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Abstract

In this paper, a novel three-dimensional finite-element based multiscale model is
proposed with the aim of describing the mechanical response of single osteons. A
typical osteon has been geometrically modelled as a hollow cylinder made up of15

coaxial subunits called lamellae. The lamellar tissue has been characterized by a
refined constitutive description, based on a bottom-up multistep homogenization
procedure and on modelling parameters having a clear histological meaning. The
model takes into account the main bone structural features at each length scale,
as well as the presence of interlamellar areas and of lacunae at osteonal level. The20

progressive loss of osteon structural integrity has been modelled by coupling the
previous aspects with a brittle damage description, and by considering the possible
occurrence of both interlaminar and intralaminar failure modes. Proposed model
has been validated by numerically replicating, through home-made codes, different
loading scenarios mimicking corresponding experimental test whose outcomes are25

available in the literature. Proposed results prove that the model is robust, accurate
and therefore able to characterize the mechanical response up to failure of single
osteons under different loading conditions. The model may therefore be useful for
providing a more thorough understanding of how both microdamage processes and
disease-/ageing-induced structural and morphological alterations of cortical bone at30

each length scale affect its mechanical behaviour at macroscale level.
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1 Introduction

Bone fractures, which may be caused by multiple factors, such as traumas, os-35

teoporosis, presence of metastases or age-induced bone weakening, represent
worldwide a significant public health concern, both from a human and socioe-
conomic viewpoint [1]. In fact, severe medical complications may often arise,
including, to name a few, disabilities, cognitive and neurological alterations,
cardiopulmonary affections, venous thromboembolism and possibly even the40

patient death [2,3]. Moreover, owing to their high trend of incidence, which is
predicted to dramatically increase in the next few years, the economic burden
associated to bone fractures is very consistent [1,4,5]. In this context, the main
clinical objective should be the accurate prediction of bone fractures, which
however at present relies on qualitative indexes lacking in specificity, such as45

the areal bone mineral density in the case of osteoporosis or the Mirels scoring
system for metastasis-induced femoral fractures [6, 7]. The lack in specificity
of the previously-mentioned indexes is essentially related to the fact that they
disregard the mechanical determinants of fracture, as well as the multi-scale
nature of bone material [8].50

Bone is indeed a complex anisotropic material consisting of different organized
hierarchical structures over multiple length scales. At the organ level, two dis-
tinct types of bone tissues characterized by different mechanical properties can
be distinguished, namely the cortical (or compact) bone, dense and stiff, and
the trabecular (or spongy) bone, porous and tough [9, 10]. At the microscale,55

cortical bone is constituted by hollow quasi-cylindrical systems running ap-
proximately parallel to the axial direction of long bones and having an average
diameter of 200÷ 250 µm, called osteons or Haversian systems [9,11,12]. The
osteon central canal, which has a diameter averagely equal to 40 µm, is the
Haversian canal. Osteons are made up of several coaxial pseudo-cylindrical60

layers about 3 µm in thickness wrapping around the Haversian canal, called
lamellae [10, 13]. Within a single lamella, the sub-microstructural units char-
acteristic of cortical bone, called mineralized collagen fibrils (MCFs), are ar-
ranged following a well-definite pattern [13,14]. In turn, at the nanoscale level,
MCFs are constituted by Type-I collagen fibrils strengthened by crystals of65

a mineral phase predominantly constituted by hydroxyapatite (HA). Minor
quantities of water, non-collagenous organic proteins (NCPs) and impurities
are also present [11,15–17].

All the bone constituents are combined in a remarkably effective way so as
to form a properly-organized and nature-optimized material with superior70

mechanical properties combining high stiffness, strength and toughness [18,19].
As a consequence, accounting for bone material composition and structural
organization at each length scale is fundamental to improve the understanding
of bone mechanics at the macroscale level. In such a way, highly effective
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novel strategies for bone fracture risk assessment can be developed on the75

basis of more quantitative and reliable predictions [12]. In this framework,
it is well-documented that damage mechanisms at the microscale level are
primarily responsible for the reduction of bone tissue resistence to fracture
[20–22]. Specifically, osteons were proved to have a key role for the propagation
of cracks at organ level. As such, valuable information of macroscale bone80

cracking processes might be better understood if the mechanical behaviour of
a single osteon up to fracture is investigated [23].

