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Mechanical stimuli are regulators not only in cells but also of the extracellular
matrix activity, with special reference to collagen bundles composition, amount
and distribution. Synchrotron-based phase-contrast computed tomography was
widely demonstrated to resolve collagen bundles in 3D in several body districts
and in both pre-clinical and clinical contexts. In this perspective study we
hypothesized, supporting the rationale with synchrotron imaging experimental
examples, that deep learning semantic image segmentation can better identify
and classify collagen bundles compared to common thresholding segmentation
techniques. Indeed, with the support of neural networks and deep learning, it is
possible to quantify structures in synchrotron phase-contrast images that were
not distinguishable before. In particular, collagen bundles can be identified by their
orientation and not only by their physical densities, as was made possible using
conventional thresholding segmentation techniques. Indeed, localised changes in
fiber orientation, curvature and strain may involve changes in regional strain
transfer and mechanical function (e.g., tissue compliance), with consequent
pathophysiological implications, including developmental of defects, fibrosis,
inflammatory diseases, tumor growth and metastasis. Thus, the comprehension
of these kinetics processes can foster and accelerate the discovery of therapeutic
approaches for themaintaining or re-establishment of correct tissue tensions, as a
key to successful and regulated tissues remodeling/repairing and wound healing.
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1 Introduction

The collagen family consists of about 30 proteins, all structural molecules of great
importance in the human body. The most abundant collagen is type I, which forms fibrillar
networks that shape and strengthen tissues such as skin, tendons and bones. The three-
dimensional structure and organization of these networks adapt to different tissue-specific
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functions. For example, collagen in weight-bearing tendons forms
thick fibers (200 nm) that are aligned along the tendon to optimize
force transmission and tendon strength. Conversely, collagen in the
cornea forms interwoven sheets of thin (~30 nm) fibers that provide
strength combined with optical transparency. Moreover, collagen in
interstitial tissue mainly forms isotropic networks, which provide
mechanical strength combined with porosity to facilitate nutrient
transport and cell migration [1].

Structure and mechanics of collagen determine not only the
function of the tissue as a whole, but also the functions of the cells
residing in the tissue. Collagen fibers provide cells with
topographical, biochemical and mechanical signals, which
regulate cell proliferation, differentiation, migration and apoptosis
[2]. The mechanobiological interplay between cells and the
surrounding collagen extracellular matrix is essential to guide
physiological processes such as wound healing, but it can also
trigger pathological processes [1]. Abnormal stiffening of
interstitial collagen networks, for instance, promotes cell
invasion, which contributes to fibrosis, cancer and metastasis [3].

The relation between collagen structure and its biomechanics
has triggered a long history of research: in fact, it has been known for
some time that collagen shows a non-linear elasticity due to a
stiffening induced by deformation [4]. This mechanical design
allows tissues such as skin and arteries to be soft at low strain
but stiff at high strain, providing mechanical stability under large
loads [5]. However, the complex architecture of collagenous tissues,
which is structured on different dimensional scales, makes it difficult
to identify the structural basis of the stiffening response following
deformation. Tissues contain networks of bundles of fibrils, which in
turn contain hundreds of molecules per cross section packed into an

axially ordered lattice [6]: in fact, thanks to X-ray scattering studies,
it has been known for decades that multiple mechanisms operating
on different length scales contribute to the overall mechanical
response at the tissue level [7]. In this context, using X-ray
diffraction data, a model of the nanomechanics of a collagen
microfibril that incorporates the full biochemical details of the
amino acid sequence of constituting molecules and the nanoscale
molecular arrangement was presented and experimentally validated.
They found that collagen molecules alone are unable to provide the
wide range of mechanical functionality required for the
physiological function of collagenous tissues. Instead, a number
of deformation mechanisms, due to the material’s hierarchical
composition, are critical to the material’s ability to impart the
key mechanical properties, i.e., the large extensibility, strain
hardening, and toughness [6].

For a long time it was also believed that, during wound healing,
tissue tension was attributed to forces produced by tissue-resident
(myo-)fibroblasts alone; conversely, it was recently found in a
wound healing model that the storage of tensile forces in the
collagen bundles of the extracellular matrix has a significant, so-
far neglected contribution to macroscopic tissue tension (Figure 1)
[8]. Thus, in general, the rate of collagen deposition determines the
amount of macroscopic contraction and tension of the regenerating
tissues, which is important for restoring their function. Increased
contraction, however, is associated with conditions such as fibrosis
and cancer. Indeed, if the tissue begins to stiffen, these cells produce
more collagen, disrupting this balance. This increases the stiffness of
the organ, stimulating the fibroblasts to release even more collagen.
However, while this explains how fibrosis progresses, it is less clear
how the cycle begins [9].

2 Contribution of synchrotron-based
phase-contrast imaging

The study of structural morphology of collagen fibers seems to
be crucial to better understand the biological events associated with
wound healing, fibrosis, tumorigenesis and metastasis, and patients’
stratification. Only an advanced three-dimensional (3D)
characterization of the collagenous tissue could improve our
knowledge of its structure.

