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Abstract: The beech mushroom (Hypsizygus marmoreus) is a highly nutritious, edible medicinal
mushroom native to East Asia. The present research investigated the impact of different substrates
on the metabolite compositions of H. marmoreus mycelia cultivated in vitro. The substrates tested
included malt extract agar, malt extract agar enriched with barley malt, and malt extract agar en-
riched with grape pomace. The study also assessed antimicrobial and antiradical activities of the
extracts against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram-negative
bacteria (Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa), yeasts (Candida albicans,
C. tropicalis, and C. parapsilosis), and dermatophytes (Trichophyton mentagrophytes, T. tonsurans,
T. rubrum, Arthroderma quadrifidum, A. gypseum, A. curreyi, and A. insingulare). The results revealed
that the H. marmoreus mycelia extracts demonstrated antibacterial and antifungal activities against
the tested microorganisms. Extracts obtained from the cultivation in substrates enriched with either
barley malt or grape pomace exhibited the highest antibacterial activity among all the tested bacte-
rial strains except for P. aeruginosa. The same extracts showed the highest inhibitory effect against
C. albicans and C. parapsilosis. Noteworthy, the extract from the mushroom cultivated in the sub-
strate enriched with grape pomace also exhibited remarkable efficacy against T. mentagrophytes and
T. tonsurans. Terpenoid and carbapenem compounds could be related to the antimicrobial properties
of the extracts from mushrooms cultivated in substrates enriched with grape pomace. In comparison,
the higher antiradical properties could be related to the content of indole compounds. In conclusion,
growth substrate selection affects the nutritional and medicinal properties of H. marmoreus, making it
a valuable contribution to the understanding of the cultivation of this mushroom.

Keywords: Hypsizygus marmoreus; medicinal mushroom; antimicrobial activity; antioxidant
activity; metabolomics

1. Introduction

The nutritional and health-promoting properties of mushrooms have been known
for thousands of years. Ancient civilizations in China, Japan, and other eastern countries
have long recognized the various biological activities of mushroom extracts [1,2]. Edible
mushrooms are valued for their high protein levels, dietary fiber, vitamins, minerals,
phenolic compounds, and low fat [1,3]. Moreover, certain edible mushrooms contain
numerous bioactive compounds that offer therapeutic benefits [4–6].

Hypsizygus marmoreus (Peck) H.E. Bigelow is well known for its nutritional and medic-
inal properties, among which are antitumor, antibacterial, antifungal, anti-inflammatory,
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antioxidant, antihypertensive, and antiallergic properties [7–10]. H. marmoreus belongs to
the Hypsizygus genus (Lyophyllaceae family) and includes four other species: H. elongatipes
(Peck), H.E. Bigelow, H. ulmarius (Bull.) Redhead, H. tessulatus (Bull.) Singer, and H. ligustri
Raithelh [11].

It can be found in different countries in North America, Asia, and Europe (among
which Italy) [12]. It thrives in beech stumps, withered maple, and other trees [13]. Globally,
there are less than 150 known records of this species, and it is not indexed as threatened
in the IUCN Red List of Endangered Species. Even in Italy, H. marmoreus is considered a
rare species.

