisions is not rigidly defined; rather, it
is determined based on comprehensive factors such as the sample size and the error range
of the fit [27]. Classifying them into three to five states is typically deemed suitable [28].

Now, take ¢y, as the notation for the representative value of each state r, w = 1,2,..., 4
whose lower bound is I;, and upper bound is 1. In some circumstances, simple choices
are considered. For example, the formula proposed in [25] is a weighted average of the
lower and upper bounds of the intervals:

Cw = Qply + (1 —ap)y, w=12,...,4q, (14)

where «, are the weights that can be assigned to the extremes of each interval. In general,
various choices are possible by producing statistical estimations of the representative values
of the states of the Markov process. This is commonly performed in diverse application set-
tings; see, for example, [29,30]. Accordingly, we consider the following estimation formula:

Ykt Liepery) - (€1)
Cw = - = . (15)
¢ Zk:l IL{SkEVZU}

The next assumption is to consider this series of states as generated by a Markov chain
{R¢ }ken- Hence, for every time k € N, it results that

1
P[Rgy1 = ¢j|[Rx = ci,Ry—1 =cp, .. ] = P[Ry1 = ¢j|Ry = ¢i] =t pjj = P,(j)~ (16)

The above probabilities define the so-called one-step transition probability matrix,
P = (pij)ijeE-

Now, we introduce the transition probability matrix P(") as an g x g matrix with
o
number of the steps. Indeed, P is called the m-steps transition probability matrix and
represents the m-th power of the matrix P:

elements p;. ’, where i and j denote the rows and columns respectively, and m counts the
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CER AT
p(m) p(m) . p(m)
pm — |71 T2 2 (17)
R
According to the Markov chain assumption, it results that
Py = P[Res = ¢j| R = ci. (18)

Each element plg,m)

residual process transits from state ¢; to state c; in m steps. The one-step transition proba-
bility matrix is estimated as follows:

represents the probability of Ry, = ¢; given that Ry = ¢;, i.e., the

I
1 ..
pl(j):%,z,]zl,Z,...,q. (19)

The term tfjl) represents the total number of transitions from the i-th to the j-th state
after m = 1 step, and t; is the count of occurrences of state i within the residual sequence.
To obtain the m-step transition matrix, the one-step matrix is raised to the m-th power.

Each row in P(") has elements that sum to one. If the sum of a row’s elements for
state i is nil because we never observed a residual belonging to the i-th interval r;, one

choice could be to directly assign pfil)
absorbing state.

Due to limited data, another problem may arise in the application of this model. It
may be possible that a state of the process is only visited once and at the last observation of
the time series of the residuals. In this eventuality, we are unable to estimate the transition
probabilities over the row of the transition matrix which corresponds to the considered
state. Here, the choice to characterize that state as an absorbing one poses a major risk when
forecasting over a time span exceeding the observation time. In such a scenario, rendering
state r; to be absorbing exclusively dictates the predictions, thereby introducing distortions.
This is because it is unrealistic to assume that the process remains in the residual state r;
until the end of the predictive interval.

Therefore, our recommendation is to assign to each element over the row an equal prob-
ability. This equates to the random initialization of errors within the system, subsequently al-
lowing them to develop following the observed frequencies via the
Markovian framework.

For example, this is equivalent to saying that for a number of states equal to r = 4,
each row element would be equal to 0.25. In this way, when the chain reaches this particular
state, it will not be absorbed by the starting state and it will be equally likely to reach in the
next visit any other state.

The Markov chain method is employed to adjust the initial values obtained from the
GM(1,1) model predictions, revising it by adding the effect of a predicted residual. We can
now describe this procedure as follows.

