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Abstract: A relevant percentage of IgAN patients experience a progressive decline in kidney func-
tion. According to the KDIGO guidelines, proteinuria and eGFR are the only validated prognostic
markers. The role of interstitial macrophages in kidney biopsies of IgAN patients and the out-
come of patients treated with renin–angiotensin system inhibitors (RASBs) alone or combined with
glucocorticoids were evaluated. Clinical and laboratory records (age, gender, hypertension, hema-
turia, proteinuria, eGFR, serum creatinine, and therapy), MEST-C parameters of the Oxford clas-
sification, C4d deposition, peritubular capillaries, and glomerular and interstitial macrophages in
47 IgAN patients undergoing kidney biopsy consecutively between 2003 and 2016 were examined.
A high number of interstitial macrophages significantly correlated with peritubular capillary rar-
efaction and impairment of kidney function. Cox’s multivariable regression analysis revealed that
a value > 19.5 macrophages/HPF behaved as an independent marker of an unfavorable outcome.
Patients exhibiting > 19.5 macrophages/HPF treated at the time of diagnosis with RASBs combined
with methylprednisolone had an estimated probability of a favorable outcome higher than patients
treated with RASBs alone. Thus, a value > 19.5 macrophages/HPF in IgAN biopsies can predict
an unfavorable outcome and endorse a well-timed administration of glucocorticoids. Studies eval-
uating urine biomarkers associated with peritubular capillary rarefaction in patients with marked
macrophage infiltration may help personalized treatment decisions.

Keywords: IgA nephropathy; macrophages; peritubular capillaries; hypertension; glucocorticoids

1. Introduction

IgA nephropathy (IgAN), the most frequent primary glomerulonephritis [1,2], is an
autoimmune disease influenced by racial, genetic, immunological, and environmental
factors [1–3]. The diagnosis of IgAN is based on the presence of a predominant mesangial
deposition of IgA in the kidney glomeruli [3]. The accumulation of immune complexes
formed by aberrantly glycosylated IgA1 and antiglycan antibodies induces inflammation,
mesangial cell proliferation, and extracellular matrix synthesis [1,3]. Occasionally, IgAN

J. Pers. Med. 2023, 13, 935. https://doi.org/10.3390/jpm13060935 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm13060935
https://doi.org/10.3390/jpm13060935
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0001-6414-1206
https://orcid.org/0000-0003-1580-2121
https://orcid.org/0000-0001-7927-5207
https://orcid.org/0000-0002-8466-6314
https://doi.org/10.3390/jpm13060935
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm13060935?type=check_update&version=2


J. Pers. Med. 2023, 13, 935 2 of 17

may be subclinical [3]. It affects mainly young adults and accounts for approximately 20%
of kidney biopsies from children [1–4]. The majority of IgAN patients exhibit a clinical pre-
sentation consisting of micro or macrohematuria with or without proteinuria, and a slowly
progressive course. A high percentage of these patients (15–40%), eventually experience
a decline in kidney function to end-stage kidney disease (ESKD) with a variable rate of
progression [4,5]. Clinical and histological parameters have been evaluated in countless
studies; nevertheless, it is still challenging to predict the outcome and devise a personalized
therapy. Hypertension, high serum creatinine, and proteinuria, for instance, are known
prognostic risk factors, but they may simply indicate the extent of the disease at a particular
stage [5]. According to the Kidney Disease Improving Global Outcome (KDIGO) practice
guidelines, there is no validated prognostic biomarker for IgAN other than proteinuria
and eGFR [6]. Therefore, it would be useful to identify lesions with prognostic value. The
Oxford classification, formulated in 2009 and subsequently revised, is largely utilized to as-
sess IgAN histological severity [7–9]. It includes five parameters demonstrating prognostic
value by univariate analyses: mesangial cellularity (M), endocapillary hypercellularity (E),
segmental glomerulosclerosis (S), tubular atrophy (T), and crescents (C) [7–9]. High S and
T scores at the time of the diagnosis point to an advanced clinical stage [5,10] and a high T
score has been associated with a poor outcome in studies performed to validate this classifi-
cation [11]. Interstitial macrophage infiltration in IgAN kidney biopsies has been associated
with poor prognosis and severity of the disease since 2006 [12–18]; however, this parameter
is not included in the Oxford classification. Disease-specific urinary biomarkers can be
useful as diagnostic and/or prognostic tools, potentially avoiding second biopsies [19–27].