In addition to their well-known antioxidant activity, phenolic compounds found in
mushrooms can exhibit significant antimicrobial effects against a wide range of
organisms [10]. For instance, Oka et al. [14] investigated the antimicrobial activity of
the volatile chemicals synthesized by H. marmoreus against eight phytopathogenic fungi,
reporting significant inhibitory effects on Alternaria brassicicola. Shiono et al. [15] isolated
and studied three polyacetylene compounds from the organic extract of H. marmoreus, find-
ing that one exhibited antifungal activity against the pathogenic fungus Raffaelea quercivora.
Wong et al. [16] evaluated different polarity extracts from H. marmoreus, observing their in-
hibition effects on Candida albicans. The medicinal properties of H. marmoreus are attributed
to several bioactive molecules, including terpenoid compounds like hypsiziprenol A9,
which have been shown to exert cytotoxic effects in human liver cancer HepG2 cells [17].
The dietary effects of H. marmoreus are associated with various active components, mainly
primary metabolites [8]. As a result of its multiple uses, the production and consumption
of this medicinal mushroom have been increasing worldwide. H. marmoreus, known as a
white-rot fungus [18], possesses the ability to degrade lignocellulosic materials and can be
cultivated on biological, agricultural, or agro-industrial wastes. Studies have identified
various suitable substrates for mushroom cultivation, including rice straw, maize, oak
wood, horse chestnut, sawdust, and cotton stalks [19]. Edible mushroom cultivation is
considered a biotechnological process that helps reduce and protect the environment from
excessive solid waste, as stated by Sanchez [20]. Previous studies have demonstrated
that the production of cultivated mushrooms can be influenced by the fruiting body or
mycelium production processes, with chemical changes affecting their pharmacological
effects on health [21]. Solid culture methods for fruiting body production typically require
a lengthy period, thus making it important to optimize in vitro mycelium cultures with the
final goal of developing innovative health-promoting products [22]. Moreover, mycelium
can be produced in a compact space within a shorter timeframe and with minimal risk
of contamination [23]. The interest in the pharmaceutical potential of mushrooms has
surged in the past decade, as mushrooms are regarded as small pharmaceutical farm for
the synthesis of compounds with potential health effects.

In this study, our main objectives were as follows: (a) selecting two different solid
media for cultivating H. marmoreus mycelium based on preliminary experiments, (b) inves-
tigating and comparing the chemical profiles of H. marmoreus mycelium grown on these
two different culture media, and (c) exploring the influence of medium ingredients on
the antimicrobial and antiradical activities. To achieve these goals, we employed mass
spectrometry (MS)-based metabolomics, which enables quantitative analyses with high
selectivity and sensitivity, along with the potential to identify metabolites [24]. Combin-
ing this approach with multivariate statistical analysis will facilitate the determination of
the effects of different culture media on metabolomics and transcriptomic disparities in
H. marmoreus mycelia.

2. Materials and Methods
2.1. Mushrooms

H. marmoreus (fruiting body) was collected in Perugia (via Roma) in December 2018.
The voucher specimen (PeruMyc2422) was deposited in the herbarium of the Department of
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Chemistry, Biology, and Biotechnology (University of Perugia, Perugia, Italy). The isolation
of the mycelia was carried out as previously described [3].

2.2. Molecular Identification

Genomic DNA was extracted from 15-day mycelia grown on malt extract agar (MEA)
using the ZR Fungal/Bacterial DNA kit (Euroclone S.p.A., Milan, Italy). The amplification
of the internal transcribed spacer (ITS) region was conducted with the fungal-specific
forward primer, ITS1F 5′-CTTGGTCATTTAGAAGTAA-3′ in combination with the reverse
primer, ITS4 5′-TCCTCCGCTTATTGATATGC-3′ [25]. The conditions for PCR amplification
are included in our previous study [3].

2.3. Phylogeny

The chromatogram was examined and edited using Chromas 2.6.6, while MEGA
X software was employed for the subsequent sequence analysis. For the phylogenetic
inference, the DNA sequences of H. marmoreus, Hypsizygus tessulatus (Bull.) Singer, and
Hypsizygus ulmarius (Bull.) Redhead were retrieved from GenBank. Additionally, Ossicaulis
lignatilis (Pers.) Redhead and Ginns was chosen as an outgroup for the ITS region analysis.
Within the MEGA X package, the MUSCLE algorithm was utilized for pairwise and multiple
sequence alignments, and the resulting alignments were further refined manually. To
support the branches in the maximum likelihood (ML) analysis, a bootstrap (BS) value of
1000 pseudoreplicates was applied.