Finite Element (FE) modelling represents an effective approach to investigate
the micromechanics of compact bone. However, at present only few FE-based
models have been developed with the aim of describing the micromechanical85

behaviour of osteonal bone. Hogan [24] and Crolet et al. [25] were among the
first researchers to estimate the bone equivalent elastic properties through FE
techniques. In particular, Hogan investigated the dependence of the elastic
moduli of cortical bone on the material properties of osteon, interstitial bone,
and cement lines, finding a reasonable agreement with experimental data [24].90

Crolet et al. conducted a similar study but in the framework of a multiscale
approach [25]. Their results, furnished however only in terms of bone homog-
enized elastic properties, showed good agreement with the experimental data,
corroborating, in particular, the hypothesis of periodicity of collagen/HA dis-
tribution within each single osteonic lamella.95

To the best of the authors’ knowledge, the very first numerical model of a
single osteon was developed by Prendergast and Huiskes, who aimed to in-
vestigate the relationship between damage formation, lacunar voids and local
strain in the cortical bone microstructure [26]. They provided important and
useful evidence that local changes in the strain field are strictly related to the100

presence of microdamage and lacunae in Haversian bone. Nonetheless, the ex-
istence of damage was therein assumed a priori, not querying where and when
the damage develops and evolves. Moreover, the structural model therein con-
ceived considered, as a simplifying hypothesis, a planar section of the actual
three dimensional osteonal structure, thus allowing only for an in-plane strain105

and stress analysis. In the studies of Guo et al. and Najafi et al., linear elastic
fracture mechanics theory was employed to assess the role of microcracks at
the level of a single osteon level, as well as their influence on the mechanical
behaviour of cortical bone [27, 28]. However, their model revealed several im-
portant limitations, since the bone features over multiple length scales were110

disregarded and the assumptions of two-dimensional plane-strain model and
linear elasticity were made. Hamed and Jasiuk numerically investigated the
bone strength at multiple length scales by modelling the damage initiation
and propagation through the cohesive element technique [18]. The authors
provided useful information for understanding bone sub-macroscale failure115

mechanisms. Nonetheless, several simplifying assumptions were therein made.
Specifically, simple material constitutive properties and 2D geometries were
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adopted and potential fracture sites were inserted in ad-hoc positions. More-
over, the various scales seem to be decoupled, in the sense that mechanical
properties of bone material at a given length scale were obtained not account-120

ing for the bone features and structural organization at lower scales. Giner
et al. developed a detailed multiscale model of a single osteon and investi-
gated the microdamage initiation and propagation by employing two different
numerical techniques [29]. Therein-obtained numerical results of a radial com-
pressive test, simulating the experimental test carried out by Ascenzi et al. in125

[30], proved to be in line with the experimental results. However, this loading
condition causes only stresses in a plane orthogonal to the osteon axis, which
is the reason why the geometry was therein simplified in a 2D half-circular
ring and the assumption of plane stress state was made. A model including the
three-dimensionality of the osteonal structure and additional constitutive fea-130

tures might be necessary to achieve a thorough understanding of cortical bone
microstructural behaviour when different loading conditions are addressed.

Given all previous considerations, this work aims to furnish a novel detailed
numerical model of single osteons by accounting for their three-dimensional
geometry as well as for several micro- and nano-structural features of corti-135

cal bone tissue. More in depth, a refined constitutive description, based on
a multistep homogenization procedure, has been developed and employed to
characterize the mechanical response of bone material at the osteonal level.
A progressive damage formulation has been implemented to model the loss
of osteon structural integrity during a whatever loading process. Proposed140

model has been validated by numerically simulating three different loading
scenarios replicating corresponding mechanical tests carried out by Ascenzi
and coworkers. Obtained results can provide quantitative indications of cor-
tical bone fracture mechanisms at osteon level. Such results can therefore
be useful to enhance the understanding of how microdamage processes and145

disease- or ageing-induced structural and morphological alterations at each
length scale affect the overall mechanical behaviour of cortical bone.

2 Material and Methods

2.1 Problem statement

A typical osteon is regarded as a continuum body lying in the three-dimensional150

Euclidean space E3, and whose actual configuration is denoted by Ω. As a nota-
tion rule, a subscript (0) appended to the symbol identifying a given quantity
will denote that this latter is addressed in the initial configuration. The os-
teon is assumed as a perfectly cylindrical hollow body, having length L and
inner and outer diameter DH and DO, respectively (see Fig. 1). As detailed155
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Fig. 1. Schematic of the multiscale model developed illustrating the main geomet-
rical and compositional features of a single osteon, as well as the notation rules.

in the following, the osteon is considered to be made up by a sequence of N
coaxially-arranged units, called lamellae, and of N − 1 very thin interlamellar
areas located in between them. Because of this geometrical organization, a
cylindrical coordinate system O{r, θ, z} is conveniently introduced. In partic-
ular, the origin O is placed at the center of one of the osteon basis and the160

z-axis coincides with the osteon longitudinal axis, as shown in Fig. 1.