In a previous study, we showed for the first time that the interstitial macrophage
number positively correlated with hypertension and S1 and T1 scores [17]. In this paper,
we sought to build on previous findings to investigate further the prognostic value of inter-
stitial macrophages. Since glucocorticoids potently inhibit macrophage pro-inflammatory
functions [28], we also compared the outcomes of patients administered renin–angiotensin
blockers (RASBs) alone or in combination with methylprednisolone six-month treatment at
the time of diagnosis.

2. Materials and Methods
2.1. Patients

Clinical and laboratory records of 47 IgAN patients (35 males and 12 females, median
age 34 years, mean age 36.68 ± 12.66 years) undergoing kidney biopsy consecutively be-
tween January 2003 and December 2016 were reviewed. Patients included in the study were
more than 15 years of age and underwent biopsy before any immune-suppressive treatment.
Patients with diabetes mellitus, autoimmune diseases, abnormal hypergammaglobuline-
mia, and liver diseases were excluded from the study. After biopsy, 16 patients were
treated with RASBs, 10 with corticosteroids, and 18 with RASBs and corticosteroids. Three
patients with normal kidney function, proteinuria < 1 g/24 h, and only mild mesangial
hypercellularity received no treatment. Hematuria, proteinuria (g/24 h), serum creatinine
level (mg/dL), blood pressure, and estimated glomerular filtration rate (eGFR) (mL/min
per 1.73 m2) were recorded at the time of biopsy. Hypertension was defined as systolic
blood pressure > 135 mm Hg and/or diastolic blood pressure > 85 mm Hg or the use of
anti-hypertensive agents. In the kidney biopsies of patients with hypertension, typical
vascular lesions were observed.

Follow-up time was considered as the interval time between kidney biopsy and the last out-
patient visit. Hematuria, proteinuria, serum creatinine levels, and eGFR data at the end of follow-
up were available for 30 patients. The evaluation of the impairment of the kidney function,
based on the eGFR at the time of biopsy and at the end of follow-up (range: 16–92 months, me-
dian: 36 months) was performed using the Kidney Disease Outcome Quality Initiative (KDOQI)
guidelines, which defines five stages: I: eGFR ≥ 90 mL/min; II: eGFR = 60–89 mL/min; III:
eGFR = 30–59 mL/min; IV: eGFR = 15–29 mL/min; V: eGFR ≤ 15 mL/min [29]. A favor-
able prognosis was ascribed to patients with a stable stage 1 or with an improved stage
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at the end of follow-up, whereas patients with an unfavorable outcome showed a stage 2
or lower at the time of the diagnosis and no improvement or a worse stage at the end of
follow-up. These patients were treated at the time of diagnosis with RASBs (n = 11), methyl-
prednisolone (1.5–1 mg/kg/die) in combination with RASBs (n = 11), or methylprednisolone
(0.5–1 mg/kg/die) (n = 5); methylprednisolone was administered for 6 months. Three patients
with normal kidney function, proteinuria < 1 g/24 h, and kidney biopsies with only mild
mesangial hypercellularity received no treatment.

2.2. Histopathology and Immunohistochemistry

Formalin-fixed paraffin-embedded sections were stained with hematoxylin–eosin, PAS,
and Masson’s trichrome. Direct immunofluorescence was performed on fresh frozen tissue
with FITC-conjugated polyclonal antibodies to detect IgG, IgM, IgA, C3, and fibrinogen
(Dako, Glostrup, Denmark). IgAN biopsies were evaluated according to the revised
Oxford Classification [7–9]. Each glomerulus was scored for: mesangial hypercellularity
(M0–M1, M1 indicated hypercellularity in more than 50% of glomeruli), endocapillary
hypercellularity (absent/present: E0–E1), segmental glomerulosclerosis (absent/present:
S0–S1), tubular atrophy (T0 ≤ 25%, T1 = 26–50% and T2 ≥ 50% of the cortical area),
and the presence of crescents (C0 = no crescents, C1 and C2 = crescents in ≤ 25% and
> of 25% of glomeruli, respectively). Interstitial fibrosis of the cortical area was assessed
by a semiquantitative score as: absent = up to 10%, mild = 6 to 25%, moderate = 26
to 50%, and severe ≥ 50% [14]. Sections were stained for immunohistochemistry using
the bond polymer refine detection method (Leica Biosystem, Wetzlar, Germany) after
high pH (pH 9.0) buffered pre-treatment (Leica Biosystem), using the murine monoclonal
antibody (MoAb) anti-CD68 (Dako), specific for macrophages. Quantification of glomerular
macrophages was performed by counting CD68+ cells in each glomerulus and dividing
the sum obtained in each biopsy by the number of scored glomeruli (magnification ×40).
Interstitial macrophages in the cortical area were counted in 10 high power fields (HPF)
and the mean number per HPF was reported (magnification ×40).