2.4. Samples’ Preparation

The in vitro cultivation of H. marmoreus was carried out using the following solid
media: (1) malt extract agar 1%, as the Hypsizygus control (HC); (2) malt extract agar 1%
enriched with 0.5% barley malt (HC1); (3) malt extract agar 1% enriched with 0.5% grape
pomace (HC2); (4) malt extract agar 1% enriched with 2% barley malt (HC3); (5) malt
extract agar 1% enriched with 2% grape pomace (HC4). The details about the preparation
of the samples are fully listed in our previous study [3].

2.5. Total Phenolic Content

The total phenolic contents of the tested extracts were evaluated via the colorimet-
ric method using the method described for phenolics by Acquaviva et al. [26]. The
Folin–Ciocalteu assay was utilized to determine the total phenolic, and the results were
expressed as gallic acid equivalent (GAE). Details are reported as Supplementary Material.

2.6. In Vitro Antioxidant Assays

To assess the antioxidant potential of the extracts, 2,2-Azino-bis-(3-ethyl-benzthiazoline-
6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, were used to
examine the antioxidants’ ability to neutralize free radicals [27]. Each of these assays was
evaluated using the Trolox equivalents (TE). Details are reported as Supplementary Material.

2.7. Untargeted Ultra-Performance Liquid Chromatography–Mass Spectrometry
(UHPLC)-Quadrupole Time of Flight (QTOF)-Based Metabolomics and Statistical Analysis

The untargeted analysis was performed using a 1260 Infinity II LC System coupled
with an Agilent 6530 Q-TOF spectrometer (Agilent Technologies, Santa Clara, CA, USA). The
details are reported in our previous study [3] and available as a Supplementary Materials.

2.8. Antimicrobial Effects

The antimicrobial properties of the extracts were investigated as previously
reported [27–29]. Further details can be found in the supplementary, where the employed
microbial species for the tests are also listed.



Microorganisms 2023, 11, 2552 4 of 17

3. Results
3.1. Molecular Identification of Hypsizygus marmoreus (PeruMyc2422)

The ITS-based phylogeny provides supporting evidence for placing the newly se-
quenced samples from our study within the context of H. marmoreus and H. tessulatus
(Figure 1). However, the sequences of H. marmoreus and H. tessulatus retrieved from Gen-
Bank in our study exhibited a high degree of genetic similarity, making it challenging
to precisely classify H. marmoreus PeruMyc 2422 collected in Perugia. Furthermore, the
alignment analysis uncovered a notable variation of four nucleotides unique to the sample
we collected compared to the strains of H. marmoreus, H. tessulatus, and H. ulmarius ob-
tained from GenBank. This observation highlights the importance of further investigation
using additional molecular markers to gain deeper insights into the genetic differentiation
within this group. Therefore, in order to enhance our understanding and achieve a more
conclusive taxonomic classification, it may be necessary to conduct further investigations
employing alternative molecular markers.
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Figure 1. Phylogenetic tree of Hypsizygus species inferred using maximum likelihood (ML) based on
the internal transcribed spacer (ITS) region (bootstrap support = 1000). The sequences generated in
this study are represented by the Perumyc 2422 code, while the original names were maintained for
sequences obtained from GenBank.

3.2. Untargeted LC–MS/MS-Based Metabolomics

Regarding the metabolomics of H. marmoreus, the data were analyzed with the software
MS-DIAL (http://prime.psc.riken.jp/compms/msdial/main.html, accessed on 9 October

http://prime.psc.riken.jp/compms/msdial/main.html
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2023). The acquired information included mass, retention time, and area of the five samples
analyzed (HC, H1, H2, H3, H4),

3.3. Statistical Data Analysis

The data produced in this experiment were explored using the statistical technique
of unsupervised principal component analysis after applying autoscaling. The score plot
graph (Figure 2) shows that the first two components together explain 44.1% of the variance
of the samples. The ellipsoids, which comprise the 95% confidence interval, enclose
the samples in homogeneous groups. The first component separates control (HC), H1,
and H3 groups from H2 and H4. The second component separates HC and H4 from
everything else.
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Figure 2. Score plot graph in which the samples were enclosed in homogenous groups (ellipsoids).
Malt extract agar 1%, as the control (HC); malt extract agar 1% enriched with 0.5% barley malt (H1); malt
extract agar 1% enriched with 0.5% grape pomace (HC2); malt extract agar 1% enriched with 2% barley
malt (HC3); malt extract agar 1% enriched with 2% grape pomace (HC4); principal component (PC).