Let us assume that at the current time k, the residual process is in the state i, that is,
ex € 1; = [l;,u;]. The GM(1,1) model produces forecasting f,g?m of the variable x(%) for
future times k + m, m = 0,1,2.. .. These forecasts are adjusted according to the formula

= 1. This choice implies that state r; functions as an

2(0 ~(0 A
30, =20 1-&"), k=12..,n (20)
The prediction él(cm) can be computed conditionally on the state of the residual process

Ry. Thus, if the residual at time k is in state r;, the prediction is given by:



Energies 2024, 17, 2184

7 of 16

?:im) = pi({")cl + pg")cz + -4 pfrm)c,, k=1,2,...,n. (21)
The prediction formula (20) expresses m-steps forecasting.
Thus, for m = 0, we obtain a contemporary adjustment according to the state r; given
by the relation

ku£® = J?I(<0)(1 - Ci)/ k=1,2,...,n. (22)

which is obtained setting m = 0 into (20) and (21). Hence, the Markov chain corrects the
initial prediction according to the representative value of the residual state at time k.
For m = 1 and for the residual at time k being at state 7;, we obtain

q
20 =20 1 -a)y =% - Zi pici), k=1,2,...,n. (23)
]:

In this case, the GM(1, 1) forecast ’?I(c0+)1 is corrected according to the factor 1 — E?:l pijc;
which contains the expected value of the residual process at the next time, conditional to
the occupancy of the state r; at current time k.

In general, as m varies, the model gives predictions for any future time k + m.

3. Case Study

The transition towards a sustainable and diversified energy mix is a critical challenge
and opportunity for countries worldwide. Italy, with its unique geographical, economic,
and social landscape, presents an intriguing case for examining how future energy con-
sumption patterns might evolve. This case study delves into forecasting Italy’s primary
energy consumption mix-up to the year 2032, employing the innovative Grey Markov
Model MCGM(1,1).

The data for our study were collected from the comprehensive database of “Our World
in Data” (https:/ /ourworldindata.org/), renowned for its extensive global energy statistics.
This rich dataset provided us with annual figures of primary energy consumption across
various sources in Italy, measured in terawatt-hours (TWh), spanning from the year 2000
to 2022. The energy sources detailed in this dataset include Biofuel, Coal, Gas, Hydro,
Nuclear, Oil, Solar, and Wind.

Table 1 presents data on primary energy consumption across various sources measured
in terawatt-hours for the years 2000 through 2022. Each row represents a year, showing
how much energy was consumed from each source during that year. The dataset shows
no missing values for any observation year, reflecting a complete data collection process.
Starting from 2000, when reliance on traditional sources like Coal, Gas, and Oil was
predominant, there has been a noticeable diversification and increase in renewable energy
sources over the years. For instance, Solar and Wind energy consumption started from
nearly negligible amounts in 2000 but show significant growth, indicating a shift towards
more sustainable energy sources. Notably, Nuclear energy consumption remains at zero.
Following the Chernobyl disaster in 1986, Italy held a referendum in 1987, which resulted
in the decision to discontinue the use of nuclear power for energy production. The table
is a comprehensive depiction of the evolving energy landscape, highlighting the gradual
transition from fossil fuels to renewable energy sources.

Table 1. Primary energy consumption in terawatt-hours by source.

Year Biofuel Coal Gas Hydro Nuclear Oil Solar Wind
2000 0 145580 678.785 130.699 0 1124.703  0.053 1.665
2001 0 154.697 680.646 137521 0 1102.603  0.056 3.464
2002 0 159.678  676.029 115349 0 1106.428 0.061 4.098
2003 0 172.299 745332 106348 O 1095.877  0.070 4.228
2004 2.754 193.013  773.418 122.003 0 1072.420 0.084 5.322
2005 1.933 191.534  827.695 103.275 0 1039.467  0.089 6.709
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Table 1. Cont.

Year Biofuel Coal Gas Hydro Nuclear Oil Solar Wind
2006 2.178 193911 810.588 105263 0 1038.177  0.100 8.454

2007 1.977 189.848  814.561  92.788 0 1005.712  0.110 11.407
2008 7.983 183.701  808.515 116963 0 946.612  0.542 13.660
2009 12.885 143.823 743176 137228 0 875992  1.891 18.273
2010 15.864 159.028 791.499 141879 0 853.391  5.289 25.330
2011 15.672 178270 742161 126410 0 828.881  29.782 27.190
2012 17.494 182.733 713566 114.819 0 772214  51.718 36.761
2013 14.687 157.403 667404 143.831 0 706480  58.838 40.601
2014 12.546 153.447 589.716  158.604 0 671279  60.430 41.119
2015 15.486 143395 643.154 122631 0 710444 61.783 39.974
2016 15.401 127.732 675458 113592 0 704.790  59.174 47.353
2017 15.610 111904 715.788  96.335 0 713.695  64.876 47.216
2018 15.979 102.567  692.141 129177 0 730.328  59.936 46.873
2019 9.359 77.534 707906 122194 O 709.052  62.443 53.252
2020 13.227 59.253 676.252 125100 O 585492  65.504 49.273
2021 13.822 65.182 723737 118766 0 652.068  65.519 54.760
2022 12.217 84.773 652.692  73.416 0 686.015  71.749 53.870