An actual osteonal structure additionally includes lacunae, Volkmann canals,
a cement line delimiting the single osteon from the remaining cortical tissue,
as well as a fine network of canaliculi (the so-called syncytium). To furnish a
detailed mechanical description of the osteonal unit and therefore a thorough165

understanding of the onset and evolution of microdamage processes within it,
it is relevant to account for such microstructural features. Nonetheless, in this
work the only presence of lacunae has been considered. This choice follows
the approach commonly adopted by other authors, since it is widely accepted
that canaliculi and Volkmann canals play a secondary role in comparison to170

lacunae, due to the greater abundance of these latter [29]. In addition, the
influence of cement line becomes significant only if the mechanical behaviour
of a set of more than one osteon is addressed, which is not the case herein
considered. It is also worth pointing out that the adopted hypotheses are
perfectly in-line with the experimental tests carried out by Ascenzi and his175

coworkers, to which reference is herein made. In fact, the above-mentioned
experiments were conducted on single osteons (hence, with no cement line)
having a quasi-cylindrical shape accurately selected for the purpose, which
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did not show any presence of the Volkmann canals, and from which all the
soft tissues were removed [31].180

Addressing the generic current configuration Ω, and with reference again to
Fig. 1, let symbol Vk denote the k-th lacunar void domain, k = 1, . . . , Nl,
Nl being the total number of lacunae. Let additionally denote with Li (i =
1, . . . , N) and I i (i = 1, . . . , N − 1) the effective geometrical domains, namely
accounting for the lacunar voids, occupied by i-th lamella and by the i-th185

interlamellar area, respectively. Then, by defining domains L := ∪Ni=1Li and
I := ∪N−1

i=1 I i, the region Ω can be regarded as Ω = L ∪ I. Moreover, for
what follows it is useful to denote with symbols Bi1, Bi2 the common interface
boundaries between the i-th interlamellar area I i and the two subsequent
lamellae Li and Li+1, respectively, namely Bi1 := I i ∩ Li, Bi2 := I i ∩ Li+1

190

(i = 1, . . . , N−1), and to define domain B := ∪N−1
i=1 (Bi1∪Bi2). Furthermore, let

Σ := ∂Ω be the osteon boundary (comprising the bases, the inner surface of the
innermost lamella and the outer surface of the outermost one). In particular,
the osteon circular basis at z = 0 (at z = L, respectively) is denoted with
ΣB,1 (ΣB,2, resp.). Symbols Σp ⊆ Σ and Σu ⊆ Σ will denote the disjoint195

and complementary portions of Σ on which tractions p and displacements
up are prescribed in the actual configuration, respectively. By disregarding
the volume forces, the unknown actual displacements u, Cauchy stress σ and
infinitesimal strain ε fields are obtained by solving the following linearly-elastic
problem:200


divσ = 0

ε = ∇su in Ω,

σ = C : ε

with

σn̂ = p on Σp

u = up on Σu

(1)

where div(·) is the divergence operator, ∇s(·) denotes the symmetric part of
the gradient operator ∇(·), n̂ is the outward-pointing normal unit vector to Σ
and C is the tangent fourth-order elastic stiffness tensor at a given material
point P ∈ Ω, which has 21 independent components, owing to its major and
minor symmetries.205

The osteon is characterized, at the lamellar level, by an anisotropic linearly-
elastic constitutive behaviour. Viscous and plasticity effects have been disre-
garded, whereas the bone tissue typical brittle behaviour has been taken into
account by means of a damage mechanics-based modelling. As better clar-
ified in the following, the progressive loss of the osteon structural integrity210

induced by cracks nucleation and propagation is accounted for, so that tensor
C depends also on the stress state in the actual configuration.
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2.2 Multiscale constitutive rationale

The constitutive behaviour of the osteonic lamellar tissues is modelled in the
framework of a multiscale approach. Starting from the nanoscale level, a multi-215

step homogenization procedure is implemented to obtain the anisotropic and
locally-homogeneous equivalent elastic properties of the osteon. The procedure
is detailed in the following.