3.4. Cluster Analysis

The dendrogram (Figure 3) shows that the samples are mainly divided into two
clusters: HC (fungus grown in control medium) and all the other samples grown in
the samples admixed with different concentrations of barley malt (H1 and H3) or grape
pomace (H2 and H4). Further nodes of the dendrogram subdivide the samples into their
respective clusters. A heatmap (Figure 4) was also made considering the 70 most significant
metabolites. The heatmap confirms that the samples are mainly divided into two clusters.
The first node divides the HC clusters, H1 and H3, from the H2 and H4 clusters. This is
consistent with the different substrates employed for the mushroom cultivation. Indeed,
samples H1 and H3 were grown in a barley malt-enriched medium, while samples H2 and
H4 were grown in a pomace-enriched medium.
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Figure 3. Dendrogram that shows the five H. marmoreus samples (HC, H1, H2, H3, and H4) divided
into two main clusters. Malt extract agar 1%, as the control (HC); malt extract agar 1% enriched
with 0.5% barley malt (H1); malt extract agar 1% enriched with 0.5% grape pomace (HC2); malt
extract agar 1% enriched with 2% barley malt (HC3); malt extract agar 1% enriched with 2% grape
pomace (HC4).
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Figure 4. Heatmap reports the metabolomics analysis results of the two main clusters into which
the samples are divided. Malt extract agar 1%, as the control (HC); malt extract agar 1% enriched
with 0.5% barley malt (H1); malt extract agar 1% enriched with 0.5% grape pomace (HC2); malt
extract agar 1% enriched with 2% barley malt (HC3); malt extract agar 1% enriched with 2% grape
pomace (HC4).

3.5. Functional Analysis

Figures 5–7 and Tables 1 and 2 summarize the MetaboAnalyst’s functional meta-
analysis result. The 10 pathways activated in a statistically significant way with respect to
control (HC) are reported in relationships with the employed substrate. In many cases, it
is noted that the H1 and H3 pairs and H2 activate certain pathways in a similar way. For
example, zymosterol biosynthesis appears activated in H2 and H4 but not in H1 and H3,
thus demonstrating the substrate’s effect on mushroom metabolism [3].
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GSEA: gene set enrichment analysis.

Table 1. Statistically significantly pathways active in the barley malt samples vs. control (HC).

Barley Malt vs. Control Total Size Hits Sig_Hits Mummichog
p-Values

GSEA
p-Values

Combined
p-Values

Purine metabolism 62 12 4 0.06893 0.01538 0.00832
Tyrosine metabolism 15 2 1 0.1915 0.02128 0.0265
Amino sugar and nucleotide
sugar metabolism 22 6 1 0.1549 0.03509 0.03378

Biosynthesis of unsaturated
fatty acids 23 3 2 0.0228 0.2419 0.0342

Galactose metabolism 17 7 2 0.1056 0.05769 0.03718
Starch and sucrose metabolism 12 5 3 0.1056 0.05769 0.03718
Carbapenem biosynthesis 3 2 1 0.2018 0.05263 0.0589
Tryptophan metabolism 30 2 1 0.1915 0.06383 0.06607
Pentose phosphate pathway 18 2 1 0.1056 0.3269 0.1508
Phenylalanine, tyrosine, and
tryptophan biosynthesis 21 3 1 0.2752 0.1333 0.1579

Porphyrin and chlorophyll
metabolism 20 5 1 0.3298 0.1452 0.1934

Folate biosynthesis 23 1 1 0.1 0.6735 0.249
Pentose and glucuronate
interconversions 12 4 2 0.2018 0.386 0.2767