Primary energy is the energy that is produced when a source is burned in its raw form.
It includes the energy required by the end user in the form of electricity, transportation and
heating, as well as inefficiencies and energy lost during the conversion of raw materials
into a usable form. Since renewable sources are reported in terms of their electricity output,
they are corrected by the ‘substitution method’ for efficiency losses in fossil fuels [31]. It
attempts to match non-fossil energy sources to the inputs that would be required if they
were generated from fossil fuels. To this end, energy generation from non-fossil sources has
been divided by a standard ‘thermal efficiency factor’ by Energy Institute [32]. In this way,
it is reliable to compare inefficient fossil fuel inputs to renewable energy sources, which do
not have this inefficiency.

In our analysis, we will not use the data referring to biofuel from 2000 to 2003 because
they contain zero values which would affect the results unrealistically.

For illustrative purposes, let us revisit all the stages of the previously described model,
employing data related to the coal energy consumption in terawatt-hours, and set them as
the following vector

x0) = (145.580, 154.697,159.678,172.299,193.013,191.534, 193.911, 189.848,
183.701,143.823,159.028,178.270, 182.733,157.403, 153.447,143.395,  (24)
127.732,111.904,102.567,77.534,59.253,65.182, 84.773)T.

The vector containing the cumulative values is

xM = (145.580, 300.277,459.955, 632.254, 825.267,1016.801, 1210.712, 1400.56,
1584.261,1728.084,1887.112, 2065.382,2248.115, 2405.518, 2558.965, 2702.36, (25)
2830.092,2941.996, 3044.563,3122.097, 3181.35, 3246.532, 3331.305) T,

and consequently, we compute

zW = (222.9285,380.116, 546.1045,728.7605,921.034, 1113.7565, 1305.636, 1492.4105,

1656.1725,1807.598, 1976.247,2156.7485, 2326.8165, 2482.2415, 2630.6625, 2766.226, (26)
2886.044,2993.2795, 3083.33,3151.7235, 3213.941, 3288.9185) T,

To estimate the parameters 4 and b, we use the following matrices:
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—222.9285 1 154.69
—380.116 1 159.678
B = ) ey = ) . (27)
—3288.9185 1 84.773

Using Equation (7), we obtain the estimation of the developing coefficient & = 0.034
and the Grey effect b = 210.598. Meanwhile, we use Equation (9) to compute the Standard
Errors, obtaining SE(4) = 0.006 and SE(b) = 13.320.

Wanting to obtain a forecast up to 2032, which is ten years ahead of the last available

(1)

data, we use Equation (10) to obtain the cumulated values £, ’, and Equation (11) to obtain

the predicted values J?]((O). The results of the GM(1,1) model are shown in Table 2. Moreover,
in Figure 1, coal primary and predicted energy consumption in terawatt-hours are plotted.
It shows that the prediction starts with the initial available data, rises up, and follows an
exponential behavior.

200 4
175 1
150 4
bl
=
2
v 125 1
[1:]
z
= 100 -
@
75 1
sod Observed values
GM(1,1) predictions
—— Adjusted GM(1,1) predictions
25 A
T T T T T
2000 2005 2010 2015 2020
Year

Figure 1. Coal primary energy consumption observed values and predictions in terawatt-hours.

Now, let us proceed with the correction of predictions through the Markov chain.
Consider the initial data and compute the relative errors utilizing Equation (12). Results
are recorded in Table 2. In this series, the minimum is ¢,,;, = —23.466 and the maximum is
emax = 80.454. Now, we split the range of residuals [—23.466,80.454] into r = 4 intervals
and assume each one to be a state:

State 1 =[—23.466,2.514],
State 2 =(2.514,28.494],

State 3 =(28.494, 54.474],
State 4 =(54.474, 80.454).