2.2.1 Nanoscale: mineralized collagen fibrils

The basic building blocks of cortical bone at the nanoscale level are Type-I220

collagen, hydroxyapatite (HA) crystals and small quantities of water and non-
collagenous proteins (NCPs), which together form the so-called mineralized
collagen fibrils (MCFs). These latter result from a mineralization process of
simple collagen fibres, which are made up of staggered tropocollagen molecules
having length equal to `c = 300 nm (in unmineralized conditions), and exhibit-225

ing a well-known along-the-length periodicity value of λ = 67 nm as well as
λG = 40 nm-long gap regions between the ends of two successive molecules.
Such an arrangement, known as the Hodge-Petruska scheme, is sketched in
Fig. 2(a) [9,32]. As proved by well-established histological evidence, the min-
eralization process consists in the progressive growth of HA crystals within the230

gap regions [9, 33]. As a result, the mineral phase is arranged in a staggered
way within a water-protein-collagen (WPC) matrix, which gives to compact
bone a peculiar combination of stiffness and toughness. The shape of mature
HA crystals is generally rather irregular, but many investigations showed that
they are for most platelet-shaped [11,33,34].235

On account of the spatial organization of bone nanoconstituents, and by fol-
lowing an approach similar to [29,35,36], MCFs are modelled as a composite
material in which the reinforcement phase, represented by the HA platelets,
is embedded in a staggered manner within a water-protein-collagen matrix,
as shown in Fig. 2(b). By introducing a local reference system {e1, e2, e3},240

with the e3-axis aligned to the collagen fibrils axis, and for what stated in the
foregoing, the mineral phase platelets have been assumed as parallelepipedic,
with linear dimensions along the e1, e2 and e3 axes equal to dHA, bHA and
`HA, respectively. Moreover, the along-the-width and along-the-depth lateral
spacing between two subsequent HA crystal platelets will be denoted with245

symbols ∆d and ∆b, respectively.

The mineral phase is assumed as an isotropic linearly-elastic material, charac-
terized by an elastic stiffness tensor CHA dependent on Young’s modulus EHA
and Poisson’s ratio νHA. On the other hand, the WPC matrix has been in turn
regarded as a composite material made up by perfectly-aligned tropocollagen250
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long fibres, having volume fraction Φ′c, embedded in a water-protein matrix
(with volume fraction Φ′wp = 1 − Φ′c). It is worth noting that the elasticity
of the water-protein matrix arises by hydrogen bonds linking the collagen
molecules as well as by crosslinks provided by the NCPs [37]. Then again,
sub-nanoscale organizations, features and mechanisms typical of collagen (as255

the energetic and entropic mechanisms described e.g. in [38]) have been disre-
garded due to both the big difference in stiffness between the WPC matrix and
mineral phase and to the great abundance of this latter. In fact, for high val-
ues of mineral volume fraction, which are distinctive of a healthy bone tissue,
the typical so-called “toe” and “heel” parts of the characteristic stress-strain260

curve of collagen tend to disappear, so that sub-nanoscale features of collagen
might have a negligible impact on the outcomes for bone tissue [33,35]. Both
phases of the WPC matrix are assumed to be isotropic linearly-elastic. On the
other hand, due to the geometrical organization of tropocollagen molecules,
WPC composite shows a transversely-isotropic elastic symmetry with respect265

to the plane {e1, e2} orthogonal to the collagen molecules axis. The equivalent
five elastic constants characterizing the WPC mechanical response have been
obtained analytically. In detail, let symbols Eph and νph denote the Young’s
modulus and Poisson’s ratio, respectively, of phase ph ∈ {wp, c}, where sub-
scripts wp and c refer to the water-protein matrix and to the tropocollagen270

molecules, respectively. Moreover, let Gph and kph be the plane-strain shear
and bulk moduli of phase ph, respectively defined for an isotropic material as:

Gph :=
Eph

2 (1 + νph)
(2a)

kph :=
5− 4νph

6 (1− 2νph) (1 + νph)
Eph (2b)

Then, the equivalent shear and bulk moduli of WPC composite GWPC,12 and
kWPC,12 in the plane {e1, e2} have been computed through the following ex-
pressions [37, 39]:

GWPC,12 = Gwp

(
1 + kwp µ

′Φ′c − Fξ − Fη
1− (kwp + 2Gwp)µ′Φ′c − Fξ − Fη

)
(3a)

kWPC,12 = kwp

(
1 +Gwp κ

′Φ′c − 2Fξ
1− kwp κ′Φ′c − 2Fξ

)
(3b)

where by definition:

Fξ := kwpGwp µ
′ κ′Φ′wp ξ Fη := k2

wp µ
′2 Φ′wp η

κ′ := kc−kwp
kwp (kc+Gwp)

µ′ := Gc−Gwp
kwpGwp+(kwp+2Gwp)Gc

(4)
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and ξ, η are scalar parameters defined by threefold integrals numerically com-
puted in [40, 41]. The equivalent longitudinal Young’s modulus EWPC,33 and275

Poisson’s ratio νWPC,33 have been obtained by employing Hill’s lower-bound
estimates for fiber-reinforced composites [42]:

EWPC,33 = Φ′wpEwp + Φ′cEc +
4Φ′wpΦ

′
c(νwp − νc)2

Φ′
wp

kc
+ Φ′

c

kwp
+ 1

Gc

(5a)

νWPC,33 = Φ′wpνwp + Φ′cνc +
Φ′wpΦ

′
c(νwp − νc)

(
1
kwp

+ 1
kc

)
Φ′
wp

kc
+ Φ′

c

kwp
+ 1

Gc

(5b)

The remaining elastic constant, e.g. the longitudinal shear modulus GWPC,13,
has been estimated asGWPC,13 ' 1.04GWPC,12, according to [37]. FromGWPC,12,280

kWPC,12, EWPC,33, νWPC,33 and GWPC,13 it is relatively straightforward to com-
pute the equivalent stiffness tensor CWPC of WPC matrix.

Thereby, by employing the geometrical and constitutive parameters intro-
duced in this Section, the MCFs equivalent elastic stiffness tensor CMCF is
obtained as a result of a numerical homogenization step, whose details are285

reported in Section 2.4.1.

2.2.2 Microscale: single lamellae

As clearly proved by many evidence, the single lamellar unit is made up of
Ns = 5 adjacent sublayers (or sublamellae). In turn, each sublamella is consti-
tuted by bundles of MCFs roughly parallel to each other, but having different290

orientations in the different sublayers, giving rise to the so-called rotated-
twisted-plywood structure [13,14]. Accordingly, the MCFs’ orientation in the
j-th sublayer (j = 1, . . . , Ns) of the i-th lamella (i = 1, . . . , N), with respect
to the osteon long axis z, can be uniquely characterized by two angles χij and
ψij, [13, 43]. In particular, as sketched in Fig. 2(c)-(d), by introducing a local295

orthogonal reference system {r∗, r∗⊥, z∗}, r∗ and r∗⊥ being the local radial and
circumferential direction at angle θ = θ∗, respectively, χij is the plywood angle,
namely the rotation angle of the MCFs around r∗, whereas ψij is the rotation
angle around r∗⊥ [11].

Let us consider the i-th lamella constituting the osteonal structure, having
internal and external radii riint and riext, respectively. If δij denotes the thickness
of the j-th sublayer within the i-th lamella, the thickness of i-th lamella results:

δilam = riext − riint =
Ns∑
j=1

δij (6)
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The elastic stiffness tensor Ci
j of the j-th sublayer within the i-th lamella in the300

global cylindrical reference system is obtained by transforming the components
of tensor CMCF from the {e1, e2, e3} reference system to the O{r, θ, z} one by
means of two transformation tensors, Tj and Dj, according to the following
relationship [44]:

Ci
j = Tj CMCF D−1

j (7)

The matricial form of transformation tensors Tj and Dj, which depend on305

angles χij and ψij, is reported in the Appendix for the sake of completeness
and readability. It is remarked that, following well-established evidence, angles
χij and ψij, as well as the thickness δij of the single sublamella are supposed to
be the same for each lamella [11,13,43]. Therefore, it results χij = χj, ψ

i
j = ψj,

δij = δj, and δilam = δlam for each i = 1, . . . , N .310

A further numerical homogenization step allows to reduce the lamellar tissue to
an equivalent completely anisotropic and locally-homogeneous linearly-elastic
material, described in the reference configuration by the fourth-order elastic
stiffness tensor Ci

lam,(0). It is worth observing that, as a consequence of the

previous positions, it results Ci
lam,(0) = Clam,(0) for each i = 1, . . . , N .315

2.2.3 Sub-macroscale: osteon tissues

As previously mentioned, the osteon has been considered as a hollow cylindri-
cal structure made up (in the initial configuration) of N concentric lamellae
having their common long axis coincident to the z-axis. From a constitutive
viewpoint, every point belonging to each osteonal lamella in the reference con-320

figuration has been characterized by the previously-introduced tensor Clam,(0).