One carbon pool by folate 8 2 1 0.1915 0.6364 0.3784
Aminoacyl-tRNA biosynthesis 22 7 1 0.5414 0.2571 0.4137
Glycine, serine and threonine
metabolism 28 9 1 0.4403 0.5224 0.568

Arginine and proline
metabolism 25 9 2 0.4735 0.6567 0.6742

Hits: number of identified metabolites that are part of a specific pathway; Sig_Hits: number of identified
metabolites that are part of a specific pathway, whose concentration has varied in a statistically significant manner;
mummichog: American–Indian term for by-groups; GSEA: gene set enrichment analysis.
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Table 2. Statistically significantly pathways active in the grape pomace samples vs. control (HC).

Grape Pomace vs. Control Total Size Hits Sig_Hits Mummichog
p-Values

GSEA
p-Values

Combined
p-Values

Amino sugar and nucleotide
sugar metabolism 22 6 1 0.2487 0.9375 0.5726

Aminoacyl-tRNA biosynthesis 22 7 1 0.4746 0.8529 0.7708
Arginine and proline
metabolism 25 9 2 0.6641 0.6818 0.8116

Carbapenem biosynthesis 3 2 1 0.3183 0.2889 0.3114
Folate biosynthesis 23 2 1 0.02103 0.05455 0.00891
Galactose metabolism 17 7 2 0.1728 0.2593 0.184
Glycine, serine and threonine
metabolism 28 9 1 0.6272 0.1667 0.3407

Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 11 1 1 0.08333 0.07547 0.03817

N-Glycan biosynthesis 28 3 2 0.161 0.4237 0.2514
One carbon pool by folate 8 2 1 0.161 0.01695 0.01884
Pantothenate and CoA
biosynthesis 18 4 1 0.3183 0.4737 0.436

Pentose and glucuronate
interconversions 12 4 1 0.3183 0.5439 0.4767

Phenylalanine, tyrosine, and
tryptophan biosynthesis 21 4 1 0.09046 0.02899 0.01821

Porphyrin and chlorophyll
metabolism 20 5 2 0.1204 0.6029 0.263

Purine metabolism 62 12 1 0.6508 0.8205 0.869
Starch and sucrose metabolism 12 5 3 0.1728 0.2593 0.184
Terpenoid backbone
biosynthesis 13 2 1 0.1728 0.05556 0.05421

Tryptophan metabolism 30 7 2 0.0336 0.01316 0.00386
Tyrosine metabolism 15 2 1 0.161 0.3559 0.2212
Valine, leucine and isoleucine
biosynthesis 20 7 2 0.1868 0.3947 0.2659

Valine, leucine and isoleucine
degradation 16 5 1 0.382 0.5333 0.5278

Hits: number of identified metabolites that are part of a specific pathway; Sig_Hits: number of identified
metabolites that are part of a specific pathway, whose concentration has varied in a statistically significant manner;
mummichog: American–Indian term for by-groups; GSEA: gene set enrichment analysis.

3.6. Total Phenol Content and Antioxidant Effects

The extracts from H. marmoreus were also tested for the amounts of phenolic com-
pounds, calculated as gallic acid equivalents (Table 3). However, we have to consider that
the determination of total phenols through the Folin–Ciocalteu assay is a rough approxima-
tion, thus not excluding the presence of other antioxidant compounds. The results showed
that substrate did not influence the total phenol content in most of the samples, with the
exception of the H4 extract, which displayed a 24.28% reduction in total phenols. This
is consistent, albeit partially, with its lower activity in the DPPH assay (Table 4). On the
other hand, in the ABTS assay, we observed a sensitive increase in the antiradical activity,
especially in the extract H4 (Table 5) derived from mushrooms cultivated in substrates
with the highest concentration in grape pomace (2%). The discrepancies observed between
the antiradical activity, expressed as Trolox equivalents, with DPPH and ABTS assays
may be related to a lower sensitivity of DPPH to the change of growth substrate [3]. This
is consistent with the higher accuracy of ABTS in measuring the antioxidant activity of
extracts rich in lipophilic and highly pigmented compounds [30]. Antioxidant properties
of H. marmoreus have been reported in the literature [31]. It is also sensitive to highlight
the recent identification of indole compounds in extracts from H. marmoreus [32]. Consid-
ering the antioxidant properties of such compounds, we cannot exclude that the highest
antioxidant effect of extract H4, as shown by ABTS assay, could be related to the presence
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of indole compounds [33,34]. Indeed, the H4 extract showed the highest content in indole
compounds, as revealed by the metabolomics investigation (Figure 3).