(28)

In the last column of Table 2, states are assigned based on the interval each relative
error falls into. From Equation (15), the centers of each state are ¢c; = —11.974, ¢, = 12.490,
c3 = 36.692, and ¢4 = 69.54.
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Table 2. Error analysis, state assignment, and adjusted prediction for the primary energy coal consumption in terawatt-hours from 2000 to 2022.

Year Observed Value GM(@1,1) Prediction Absolute Residual Relative Error States Res'ldual Adj u.stt.ed GM@,1)
Adjustment Prediction
K <O <O rey w &0 {0
2001 154.697 202.299 47.602 30.771 3 —36.692 128.071
2002 159.678 195.623 35.945 22.511 2 —12.490 171.190
2003 172.299 189.167 16.868 9.790 2 —12.490 165.540
2004 193.013 182.924 10.089 —5.227 1 11.974 204.828
2005 191.534 176.887 14.647 —7.647 1 11.974 198.068
2006 193.911 171.049 22.862 —11.79 1 11.974 191.531
2007 189.848 165.404 24.444 —12.875 1 11.974 185.210
2008 183.701 159.945 23.756 —12.932 1 11.974 179.098
2009 143.823 154.667 10.844 7.540 2 -12.490 135.349
2010 159.028 149.562 9.466 —5.952 1 11.974 167.472
2011 178.27 144.627 33.643 —18.872 1 11.974 161.945
2012 182.733 139.853 42.880 —23.466 1 11.974 156.600
2013 157.403 135.238 22.165 —14.082 1 11.974 151.432
2014 153.447 130.775 22.672 —14.775 1 11.974 146.434
2015 143.395 126.459 16.936 —11.811 1 11.974 141.602
2016 127.732 122.285 5.447 —4.264 1 11.974 136.928
2017 111.904 118.250 6.346 5.671 2 —12.490 103.481
2018 102.567 114.347 11.780 11.485 2 —12.490 100.065
2019 77.534 110.573 33.039 42.613 3 —36.692 70.002
2020 59.253 106.924 47.671 80.454 4 —69.540 32.569
2021 65.182 103.395 38.213 58.626 4 —69.540 31.495
2022 84.773 99.983 15.210 17.942 2 —12.490 87.495
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Subsequently, the one-step transition probability matrix is computed through
Equation (19):
0.833 0167 0 0
p) 04 04 02 O .
0 05 0 05
0 05 0 05

(29)

For example, the value 0.833 represents the probability of reaching state 1 given that
the chain at the previous step was in state 1; 0.167 stands for the probability of reaching
state 2 given that the chain was previously in state 1. Raising the matrix to the m-th power
makes it possible to obtain the m-steps transition matrix. From the matrix in Equation (29),
we obtain the following stationary distribution:

m=1[0632 0263 0053 0.052]. (30)

Since we know that all the real values referred to the years 2000-2022, for these years,
we use the one-step transition probability matrix, updating the state i in Equation (21). For
the years 2023-2032, we use the state i = 2, which is the last known state, and the matrix is
raised to the m-th power. Finally, once all the adjustments é](cl) are computed, Equation (20)
is used to obtain the adjusted GM(1,1) predictions from 2001 to 2032. See Table 2 for
the results referring to the years of the sample and Table 3 for the prediction from 2023
to 2032. Figure 2 summarizes the coal primary and predicted energy consumption in
terawatt-hours through the GM(1,1) model before and after the Marvokian adjustment.
Table 4 offers a clear comparison between the performance in terms of the Root Mean
Squared Error (RMSE) of two models in predicting the consumption of various energy
sources: the traditional GM(1,1) model and its adjusted version that integrates the Grey
Model (GM) with a Markov chain. From the data analysis, it is evident that the adjusted
model demonstrates significant improvements in its estimates. The dashed vertical line
separates the years of our sample from the years related to the forecast. To its left, as we
have previously explained, the one-step transition matrix was used, updating the forecast
with the observed value each time, while on the right, the forecast was made starting from
the last observed value, using the m-step transition matrix. Compared to the forecast made
with the Grey Model, the Markovian correction allows for predictions that follow the trend
of the observed data, enhancing the predictive capability.