Between two subsequent lamellae, a very thin and weak interface zone exist,
known as interlamellar area [45]. In this work, all the interlamellar areas are
assumed to have the same thickness δia. As stated by Rho et al. [9], the real
composition of the interlamellar zones has still to be fully elucidated, but it325

seems that they result particularly rich in NCPs (primarily osteocalcin and
osteopontin) and randomly-oriented collagen molecules [12, 46]. Nonetheless,
such interfaces appear to have significant contributions on the mechanical be-
haviour of single osteons [45]. In particular, as a first approximation due to
the lack of knowledge on the topic, the interlamellar areas have been consid-330

ered as isotropic linearly-elastic materials. As such, their fourth-order elastic
stiffness tensor in the reference configuration Cia,(0) is fully characterized by
the Young’s modulus Eia and the Poisson’s ratio νia. Owing to their small
thickness, the interlamellar areas have been modelled as thin elastic layers, as
better clarified in Section 2.4.1.335
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Fig. 2. The Mineralized Collagen Fibrils (MCFs) and their arrangement within
the lamellar structure. (a) The Hodge-Petruska scheme describing the geometrical
organization of tropocollagen molecules immersed in a water-protein matrix. (b)
Platelet-shaped HA crystals lie within the gap regions originating from the collagen
staggered alignment. (c) Angles of rotation χj and ψj of MCFs with respect to the
local reference system {r∗, r∗⊥, z∗}. (d) MCFs arrangement within the five sublayers
constituting a typical osteonic lamella.

The presence of lacunae, very important feature to assess and predict the real
stress distribution within the osteonal structure, has also been accounted for.
Lacunae are small cavities hosting the osteocytes (i.e., quiescent osteoblasts,
these latter being the cells secreting the osteonal tissue), and which are mainly
located at the interlamellar interfaces level [16]. Following the evidence re-
ported in [47], their shape can be considered as approximately ellipsoidal,
with principal axes that will be denoted, from the longest to the shortest, as
a, b and c. In particular, the minor axis c lies in a plane orthogonal to the
longitudinal z-axis of the osteon, and the major axis is roughly parallel to the
z-axis [48]. In this work, this description has been adopted for each lacunar
cavity present in the osteon. The number of lacunae Nl is chosen such that
their volume fraction fl within a typical osteon lies in the range 1÷3%, which
is a representative value for mature and healthy cortical tissue [16]. Lacunar
voids volume fraction fl is then readily computed as:

fl =
Nl |Vk(0)|
|Ω̃(0)|

=
16Nl a b c

3 (D2
O −D2

H)L
(8)

where symbol | • | denote the measure of domain •, and Vk(0), Ω̃(0) are, respec-
tively, the domain occupied by the k-th lacunar void and the one occupied
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by the osteon in the initial configuration if lacunae were absent, i.e. such that
Ω̃(0) =

[
DH

2
, DO

2

]
× [0, 2π]× [0, L] in the global cylindrical coordinate system.

2.3 Failure criteria and damage law340

To describe the mechanical behaviour of a single osteon up to the failure state,
thus accounting for its progressive loss of structural integrity due to loading-
induced nucleation and propagation of microcracks, all osteonic tissues at the
sub-macroscale level are considered as perfectly brittle materials. Therefore,
by adopting a stress-based damage description, failure in a material point345

P ∈ Ω occurs when

F (σ) ≥ 1 (9)

where F (σ) is a scalar-valued function dependent on the actual local stress
state and expressing a suitable failure criterion.

Since a typical osteon can be conceived as a multi-layered composite material,
two distinct failure modes have been distinguished, i.e. an interlaminar failure350

and an intralaminar one. The former, occurring at the interlamellar areas level,
is caused by delamination between two successive osteonic lamellae, whereas
the latter occurs in the bulk. As such, two distinct functions F , depending on
the material point position P ∈ Ω, have been adopted to model local failure
conditions, namely:355

F (σ) =

Flam(σ) if P ∈ L \ B
Fia(σ) if P ∈ I

(10)

In detail:

• for the interlaminar failure mode (P ∈ I), following [29], the quadratic
Brewer-Lagacé criterion is adopted. In this case only the σrr, σrθ and
σrz components of the stress tensor σ contribute to failure and function
F = Fia reads as [49]:360

Fia(σ) =

(
〈σrr〉+
Srr

)2

+
(
σrθ
Srθ

)2

+
(
σrz
Srz

)2

(11)

In Eq. (11), symbol 〈◦〉+ = max{0, ◦} denotes the positive part of ◦, and
Srr, Srθ and Srz represent some tensile and shear strength parameters
of the interfaces. It is worth pointing out that the positive part function
prevents the occurrence of damage in compressive regions. In fact, damage
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usually propagates much more easily in tension than in compression, and365

therefore, as a first approximation, damage caused by compressive stresses
has been disregarded.
• for the intralaminar failure mode (P ∈ L \ B), the Von Mises criterion

is adopted. Accordingly, by denoting with s the stress deviator tensor,
function F = Flam reads as:370

Flam(σ) =

√
3
2
tr(s2)

Slam
(12)

Slam being a strength parameter for the lamellar bulk tissue.