Table 3. Total phenol content.

Sample mg GAE (Gallic Acid Equivalents)/gdm SD

H1 3.063 0.073
H2 3.418 0.400
H3 3.250 1.634
H4 2.720 0.070
HC 3.545 0.924

Malt extract agar 1%, as the control (HC); malt extract agar 1% enriched with 0.5% barley malt (H1); malt extract
agar 1% enriched with 0.5% grape pomace (HC2); malt extract agar 1% enriched with 2% barley malt (HC3); malt
extract agar 1% enriched with 2% grape pomace (HC4).

Table 4. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) ASSAY.

Sample Decolorization (%)
(2 mg/mL) SD mg TE (Trolox

Equivalents/gdm) SD

H1 21.25 1.64 14.323 1.339
H2 18.92 1.06 12.428 0.862
H3 18.25 1.957 11.878 1.594
H4 18.19 3.356 11.831 2.734
HC 21.11 1.968 14.206 1.603

Malt extract agar 1%, as the control (HC); malt extract agar 1% enriched with 0.5% barley malt (H1); malt extract
agar 1% enriched with 0.5% grape pomace (HC2); malt extract agar 1% enriched with 2% barley malt (HC3); malt
extract agar 1% enriched with 2% grape pomace (HC4).

Table 5. The 2,2-Azino-bis-(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) assay.

Decolorization (%)
(2 mg/mL) SD mg TE (Trolox

Equivalents/gdm) SD

7.81 0.72 0.587 0.254
6.92 0.74 0.295 0.261
9.25 0.089 1.118 0.021
9.90 0.095 1.331 0.034
7.75 0.333 0.566 0.118

3.7. Antimicrobial Activity

Table 6 presents the minimal inhibitory concentration (MIC) values of extracts from
H. marmoreus mycelia against bacteria, yeasts, and dermatophytes. All extracts derived
from H. marmoreus displayed antimicrobial activity in concentrations ranging from 1.56 to
200 µg mL−1. Notably, Escherichia coli (PeruMycA 2) exhibited the highest sensitivity to
the H4 extract, with an MIC range of 1.56–3.125 µg mL−1 (GM, 2.48 µg mL−1). In contrast,
Bacillus cereus (PeruMycA 4) and Pseudomonas aeruginosa (ATCC 15442) showed the least
sensitivity to the mycelia extracts. Generally, gram-negative bacteria (E. coli PeruMyc 2
and 3, S. typhi 7, and P. aeruginosa ATCC 15442) displayed lower sensitivity to the extracts
compared to gram-positive strains, similar to observations for F. torulosa and Pleurotus
spp. [2,3,35]. The growth inhibition results for yeast strains revealed significant, albeit
partial, antimicrobial activity of the mycelia extracts derived from the growth substrate
containing grape pomace. Notably, the mycelia extracts H1 and H4 exhibited strong
inhibition (MIC 12.5–100 µg mL−1) against Candida albicans (YEPGA 6379) and C. parapsilosis
(YEPGA 6551), respectively (Table 7). Additionally, all tested extracts effectively inhibited
dermatophyte growth, with Trichophyton mantagrophytes (CCF 4823), T. tonsurans (CCF
4834), and T. rubrum (CCF 4933) being the most susceptible fungal species to all mycelia
extracts, with MIC ranging from 6.26 to 200 µg mL−1. MIC values below 100 µg mL−1 were
considered indicative of high antimicrobial activity (Table 8). Regarding the mechanisms
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underlying the observed antimicrobial effects, according to the metabolomics analysis, we
hypothesize that different secondary metabolites, including terpenoids and carbapenems,
could be responsible for the antibacterial and antifungal effects of the extracts. In particular,
the contemporary presence of terpenoids and carbapenems in the extracts prepared from
mushrooms cultivated in the medium enriched with grape pomace further corroborates
the overall higher efficacy of the H4 as an antimicrobial. However, it cannot exclude that
other mushroom metabolites, including sterols and polyisoprenepolyols could be involved
in the antimicrobial properties displayed by H. marmoreus [36].
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Table 6. Antibacterial effects of H. marmoreus mycelia extracts expressed as minimal inhibitory concentrations (MIC).