Staining of endothelial cells with anti-CD31 murine MoAb (Dako) was performed
using the Ultravision LP polymer detection method (Thermo Fisher Scientific, Freemont,
CA, USA) after antigen retrieval by heating the sections in Tris-EDTA buffer (pH 8.0).
To control for non-specific staining, the primary antibodies were replaced by irrelevant
matched MoAb or immune serum, as appropriate. The mean number of peritubular
capillaries (PTC) in the cortical area was evaluated using a Nikon Eclipse Te 2000-U
microscope equipped with the Nikon Nis Vers. D ver 5.21 image analysis software. The
mean number of PTC was calculated by dividing the total number of PTC by the number of
HPF (magnification ×40). The mean number of HPF counted per biopsy was 36.53 ± 22.10.
In 45 cases, tissue sections were available to perform C4d immunostaining. Paraffin
sections were stained using a polyclonal anti-C4d antibody (Biomedica, Vienna, Austria) as
previously described [30]. Biopsies from patients with membranous glomerulonephritis
and minimal change disease were used as positive and negative controls, respectively.

2.3. Statistical Analyses

Results are expressed as means ± SE or medians, as appropriate. Wilcoxon/Kruskal–
Wallis and Spearman’s rho correlation tests were used for the statistical analysis of the
distributions of interstitial macrophage and peritubular capillary values according to clini-
cal and pathological variables. The standard multiple linear regression model, fitted using
the ordinary least squares estimation technique, was utilized to explain variations in the
number of interstitial macrophages that can be attributed to variations in the explanatory
variables. The backwards stepwise procedure, based on corrected Akaike’s information
criterion (AIC), was used to include only the necessary explanatory variables in the prog-
nostic model. Assumptions of the ordinary least squares regression model were verified
through residual diagnostics. In particular, exogeneity, normality, homoscedasticity, and
independence assumptions were assessed by Student’s t, Shapiro–Wilk, Breush–Pagan,
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and Durbin–Watson tests, respectively. The follow-up median time was 50 months (C.I.
95%: 39–75) and the primary end point went from the time of kidney biopsy to the date
of the impairment of the kidney function or to the date of the last available information
on the patient’s status. All medians and life tables were computed using the product-limit
estimate by Kaplan and Meier and the curves were examined by means of the log-rank test.
For the univariable and multivariable analyses, continuous variables were converted to
binomial variables based on the initial analysis of the distribution of the variable values,
and according to the results of ROC analyses. Univariable and multivariable analyses were
performed by Cox’s proportional hazards model and the prognostic accuracy was assessed
by Harrell’s concordance index (C-index). The proportional hazards assumption was as-
sessed by visual inspection of log-log survival curves and by linear regressions of scaled
Schoenfeld residuals versus time. Collinearity was verified by computing variance inflation
factors (VIF) from the covariance matrix of parameter estimates. The backwards stepwise
procedure, based on the lowest AIC value, was utilized to reduce the variable numbers
in the Cox’s regression model. Event-free survival probabilities, given the covariates and
follow-up time, were calculated for the model fitted by the reduced multivariable Cox’s
regression. A p value < 0.05 was considered statistically significant, evaluating the yield of
two-tailed statistical tests. Statistical analyses were performed using the JMP version 13.0
(SAS Institute Inc., Cary, NC, USA) and R Studio software version 3.3.3 (R Development
Core Team: A language and environment for statistical computing, Vienna, Austria 2011).

3. Results

Kidney biopsies from 47 patients showed predominant IgA immunoreactivity in the
mesangial area of glomeruli, as required for the diagnosis of IgAN. Immune-reactivities
for IgG, IgM, C3, and fibrinogen were observed in 11, 28, 46, and 22 kidney biopsies,
respectively. In 45 cases, C4d immunostaining was performed. Glomeruli, mesangial areas,
and peritubular capillaries (PTC) were C4d negative.