When the failure condition is locally detected, a local degradation of the tis-
sue elastic properties is enforced, in accordance with the Continuum Damage
Mechanics theory. As a consequence, tensor C = C(P,σ) appearing in Eq. (1)
results as:375

C(P,σ) =

Clam(σ) if P ∈ L \ B
Cia(σ) if P ∈ I

(13)

Owing to the bone tissue brittleness at the sub-macroscale level, as a simple
and effective degradation rule, all the components of the elastic stiffness tensor
C are made to vanish when failure conditions are locally detected.

2.4 Numerical treatment

2.4.1 Multiscale homogenization procedure380

The multi-step homogenization procedure described in Section 2.2 has been
implemented through customized codes in Matlab environment (Matlab v.
R2018a, MathWorks, MA, USA) integrated within the FE solver Comsol Mul-
tiphysics (Comsol with Matlab, v.5.4 COMSOL, Stockholm, Sweden).

At the nanoscale level, the equivalent properties of a single MCF are obtained385

by assuming the staggered arrangement of mineral platelets previously illus-
trated (see Fig. 2(b)). In particular, by defining the quantities df := dHA+∆d
and bf := bHA + ∆b, to obtain the MCFs homogenized elastic stiffness tensor
CMCF , a Representative Unit Cell (RUC) having edge lengths along the e1,
e2 and e3 axes equal to 10df , bf and 2`f , respectively, has been chosen, as390

illustrated in Fig 3(a). The volume fraction of HA platelets within the MCFs,
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Table 1
Vaules of the nano-scale model parameters employed in the numerical simulations.

Nanoscale (MCFs)

Parameter Symbol Value References

Degree of mineralization Φ [%] 40 [35,50]

Water-protein volume fraction Φwp [%] 13 [51]

Tropocollagen molecules undeformed length `c [nm] 300 [32,33]

Gap region length λG [nm] 40 [9, 32]

HA platelets width dHA [nm] 3 [9, 17,33]

HA platelets depth bHA [nm] 25 [9, 17,33]

Along-the-width spacing between HA platelets ∆d [nm] 1 [36,52]

Along-the-depth spacing between HA platelets ∆b [nm] 3 [36,52]

Collagen Young’s modulus Ec [GPa] 2 [37,53,54]

Collagen Poisson’s ratio νc [−] 0.28 [51,55]

Water-protein Young’s modulus Ewp [GPa] 0.29 [37]

Water-protein Poisson’s ratio νwp [−] 0.49 [37]

HA platelets Young’s modulus EHA [GPa] 114 [56,57]

HA platelets Young’s modulus νHA [−] 0.27 [56]

Parameter ξ ξ [−] 0.016 [40]

Parameter η η [−] 0.420 [41]

also known as the degree of mineralization of cortical tissue, thereby results:

Φ =
`HA
`f
· bHA
bf
· dHA
df

(14)

As a consequence, by denoting with Φwp and Φc the volume fractions of water-
protein and collagen within MCFs (i.e., satisfying the condition Φwp+Φc+Φ =
1), the volume fractions Φ′wp and Φ′c of water-protein and collagen within the395

WCP composite matrix, employed in Eqs. (3),(5), can be evaluated as:

Φ′wp =
Φwp

Φwp + Φc

(15a)

Φ′c =
Φc

Φwp + Φc

(15b)
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Table 2
Vaules of the micro-scale model parameters employed in the numerical simulations.

Microscale (Single lamellae)

Parameter Symbol Value(s) References

Number of sublamellae Ns 5 [14,36]

Sublamella index j 1 2 3 4 5

MCFs plywood angle χj [◦] 0 30 60 90 120 [13,58]

MCFs rotation angle ψj [◦] 0 0 0 70 30 [13,58]

Sublamella thickness δj [µm] 0.6 1.8 0.2 0.2 0.4 [43]

Lamella thickness δlam [µm] 3.2 Eq. (6)

By noting that `f = `c + λG, for a given Φ the corresponding crystal length
`HA can be derived from Eq. (14), having considered all the other quanti-
ties as given. It is worth pointing out that the assumed values of Φ and the400

corresponding `HA values lie within the commonly observed range of variabil-
ity reported by several authors [35, 50, 52, 59]. All values of geometric and
constitutive parameters for both MCFs and sublamellar structures, chosen in
agreement with literature data, are summarized in Tables 1 and 2, respectively.

Second-order displacement-based tetrahedral elements with average size hMCF =405

d
3

have been adopted to generate the computational mesh (see Fig. 3(a)) In
the second homogenization step, the equivalent elastic stiffness tensor of each
lamella Clam has been computed by employing a cubic RUC with an edge size
equal to δlam and a structured mesh consisting in second-order brick elements

Fig. 3. Representative Unit Cells employed in the two-step numerical homogeniza-
tion procedure to obtain the equivalent elastic properties of (a) MCFs and (b)
lamellar tissue. The discretization adopted in both cases is also shown.
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Table 3
Vaules of the model parameters at the osteon level employed in the numerical sim-
ulations.