MIC (µg mL−1)

Bacteria Escherichia coli Escherichia coli Escherichia coli Bacillus cereus Pseudomonas
aeruginosa Bacillus subtilis Salmonella typhi Staphylococcus

aureus
(ATCC 10536) (PeruMycA 2) (PeruMycA 3) (PeruMycA 4) (ATCC 15442) (PeruMycA 6) (PeruMycA 7) (ATCC 6538)

Extracts
HC 39.68 (25–50) 9.92 (6.25–12.5) 62.99 (50–100) >200 >200 79.37 (50–100) 62.99 (50–100) 125.99 (100–200)
H1 8.29 (6.75–12.5) 3.93 (3.12–6.25) 39.68 (25–50) >200 >200 31.49 (25–50) 31.49 (25–50) 79.37 (50–100)
H2 15.75 (12.5–25) 3.93 (3.12–6.25) 31.49 (25–50) >200 >200 62.99 (50–100) 62.99 (50–100) 125.99 (100–200)
H3 15.75 (12.5–25) 19.84 (12.5–25) 9.92 (6.25–12.5) >200 >200 62.99 (50–100) 31.49 (25–50) 62.99 (50–100)
H4 9.92 (6.25–12.5) 3.93 (3.12–6.25) 2.48 (1.56–3.125) >200 >200 79.37 (50–100) 31.49 (25–50) 62.99 (50–100)

Ciprofloxacin (µg
mL−1) 31.49 (25–50) 9.92 (6.25–12.5) 79.37 (50–100) 125.99 (100–200) 125.99 (100–200) 125.99 (100–200) 79.37 (50–100) 200–>200

Minimal inhibitory concentration (MIC) values are the geometric means of three replicates (n = 3), and the range concentrations are shown within brackets. Malt extract agar 1%, as the
control (HC); malt extract agar 1% enriched with 0.5% barley malt (H1); malt extract agar 1% enriched with 0.5% grape pomace (HC2); malt extract agar 1% enriched with 2% barley malt
(HC3); malt extract agar 1% enriched with 2% grape pomace (HC4).

Table 7. Minimal inhibitory concentrations (MIC) of H. marmoreus extracts against yeast isolates.

MIC (µg mL−1)

Yeast Strain Candida tropicalis Candida albicans Candida parapsilosis Candida albicans
(YEPGA 6184) (YEPGA 6379) (YEPGA 6551) (YEPGA 6183)

Extracts
HC 79.37 (50–100) 62.99 (50–100) 158.74 (100–200) 79.37 (50–100)
H1 39.68 (25–50) 19.84 (12.5–25) 62.99 (50–100) 125.99 (100–200)
H2 39.68 (25–50) 79.37 (50–100) 39.68 (25–50) 79.37 (50–100)
H3 39.68 (25–50) 39.68 (25–50) 62.99 (50–100) 39.68 (25–50)
H4 79.37 (50–100) 79.37 (50–100) 19.84 (12.5–25) 62.99 (50–100)

Fluconazole (µg mL−1) 2 1 4 2

MIC values are reported as geometric means of three independent replicates (n = 3). MIC range concentrations are reported within brackets. Malt extract agar 1%, as the control (HC);
malt extract agar 1% enriched with 0.5% barley malt (H1); malt extract agar 1% enriched with 0.5% grape pomace (HC2); malt extract agar 1% enriched with 2% barley malt (HC3); malt
extract agar 1% enriched with 2% grape pomace (HC4).
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Table 8. Minimal inhibitory concentrations (MICs) of H. marmoreus mycelia (HC) extracts against dermatophyte isolates.