Table 3. Adjusted prediction of coal primary energy consumption in terawatt-hours from 2023 to 2032.

Year GM(1,1) Prediction Residual Adjustment Adjusted GM(1,1) Prediction
k f(ﬂ é\(m) é(o)
k k k

2023 96.683 —7.545 89.389
2024 93.493 —8.062 85.955
2025 90.407 —-5.951 85.027
2026 87.424 —4.378 83.596
2027 84.538 —3.329 81.724
2028 81.748 —2.639 79.591
2029 79.050 —2.185 77.323
2030 76.442 —1.887 74.999
2031 73.919 —1.691 72.669
2032 71.479 —1.562 70.363

Table 4. Comparison of Root Mean Squared Errors (RMSEs) for various energy sources predicted by
GM(1,1) and adjusted GM(1,1) models.

Biofuel Coal Gas Hydro Oil Solar Wind

GM(1,1) 1.750 26.610 54.744 18.473 46.548 2.515 3.109
Adjusted GM(1,1)  0.727 14.096 19.875 10.149 16.471 0.363 1.401
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Figure 2. Coal primary and predicted energy consumption in terawatt-hours through GM(1,1)
model before and after the adjustment.

All the previously described steps were repeated for each energy source, obtaining the
predictions from 2023 to 2032. It should be noted that in the cases of Biofuel and Solar, it
was not possible to calculate the representative values for all states because some states
were never reached, as the relative errors pertained only to certain states. To overcome this
problem, we employed Change Point analysis to identify the optimal point at which to
truncate each data series [33]. The truncation point was determined to be in the year 2010
for Biofuel and in 2011 for Solar. After implementing these modifications, we were able to
determine the representative values for each state and retrace all prior steps. In Table 5, all
the GM(1,1) adjusted predictions are shown for all the energy sources, while in Table 6,
the estimates together with the Standard Errors (provided in parenthesis) of the developing
coefficient and the Grey effect for each energy source are provided.

Table 5. Primary energy consumption prediction in Italy in terawatt-hours from 2023 to 2032.

Year Biofuel Coal Gas Hydro Oil Solar Wind
2023 11.461 89.389 694.271 94.266 573.561 70.008 76.235
2024 12.234 85.955 669.458 110.202 548.961 72172 83.317
2025 11.370 85.027 675.409 111.143 537.014 73.477 91.057
2026 11.212 83.596 664.983 110.941 525.465 75.121 99.517
2027 10.991 81.724 663.762 110.773 512.196 76.688 108.762
2028 10.709 79.591 657.744 110.583 497.767 78.346 118.867
2029 10.471 77.323 654.454 110.387 482.989 80.010 129.910
2030 10.231 74.999 649.780 110.192 468.365 81.726 141.979
2031 9.995 72.669 645.926 109.997 454.118 83.469 155.169
2032 9.766 70.363 641.687 109.802 440.312 85.256 169.584

Table 6 contains the data relating to the estimate and the Standard Error of the devel-
oping coefficient and the Grey effect for each energy source.
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Table 6. Estimate and the associated Standard Error of the developing coefficient and the Grey effect
for each energy source.

Year Biofuel Coal Gas Hydro 0il Solar Wind

P 0.023 0.034 0.006 0.002 0.031 —0.021 —0.089
(0.008) (0.006) (0.003) (0.005) (0.001) (0.003) (0.010)

5 16.745 210.598 777.177 121.821 1198.075  54.432 10.875

(0.922) (13.320)  (26.369)  (8.766) (4.775)  (1.170) (2.765)

Figure 3 presents a forecasted breakdown of Italy’s primary energy consumption mix
from 2023 to 2032, measured in terawatt-hours (TWh). The stacked bar chart displays the
proportionate contribution of each energy source to the total national energy production
on a year-by-year basis.
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Figure 3. Forecast of the Italian Primary Energy Consumption Mix (2023-2032).

The predictions highlight a steady increase in solar and wind energy, reflecting a global
shift towards more sustainable and renewable energy sources. Biofuel predictions also show
a consistent yet slight increase, indicating a modest contribution to Italy’s energy mix. Coal
consumption, on the other hand, is forecasted to decline, echoing the broader transition
away from fossil fuels. The forecast for gas and oil consumption suggests a decrease,
aligning with efforts to reduce carbon emissions and dependency on non-renewable energy
sources. Hydroenergy consumption shows minor fluctuations, indicating stability in its
contribution to the energy mix.