Hematuria was not observed in one patient, macrohematuria was present in two, and
microhematuria in forty-four. The distribution of interstitial macrophages and PTC accord-
ing to clinical and pathological parameters at the time of diagnosis are shown in Table 1.
Univariable analyses showed that the number of interstitial macrophages/HPF was sig-
nificantly higher in biopsies of hypertensive patients than in biopsies of non-hypertensive
patients (p = 0.0087) (Table 1). A positive correlation with serum creatinine levels (p = 0.0003)
and a negative correlation with eGFR (p = 0.0002) were observed (Table 1).

All biopsies were scored as E0 and C0. The number of interstitial macrophages
was not different between M0 and M1 biopsies, whereas it was significantly higher in
biopsies scored S1, T1, and with fibrosis than in those scored S0, T0, and without fibrosis
(p = 0.0102, 0.001, 0.0108, respectively) (Table 1). Fibrosis was scored as severe, moderate,
and mild in one, four, and seven patients, respectively. The relationship between PTC
and interstitial macrophages has not been previously investigated. We found a significant
inverse correlation (p = 0.0108) between interstitial macrophages and PTC (Table 1). The
PTC of patients with high or low numbers of interstitial macrophages are shown in Figure 1.

Next, we examined whether the number of PTC/HPF correlated with any other
parameter. Interestingly, the mean PTC number/HPF was lower in kidney biopsies of
hypertensive patients, with an evident trend toward significance (p = 0.054) (Table 1). As
in previous studies [13,17] no correlations were observed between the mean number of
glomerular macrophages and clinical or pathological parameters. The number of glomeru-
lar and interstitial macrophages, however, were positively correlated (p = 0.0390) (Table 1).
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Table 1. Distribution of interstitial macrophages and peritubular capillaries according to clinical and
pathological parameters.

Interstitial Macrophages Peritubular Capillaries

Variables n Median (IQR) 1 Wilcoxon
p Median (IQR) 1 Wilcoxon

p

hypertension absent 27 14.7 (10.1–20.6)
0.0087

17.9 (13.1–20.8)
0.054present 20 19.6 (17.1–23.7) 14.4 (9.8–17.5)

proteinuria <0.5 g/die 5 9.8 (9.2–13.9)
0.014

16.9 (13.4–21.7)
0.52>0.5 g/die 42 18.0 (13.9–23.1) 15.9 (10.8–19.8)

mesangial
hypercellularity

M0 36 16.8 (11.5–22.7)
0.22

17.1 (10.7–20.3)
0.35M1 11 18.3 (14.7–23.4) 13.6 (11.6–15.4)

segmental
glomerulosclerosis

S0 26 15.6 (10.3–18.6)
0.0102

17.8 (11.5–21.3)
0.17S1 21 19.6 (14.1–25.6) 14.6 (10.2–17.7)

tubular atrophy T0 28 14.2 (10.7–17.6)
<0.0001

17.8 (13.7–20.7)
0.067T1 19 22.2 (18.5–26.5) 13.1 (9.8–17.2)

fibrosis
absent 35 15.2 (11.7–19.6)

0.0108
17.0 (11.6–20.8)

0.18present 12 21.75 (17.4–26.1) 14.6 (10.3–17.0)

Interstitial macrophages Peritubular capillaries

Variables n Spearman r p Spearman r p
creatinine

mg/dL 47 0.5008 0.0003 0.2199665 0.14

eGFR
(mL/min per 1.73/m2) 47 −0.5200 0.0002 −0.2756926 0.061

glomerular
macrophages

(mean/glomerulus)
47 0.3022 0.0390 −0.2196074 0.14

interstitial
macrophages
(mean/HPF)

47 −0.3685 0.0108

1 IQR = interquartile range.
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Figure 1. Immunohistochemical staining. Left and right upper panels: CD68-positive macrophages 
and CD31-positive PTC, respectively (patient n. 15). Numerous macrophages are observed concom-
itantly with capillary rarefaction (original magnification ×20). Left and right lower panels: CD68-
positive macrophages and CD31-positive PTC, respectively, (patient n. 46). Few glomerular CD68+ 