In this framework, high-resolution synchrotron-based X-ray
tomographic microscopy was shown to be a useful tool in
analyzing topology and morphometry of structures in 3D
collagen matrices for more than 10 years [10,11].

In particular, X-ray phase-contrast imaging (XRPCI) represents
a powerful method to study the microarchitecture of collagenous
tissues. Indeed, while the conventional absorption-based contrast
originates from attenuation mismatches between different tissues
inside a sample, the XRPCI contrast is due to the phase-shift δ of the
refractive index n = 1 − δ + iβ, representing the interaction of X-ray
photons with the tissues. The δ shift, in non-mineralized biological
tissues like collagenous tissues, can be up to three orders of
magnitude larger than the attenuation complex value β, allowing
to achieve a reliable 3D imaging, with increased contrast, for the
analysis of several organs/tissues.

In the last 25 years, different approaches for phase-based X-ray
imaging methods have been explored and are nowadays widely

FIGURE 1
Tissue formation and tensioning process. After initial cell
diffusion and adhesion to a scaffold (1), cells progressively deposit
tense collagen fibrils (black arrows, 2) leading to a gradual increase in
total force resulting in macroscopic contraction (3). The amount
of macroscopic force exceeds the sum of individual cell forces or
contributions from non-fibrillar ECM networks, demonstrating that
fibrillar collagen forces strongly contribute to tissue contraction
during wound healing ([8]; CC-BY-4.0).
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applied. Themost diffused phase sensitive methods are propagation-
based imaging [12–14], analyzer-based imaging [15,16], edge
illumination [17–19], Talbot (or Grating) X-ray interferometry
[20–22]. The propagation-based imaging is the simplest one, as
no optical elements are needed in the beam and there is no
constraint for beam monochromaticity.

In this context, in the last 10 years, the study of collagenous
tissues by synchrotron radiation-based high-resolution phase-
contrast tomography (SR-PhC-microCT) spread rapidly. In
particular, SR-PhC-microCT was successful in detecting, with
high spatial resolution, the 3D structural organization of the
extracellular matrix (ECM) within bioscaffolds, supporting the
understanding on how the presence of cells modified the
construct arrangement [23,24]). Moreover, SR-PhC-microCT
successfully imaged collagenous tissues in osteons [25,26],
intervertebral discs [27], dermal tissues [28], cartilages [29],
vessels [30], meniscus tissue [31], tendons [32,33], liver [34,35],
cardiac endomyocardium [36], uterine myometrium and
leiomyomas [37,38], vocal folds [39] and neck of dental implants
[40], demonstrating the capability of this method to discriminate
healthy and pathologic tissues.

3 The perspective of introducing deep
learning-based image analysis

There are limitations associated with the use of synchrotron-
based phase contrast imaging for the unraveling of the
biomechanical properties of collagenous tissues pathologies. For
example, limited synchrotron availability hampers the time it takes
to produce more replicas; synchrotron structures can be accessed on
the basis of a peer review application and are not as widely available
as other imaging techniques. Second, experiments are usually
limited to the capabilities of the beamline, i.e., the samples
studied must fit the field of view and resolution of the beamline.
For a synchrotron (parallel) beam, the field of view is ultimately
limited by the size of the beam; therefore, a trade-off between field of
view and resolution must be reached. Moreover, further studies are
needed to establish parameters that can be used as reliable
quantitative measures of image structures to describe tissue
quality and/or function. With reference to this last point, many
studies underline the need to quantitatively determine the
complexity of the shape of the collagenous tissues; in particular,
it is essential to quantitatively evaluate the preferential directions of
the collagenous bundles and their connectivity degree [1,28,40].

To overcome this last limitation, i.e., the difficulty of quantifying
the direction and connectivity of collagen bundles in all tissue
contexts, an interesting perspective is offered by artificial
intelligence (AI) and in particular by deep learning (DL)
algorithms. Very recently, we demonstratively showed that AI
could be applied directly on high-resolution images acquired by
synchrotron-based phase contrast tomography to automatically
segment the collagen bundles of the connective tissue
surrounding dental implants [41]. Artificial neural networks have
been able to distinguish the inner portions of the soft tissue not only
based on the grey levels of the synchrotron image, as conventional
thresholding methods do, but also based on the orientation of the
collagen bundles themselves. In this way, it was possible to

quantitatively distinguish longitudinal and transverse peri-
implant collagen bundles, with evidence of the timing and
methods of formation of the connective tissue around the
implant during the wound healing process (Figure 2).

In particular, the semantic segmentation method used by us
assigns a label to each pixel of the synchrotron images, based on the
morphometric characteristics of the image; for example, if two
objects within the image have different shapes or directions, they
will be classified as two distinct subgroups.