The figure may serve as a critical tool for policymakers, indicating potential trajectories
for energy policy and investment. It reflects the ongoing transition in the Italian energy
landscape, highlighting the gradual decline in fossil fuels and the ascent in renewables,
which are essential for achieving long-term sustainability and energy security goals.

Table 7 presents the results of a sensitivity analysis on the MCGM(1,1) measured in
terms of RMSE as parameters a and b are varied in the range of 2 times the Standard Error.
The first row lists the values of parameter b, while the first column shows the values of
parameter a. Their values were selected based on estimates obtained using the method of
least squares, by adding and subtracting once and twice the Standard Errors, respectively.
The trend of RMSE values generally increases from left to right across columns, suggesting
the parameter’s influence on the prediction error. The table provides a clear overview of
how tuning parameters a and b can optimize model performance.
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Table 7. Sensitivity Analysis of RMSE (Root Mean Squared Error) for varying parameters a and b in
MCGM(1,1) for coal primary energy consumption.

A b 172.329 186.165 210.598 213.835 227.671
0.021 | 18.079 21.884 33.015 34.852 43.640
0.027 | 14.313 15.027 20.952 22.087 27.755
0.034 | 13.820 12.086 14.096 14.783 18.587
0.040 | 16.327 13.306 11.891 12.100 13.944
0.046 | 19.672 15.721 11.798 11.638 12.043

Since the uncertainty of prediction is closely related to the SE of the two parameters
involved, in Figure 4, we show the updated version of Figure 1 with error bars reflecting
the expected uncertainty.
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GM(1,1) predictions
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Figure 4. Coal primary energy consumption observed values and predictions in terawatt-hours with
error bars.

4. Conclusions

In this comprehensive study, we introduced and applied the Grey Markov Model
GM(1,1) integrated with Markov Chain Residual Modification to forecast Italy’s power
generation mix-up to the year 2032. This approach allowed us to incorporate both the
uncertainty inherent in historical data and their fluctuating nature, reducing the in-sample
prediction error, affirming the integration of Grey systems and Markov chains and thus
attempting to improve the forecast for Italy’s primary energy consumption.

Our findings reveal a significant potential for renewable energy sources to increase
their share in Italy’s energy mix, indicating a gradual decrease in reliance on fossil fuels.
This transition aligns with global efforts towards more sustainable and environmentally
friendly energy production methods.

The insights garnered from this study underscore the necessity for Italy’s energy
policymakers to further encourage and invest in renewable energy sources. Strategic
planning should incorporate the predicted shifts in energy production types, emphasizing
sustainability and energy independence. Additionally, the model’s predictions can serve
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as a guide for adjusting current policies and devising new regulations to support the
anticipated changes in the energy sector.

The evolving dynamics within the energy matrix suggest that shifts towards alter-
native energy sources may be approaching saturation. The potential for these sources to
maintain the high growth rates observed in recent decades could be constrained by inherent
limitations such as spatial requirements, intermittency of energy supply, and distribution
challenges. These factors, rather than solely the governmental willingness to adopt these
technologies, could significantly influence the future composition and sustainability of the
energy matrix. These forecasts are based on current data, which should be updated with
future observations, which is recommended via the repeated implementation of CPA.

While this study offers valuable forecasts and insights, it also opens several avenues
for future research:

¢  Extending the model to other countries and regions to compare and contrast energy
mix transitions on a global scale.

*  Incorporating additional variables such as technological advancements, policy changes,
and economic factors that could impact the power generation mix through a
GM(1, N) model.

¢  Exploring the potential impacts of increased renewable energy adoption on grid
stability, energy prices, and environmental outcomes.

In conclusion, the application of Grey Markov Models to forecast Italy’s power gen-
eration mix presents a promising tool for energy researchers and policymakers alike.
By understanding future trends, Italy can better prepare for a sustainable energy future,
reducing carbon emissions and fostering a resilient energy system. Further research in this
area will undoubtedly refine these predictions and contribute to the global knowledge base
on energy-forecasting methodologies.
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