Figure 1. Immunohistochemical staining. Left and right upper panels: CD68-positive macrophages and
CD31-positive PTC, respectively (patient n. 15). Numerous macrophages are observed concomitantly
with capillary rarefaction (original magnification ×20). Left and right lower panels: CD68-positive
macrophages and CD31-positive PTC, respectively, (patient n. 46). Few glomerular CD68+ macrophages
are observed concomitantly with normal microvascularization (original magnification ×20).
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The standard multiple linear regression model was utilized to evaluate the contri-
bution of the clinical and pathological parameters influencing the number of interstitial
macrophages. After a backwards stepwise reduction, the variables included in the final
predictive model were eGFR, hypertension, an interaction between hypertension and eGFR,
segmental glomerulosclerosis, and PTC. The regression of the predicted versus observed in-
terstitial macrophage numbers showed a good predictive performance of the multiple linear
regression model (multiple R2 = 0.49; F-statistic: 7.871 on 5 and 41 DF, p-value: 0.000029),
(Figure 2).
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Figure 2. Standard multiple linear regression model. Plot of observed versus predicted interstitial
macrophages number/HPF.

Based on the regression model, the number of interstitial macrophages, predicted
according to the clinical and pathological characteristics of the patients, is shown in Figure 3.
Patients with hypertension and serum creatinine values > 1.2 mg/dL showed higher levels
of interstitial macrophages (p < 0.0001, Figure 3A,B). The interaction between hypertension
and eGFR is shown in Figure 3C,D. In patients without hypertension, the predicted number
of interstitial macrophages showed a significant inverse correlation with eGFR (p < 0.0001)
(Figure 3C), whereas, unexpectedly, in hypertensive patients, the correlation between the
predicted number of interstitial macrophages and eGFR was positive (p < 0.031, Figure 3D).
A possible explanation of this result may stem from the observation that the levels of
eGFR of patients with hypertension were significantly lower than in patients without
hypertension (median: 52 vs. 102; mean: 52.5 vs. 98.6 p < 0.0001) (Figure 3E). Then,
hypertension, by reducing the eGFR level may interfere with the correlation between
interstitial macrophages and eGFR. Patients with both segmental glomerulosclerosis and
tubular atrophy, scored S1/T1, had a higher number of predicted interstitial macrophages
than patients which scored either S1 or T1 alone (p < 0.006) or scored S0/T0 (p < 0.0001)
(Figure 3F). The number of PTC/HPF was inversely correlated with the predicted number
of interstitial macrophages (p = 0.0002) (Figure 3G).
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that the estimated probability of an unfavorable clinical course was higher for patients 
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tients with a value > 19.5 macrophages/HPF showed a risk of unfavorable outcomes 3.12 
times higher (C.I. 95%: 1.043–1.77) than patients with a value of ≤19.5 macrophages/HPF.  

Figure 3. Interstitial macrophages number/HPF predicted from the standard multiple linear regres-
sion model according to clinical and pathological stratification of 47 IgAN patients. (A) Patients
with and without hypertension. (B) Patients with serum creatinine ≤ 1.2 mg/dL and > 1.2 mg/dL.
(C) Plots of the correlations between predicted interstitial macrophages number/HPF and eGFR in pa-
tients without hypertension. (D) Plots of the correlations between predicted interstitial macrophages
number/HPF and eGFR in patients with hypertension. (E) Box plot of the eGFR values of patients
stratified by the presence or the absence of hypertension. (F) Box plot of the correlations between
predicted interstitial macrophages number/HPF and S0-T0, S1T1, S0, or T0 scores. (G) Plot of correla-
tion between predicted interstitial macrophages number/HPF and PTC. Shown are the regression
lines. (C,D,G) Spearman’s rho correlation test.
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Follow-up data were available for 30 IgAN patients. Thirteen patients (43.3%) ex-
perienced an unfavorable outcome (stage 2 or lower at the time of the diagnosis and no
improvement or a worse stage at the end of follow-up). The Kaplan–Meier analysis showed
that the estimated probability of an unfavorable clinical course was higher for patients with
a mean number of interstitial macrophages > 19.5/HPF as compared to patients with a
mean number ≤ 19.5/HPF (Figure 4) (p = 0.032). At the 5-year follow-up, the estimated pro-
portions of event-free patients were 14.5% ± 12.9 SE and 63.7% ± 15.5 SE for patients with
high (>19.5/HPF) and low (≤ 19.5/HPF) mean macrophage number, respectively. Patients
with a value > 19.5 macrophages/HPF showed a risk of unfavorable outcomes 3.12 times
higher (C.I. 95%: 1.043–1.77) than patients with a value of ≤19.5 macrophages/HPF.
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Figure 4. Kaplan–Meier analysis of event-free survival curves of 30 IgAN patients stratified according
to interstitial macrophages mean number/HPF in kidney biopsies. The cut-off value was chosen
based on an initial analysis of the distribution of the variable values and according to the result of a
ROC analysis.