The use of the semantic segmentation method involves neural
networks: U-Net, a convolutional neural network (CNN) designed
for segmentation of biomedical images [42], proved to be a good
choice in the case of collagenous tissues [41]. With the support of
neural networks and deep learning, it has been possible to quantify
structures in the samples that had not previously been considered. In
particular, the collagen bundles were identified by their orientation
and not by their physical density: this is essential to discriminate
transverse and longitudinal bundles which, up to now, could not be
distinguished using conventional thresholding techniques since
their physical density is identical. In practice, we succeeded in
creating a neural network capable of separating longitudinal and
transverse fibers via U-Net. Furthermore, regarding the connectivity
density parameter, it was observed that results obtained in deep
learning were higher for all samples than those obtained with
conventional thresholding; this fact is certainly attributable to an
increased capability to discriminate collagen bundles and therefore
their connectivity through artificial intelligence protocols.

In summary, we observed that the introduction of DL-based
image analysis allows for a better investigation of the directionality
(isotropy/anisotropy) and connectivity of the collagen bundles.
These results provide a new method to understand the
relationship between collagen network mechanics and
microstructure under a broad range of assembly conditions and
tissue districts.

Therefore, in the present prospective study, we suggest that the
microscopic information on collagen network isotropy/anisotropy
and connectivity are parameters that can be easily determined by
synchrotron-based phase-contrast imaging processed by DL-based
data analysis. These morphometric data of shape complexity are of
fundamental importance because they are able to reliably reveal
correlations with macroscopic measurements of the nonlinear
elastic behavior of collagenous tissues.

In this direction, an immediate challenge is to understand the
most suitable sample size to obtain effective and statistically
consistent data in the various pathophysiological and tissue
regeneration contexts. Our first study in a regenerative context
revealed, using a very small sample size, significant differences in
the two parameters of interest, namely, the connectivity and the
degree of orientation of the collagen bundles [41]. However, it is
necessary to be very careful and scrupulous in this area because other
studies in the field of oral implantology [43] suggest the need for a
larger sample size, at least 8–10 samples per group of study, to obtain
possible statistically significant mismatches of the same parameters
during clinical staging. Furthermore, a high rigor is needed also in
the choice of statistical methods of investigation, evaluating the
opportunity to use tests that can release at least two statistical
parameters, i.e., the normality and the equivariance of the
sampled data distribution.
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In fact, especially in tumor contexts, there may be evident
morphometric heterogeneities that require advanced statistical tools
and, in any case, also the systematic comparison with histopathological
findings. To this purpose, an innovative multidisciplinary approach
based on SR-PhC-microCT, light and electronmicroscopy, and Fourier
Transform Infrared Imaging Spectroscopy was recently exploited to
better characterize microstructural collagen features [38]. Indeed, the
cross-linking of high-resolution analytical tools, combining the
investigation of the tridimensional organization and of the
secondary structure of collagen, was shown to be useful to identify
defined markers correlating the status of this protein with specific
pathological conditions.

4 Discussion

TheDL-based analysis applied to synchrotron-based phase contrast
imaging was successfully used not only in studying wound healing but
also to detect liver fibrotic progress, including the early stages [44], and
osteoarthritis [45]. In these cases, the feasibility of extracting texture
features for quantified diagnosis was shown, evaluating the performance
of back propagation (BP) neural net classifier [44] or CNNs [45]. These
studies showed that these approaches were effective for staging the

pathologies, supporting our perspective idea to reliably reveal, by AI
approaches, correlations between the 3D micro-texture and the
macroscopic nonlinear elastic behavior of collagenous tissues.

In addition to the already shown impact of AI-based workflows in
studying wound healing and fibrosis processes, it could be extremely
important to apply the same method in future studies aimed at finding
the potential influence of organization and function of collagen on
tumor invasion andmetastasis. In fact, some studies already suggest that
the quantification of collagen and its directionality determine a new
practicable paradigm for the prediction of cancer survival [46]. Indeed,
several characteristics of the tumor ECM have been associated with
progression to metastases. Notably, dense collagen regions are often co-
localized with aggressive tumor cell phenotypes in numerous solid
tumors, including breast, ovarian, pancreatic, and brain cancers.
Furthermore, collagen fibers scattered and aligned at the edges of
tumors have also been reported to correlate with aggressive disease [47].

In conclusion, combining synchrotron-based phase-contrast
microtomography with deep learning-based image segmentation
was shown to be a promise method to localise changes in collagen
fiber orientation, curvature and strain. This may be correlated to
changes in regional strain transfer and mechanical function (e.g.,
tissue compliance). The full comprehension of these processes would
allow to achieve, as final targeting objective, a quantitative intelligible

FIGURE 2
Connective tissue rearrangement around a dental implant during the wound healing process. The semantic segmentation, with a training based on
three classes, allows to distinguish not only background (light blue) from connective tissue signals but also, unlike conventional threshold-based
segmentation, transversal bundles (yellow) from longitudinal bundles (dark blue). (A) 3D reconstruction (B–D) sampling (B) sagittal, (C) axial and (D) frontal
slices. Freeze frame from Supplementary Video S1 in Ref ([41]; CC-BY-4.0).
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framework to redirect collagen networks towards the desired
mechanical properties, which is useful for the mechano-regulation
of cell migration, wound healing, and tissue morphogenesis.
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