MIC (µg mL−1)

Dermatophyte Trichophyton
mentagrophytes

Trichophyton
tonsurans

Trichophyton
rubrum

Arthroderma
quadrifidum

Trichophyton
mentagrophytes

Arthroderma
gypseum

Arthroderma
curreyi

Arthroderma
insingulare

(CCF 4823) (CCF 4834) (CCF 4933) (CCF 5792) (CCF 5930) (CCF 6261) (CCF 5207) (CCF 5417)

Extracts
HC 158.74 (100–200) 125.99 (100–200) 125.99 (100–200) 79.37 (50–100) >200 >200 158.74 (100–200) 79.37 (50–100)
H1 39.68 (25–50) 31.49 (25–50) 62.99 (50–100) 79.37 (50–100) 125.99 (100–200) 125.99 (100–200) 125.99 (100–200) 62.99 (50–100)
H2 62.99 (50–100) 39.68 (25–50) 31.49 (25–50) 62.99 (50–100) 125.99 (100–200) 100–>200 100–>200 125.99 (100–200)
H3 62.99 (50–100) 31.49 (25–50) 62.99 (50–100) 79.37 (50–100) 158.74 (100–200) 158.74 (100–200) 100–>200 62.99 (50–100)
H4 19.84 (12.5–25) 9.92 (6.25–12.5) 19.84 (12.5–25) >200 >200 62.99 (50–100) 125.99 (100–200) 79.37 (50–100)

Griseofulvin (µg
mL−1) 2.52 (2–4) 0.198 (0.125–0.25) 1.26 (1–2) >8 3.174 (2–4) 1.587 (1–2) >8 >8

MIC values are reported as geometric means of three independent replicates (n = 3). MIC range concentrations are reported within brackets. Malt extract agar 1%, as the control (HC);
malt extract agar 1% enriched with 0.5% barley malt (H1); malt extract agar 1% enriched with 0.5% grape pomace (HC2); malt extract agar 1% enriched with 2% barley malt (HC3); malt
extract agar 1% enriched with 2% grape pomace (HC4).
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4. Conclusions

In the present study, the influence of different substrates was investigated on the
metabolomics profile and biological properties of extracts from the medicinal mushroom
H. marmoreus. The supplementation of the agar substrate with grape pomace determined
a significant increase in the antioxidant and antimicrobial properties of the mushroom.
Although a wide plethora of studies indicated the phenolic compounds as key actors in
the antimicrobial and antioxidant effects from polar extracts of both medicinal plants and
mushrooms, in the present study antiradical and antimicrobial effects were not related
to the content of phenolics. On the other hand, the metabolomics approach showed
significant effects of the growth substrates on the mushroom pathways, suggesting that
the enrichment of the growth medium with grape pomace could be an innovative strategy
to implement the medicinal properties of H. marmoreus, whose content in terpenoids,
carbapenems, and indoles was significantly increased compared with the mushrooms
cultivated in the standard medium. Future studies are needed to confirm the observed
antioxidant and antimicrobial effects in in vivo pharmacological models. However, as a
concluding remark, these results, besides showing an innovative approach to modulate
the metabolic pathways’ activation and consequent biopharmacological properties of the
mushroom, also represent a paradigm of the possibility of integrating different productive
chains, medicinal mushrooms (i.e., H. marmoreus), and medicinal plants (i.e., Vitis vinifera),
also in a context of sustainability through the use of by-products from a chain to feed the
other one.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/microorganisms11102552/s1, Total Phenolic Content; 2,2-Azino-
bis-(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays.
Untargeted ultra-performance liquid chromatography mass spectrometry (UHPLC)-quadrupole time
of flight (QTOF)-based metabolomics and statistical analysis.
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