Cox’s univariable analysis was applied to evaluate the event risk of the prognos-
tic variables. Age ≥ 34 years, serum creatinine > 1.2 mg/dL, eGFR < 76 mL/min per
1.73/m2, interstitial macrophage number > 19.5/HPF, and treatment with RASBs alone,
were associated with a significantly increased risk of an unfavorable outcome (Table 2).



J. Pers. Med. 2023, 13, 935 9 of 17

Table 2. Cox’s univariable analysis of prognostic variables in 30 IgAN patients.

Variables n RR CI 2 p

Age <34 15 1.0
(1.5–36.3) 0.008>34 15 5.6

Gender
female 6 1.0

(0.3–4.7) 0.95male 24 1.1

Hypertension absent 17 1
(0.5–4.7) 0.56present 13 1.4

Creatinine
(mg/dL 1)

≤1.2 17 1.0
(1.0–15.5) 0.042>1.2 13 3.4

eGFR
(ml/min per 1.73/m2)

>76 14 1.0
(1.3–31.7) 0.016≤76 16 4.3

Proteinuria
g/die

≤0.5 4 1
(0.3–30.5) 0.6>0.5 26 1.7

Segmental
glomerulosclerosis

S0 15 1
(0.4–5.2) 0.56S1 15 1.4

Tubular atrophy T0 19 1
(0.7–7.3) 0.17T1 11 2.19

Fibrosis
absent 23 1.0

(0.2–2.6) 0.75present 7 0.8
Interstitial

macrophages/HPF
≤19.5 19 1.0

(1.1–10.7) 0.038>19.5 11 3.2
Peritubular

Capillaries/HPF
>17.2 11 1.0

(0.6–62.8) 0.18≤17.2 19 3.3

Therapy 3
RASBs +
steroids 11 31

(1.2–17.3) 0.028
RASBs 16 3.83

1 Unadjusted relative risk; 2 95% confidence intervals; 3 Likelihood Ratio Tests.

Cox’s multivariable regression analysis was utilized to evaluate the relative risk of
an unfavorable outcome of the interstitial macrophage number after adjusting for the
variables utilized in the univariable analyses. The Cox’s regression model showed a good
prognostic accuracy as assessed by Harrell’s concordance index (C-index = 0.88) with a
significant global p-value (p = 0.021). In addition to serum creatinine value > 1.2 mg/dL,
and the type of therapy, the mean number of interstitial macrophages/HPF > 19.5/HPF
behaved as an independent prognostic marker of an unfavorable outcome (relative risk: 1.16;
C.I. 95%: 1.01–1.29; p = 0.034) (Figure 5).

Glucocorticoids are well known inhibitors of macrophage pro-inflammatory func-
tions [28], and treatment with prednisolone reduced the number of macrophages in kidney
biopsies of IgAN patients [31]. Glucocorticoid anti-inflammatory mechanisms affecting
human macrophages are summarized in Figure 6A [28].

Inflammation contributes to the development of hypertension [32]. RASBs are effective
anti-hypertensive agents [33]. Therefore, they exhibit indirect anti-inflammatory effects.
There are reports proposing that they display many additional anti-inflammatory effects
on human cells; we have summarized these effects in Figure 6B [34].

As anti-inflammatory pathways underlying a combined therapy could converge
(Figure 6C), we compared the outcome of patients treated at the time of diagnosis with
RASBs alone or in combination with glucocorticoids.
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Event-free survival curves based on the Cox regression estimates adjusted at the basal
levels of the confounding covariates were calculated as a function of the number of intersti-
tial macrophages corresponding to quartiles Q2 (19/HPF), Q3 (23/HPF), and Q4 (27/HPF),
and the type of therapy (RASBs alone or RASBs in combination with methylprednisolone).
The estimated event-free survival probabilities were inversely associated with the number
of interstitial macrophages in patients treated both with RASBs alone (Figure 7A) and in
combination with methylprednisolone (Figure 7B). However, the deleterious effect of the
increasing number of macrophages was markedly greater in patients treated with RASBs
alone (Figure 7A) as compared with patients treated with RASBs in combination with
methylprednisolone (Figure 7B). Thus, at 19, 23, and 27 macrophages/HPF, these patients,
compared to those treated with RASBs in combination with methylprednisolone, showed
percent reductions of the estimated survival probability of 21%, 49%, and 94%, respectively.
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Figure 6. (A) Pathways inhibiting pro-inflammatory functions of human macrophages mediated by
glucocorticoids; GILZ: glucocorticoid-induced leucine zipper, NO: nitric oxide, iNOS: inducible nitric
oxide synthase [28]. (B) Reported anti-inflammatory pathways mediated by RASBs on human cells;
ROS: reactive oxygen species [34]. (C) Hypothetical positive effect on the outcome by converging
pathways mediated by a combined treatment with RASBs and glucocorticoids.
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Figure 7. Estimated event-free survival curves for IgAN patients according to interstitial macrophage
numbers/HPF and the type of therapy received, after adjusting for baseline prognostic variables
in the multivariable Cox’s regression model. (A) Patients treated with RASB alone. (B) Patients
treated with RASB combined with methylprednisolone. Circles = 19 interstitial macrophages/HPF,
triangles = 23 interstitial macrophages/HPF, diamonds = 27 interstitial macrophages/HPF, corre-
sponding to Q2, Q3, and Q4 of the interstitial macrophages/HPF value distribution, respectively.

4. Discussion

We report, for the first time, that a marked interstitial macrophage infiltration cor-
related with microvascular rarefaction in kidney biopsies of IgAN patients. Moreover,
interstitial macrophage infiltration was an independent risk factor for a progressive decline
in kidney functions. The combination of corticosteroids and RASBs therapy adminis-
tered after kidney biopsy improved the outcome, particularly when numerous interstitial
macrophages were present.

Our patients did not exhibit active (E, C, C4d deposits) or chronic severe histopatho-
logical lesions, and only two patients underwent ESKD at the end of follow-up. Thus,
they formed a suitable group to analyze predictive factors of disease progression. Early
studies concerning various types of glomerulonephritis have shown that tubulointerstitial
damage correlates with progression to ESKD more than glomerular damage [35–37]. It is
well known that proteinuria stimulates tubular epithelial cells to release the macrophage
chemoattractant protein 1 (MCP-1/CCL2) and cytokines activating macrophages in vitro
and in vivo [38–41]. In IgAN, MCP1 is highly expressed by tubular epithelial cells [20,21],
and is detected in the urine [23,24,26,27]. Furthermore, its urinary level correlates with
tubulointerstitial inflammation, severity of histopathological lesions, and adverse progno-
sis [23,24,26]. Based on these findings, the damage mediated by macrophages can be an
important link between glomerular and interstitial injury.

The reduction in microvascular density or “capillary rarefaction” causes a defective
delivery of oxygen/nutrients to the tubules and induces HIF-1-dependent pro-fibrotic
mechanisms, including tubular cell–myofibroblast transdifferentiation [42–44], thus lead-
ing to tubulointerstitial damage [43,44]. Noteworthy, hypoxia stimulates the recruitment
of leukocytes and the expression of pro-inflammatory cytokines, creating a vicious cir-
cle [38,39]. We have observed that interstitial macrophage infiltration correlated with
capillary rarefaction. In addition, an inverse relationship was present between capillary
rarefaction and the predicted number of interstitial macrophages. This was observed at
the time of diagnosis, suggesting that capillary rarefaction preceded the development of
chronic kidney disease, as demonstrated in experimental models of PTC disruption [45,46].

In different pathological conditions, distinct mechanisms underlie the microvascular
damage [47]. In IgAN, two mechanisms have been investigated: (1) Vascular endothelial
growth factor-A (VEGF-A), constitutively expressed in the healthy kidney by podocytes
and tubular epithelial cells, is essential to maintain the integrity of PTC [48]. In advanced
IgAN, despite capillary rarefaction, this growth factor was markedly expressed by tubular
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epithelial cells and detected in the urine [49,50]. However, the plasma level of the soluble
VEGF-A receptor 1, a negative regulator of VEGF-A activity, was also increased [51]. Impor-
tantly, it can be produced by monocytes [52]; (2) The cleavage of collagen XVIII, present in
the basement membranes of glomeruli and kidney tubules, produces endostatin, a potent
antiangiogenic factor [52]. Endostatin is mainly generated by matrix metalloproteinase-
7 [53], released by macrophages in response to a variety of inflammatory mediators [54].
High levels of serum endostatin in IgAN correlated with poor prognosis [27]. Thus, pa-
tients with a marked interstitial macrophage infiltrate are likely to exhibit a high amount
of urinary antiangiogenic factors. Rarefaction of the microvasculature can precede or fol-
low the development of hypertension [55,56] and can contribute to elevate the vascular
resistance in the kidney as in other organs [55]. In addition, there is clear evidence that
inflammation precedes and contributes to the development of hypertension [32]. In line
with this data, we observed a lower number of PTC in hypertensive patients. Noteworthy,
in animal experimental models, RASBs can antagonize PTC rarefaction independently of
their anti-hypertensive effect [57].

By a multivariable analysis, we have shown, confirming our previous results, that
a low eGFR predicted a high macrophage number [18]. In this study, we have observed
that this inverse correlation was not present in patients with hypertension. When the
relationship between hypertension and eGFR was analyzed, we found that all hypertensive
patients exhibited a low eGFR. This is in line with the results of an extensive meta-analysis
showing that hypertension is an independent predictor of decreased eGFR [58].

A high number of glomerular macrophages does not correlate with clinical or patho-
logical parameters [14,17]. However, it has been reported to predict a positive response to
immunosuppressive therapies, and it may indicate acute inflammation [59]. Interestingly,
in this study, we have observed a positive correlation between the number of glomerular
and interstitial macrophages.

To date, there are no univocal indications for treating IgAN patients with glucocorticoids.
It has been proposed that distinct MEST-C scores could be exploited to suggest a

personalized immunosuppression [60–64]. These include E1 [61], M1 [60], particularly
in children [63], S1, particularly if associated with podocyte hypertrophy [64], and C1–2,
particularly in association with E1 [65]. In our study, the concurrency of S1 with T1
predicted more interstitial macrophages than each single score.

According to the KDIGO guidelines, however, the evidence to support an immunosup-
pressive treatment decision based on the MEST-C criteria is insufficient, and only patients
showing proteinuria > 1 g/die following a six-month treatment with RASBs are at high risk
of progression and should be considered for the immunosuppressive therapy [6]. However,
the extent of proteinuria may be influenced by hemodynamic factors that are not always de-
termined by immunological injuries and would not be affected by an immunosuppressive
treatment [66,67]. Thus, proteinuria may not be the only useful criterion to stratify patients
for a personalized therapeutical approach [67]. Three of the four clinical trials performed
so far have shown the effectiveness of glucocorticoids [68]. A well-timed administration
of RASBs combined with glucocorticoids may generate converging pathways to reduce
proteinuria, hypertension, and macrophage-mediated inflammation.

At the time of diagnosis, we administered a six-month treatment with glucocorticoids
alone when a marked interstitial inflammatory infiltrate was observed in the absence of
hypertension. RASBs alone were administered in the presence of proteinuria > 1 g/die
and/or hypertension without a marked interstitial inflammation. RASBs in combination
with a six-month treatment with methylprednisolone were administered when proteinuria
was >1 g/die and/or hypertension were associated with active lesions and/or marked
interstitial inflammation. The combined therapy clearly reduced the deleterious effect
of increasing amounts of interstitial macrophages, suggesting that a timely addition of
glucocorticoids in selected patients was advantageous.

A limitation of this study is the relatively small number of patients with follow-up data.
In addition, being a retrospective analysis, it was not possible to investigate the mechanisms
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underlying PTC rarefaction. Nonetheless, we have shown that a high number of interstitial
macrophages in IgAN is an independent prognostic indicator for the risk of an unfavorable
outcome and could endorse the choice of a well-timed administration of glucocorticoids.

Thus, the number of CD68-positive cells should be routinely evaluated, and prospective
studies concerning urinary biomarkers connected with this lesion are desirable to support
personalized treatment decisions at the time of biopsy, and throughout the follow-up.
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