Sub-macroscale (Single osteon)

Parameter Symbol Value(s) References

Osteon inner diameter (Haversian canal diameter) DH [µm] 40.0 [31,62,63]

Osteon outer diameter DO [µm] 210.4 [31,62,63]

Osteon length L [µm] 500.0 [31,62,63]

Number of lamellae N [−] 26 Eq. (16)

Lacunae dimensions a × b × c
[µm× µm× µm]

22×9×4 [16,47]

Lacunae volume fraction fl [%] 2.1 [16]

Number of lacunae Nl [−] 104 Eq. (8)

Interlamellar area thickness δia [µm] 0.08 [46]

Interlamellar area Young’s modulus Eia [GPa] 3 [45]

Interlamellar area Poisson’s ratio νia [−] 0.3 [45]

Interface radial tensile strength parameter Srr [MPa] 40 [29,64,65]

Interface circumferential debonding shear strength Srθ [MPa] 25 [29,64,65]

Interface axial debonding shear strength Srz [MPa] 25 [64,65]

Lamellar bulk strength Slam [MPa] 120 [66]

all having an edge dimension equal to hlam = 1
3

minj δj, as shown in Fig. 3(b).410

Previous mesh element sizes have been chosen as a result of a preliminary
convergence analysis. To enhance the estimate of the elastic constitutive ten-
sors CMCF and Clam, and in accordance with the composite homogenization
theory, displacement-based Periodic Boundary Conditions have been enforced
on the external faces of the RUCs for both homogenization steps [60,61].415

2.4.2 Osteon micromechanical behaviour

Table 3 lists all geometrical and constitutive parameters characterizing a sin-
gle osteon, together with their respective values employed in the numerical
simulations. In particular, under the hypotheses of the present model, DO and
DH , known from the experiments, are related to the number of lamellae N420

through the following relationship:

DO −DH

2
= N δlam + (N − 1) δia (16)
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Therefore, for a given DH , N is chosen as an integer number such that the
osteon outer diameter DO, computed through Eq. (16), lies in the range of
values employed in the actual experiments.

Following an approach similar to the one adopted in [67], the i-th interlamellar425

area is numerically treated as a discrete elastic interface joining two subsequent
osteonic lamellae, due to its very small thickness. In particular, the mechanical
response of the interlamellar areas is described by a distribution of linearly-
elastic 3D springs connecting each pair of nodes belonging to the interface
boundaries Bi1 and Bi2. As a consequence, the elastic properties of region I i430

are fully characterized by two parameters Kn and Kt describing normal- and
tangential-to-surface stiffness interactions, respectively. Kn and Kt depend on
the interlamellar areas elastic constants Eia, νia and thickness δia, according
to the following expressions:

Kn =
Eia (1− νia)

(1 + νia) (1− 2νia) δia
(17a)

Kt =
Eia

2 (1 + νia) δia
(17b)

435

It is worth remarking that, due to the definition of Kn and Kt, the nodal
reactions exhibited by the springs are forces per unit area (namely, stresses).
Accordingly, the local stress tensor needed to assess potential local interlami-
nar failure conditions can be straightforwardly computed.

The developed multiscale model has been validated by replicating in a numer-440

ical framework three distinct loading scenarios corresponding to three differ-
ent mechanical experiments performed on single osteons by Ascenzi and his
coworkers. Characteristic dimensions at the sub-macroscale level of both os-
teonic geometry and loading zones replicate the ones actually adopted in the
mechanical tests. The experiments considered in this paper concern a tensile445

test [62], a torsion test [63] and a three-point bending test [31], which in the
following will be referred to as the T-, Θ-, and B-tests, respectively. It is impor-
tant to highlight that, with the view of reducing the demanding computational
cost of numerical simulations, and due to the geometrical quasi-symmetry of
the structure, a quarter of total domain Ω, suitably chosen according to the450

particular loading condition addressed, has actually been modelled, as detailed
below. To faithfully mimic the experiments, suitable boundary conditions have
been enforced in each case. Specifically, by referring to Fig. 4:

• In the T-test, the only portion Ω′ ⊂ Ω such that θ ∈ Iθ := [0, π
2
] is consid-

ered. Accordingly, Σ′B,1 and Σ′B,2, which are the restrictions of ΣB,1 and455

ΣB,2 on Iθ respectively, result as the effectively-modelled bases. More-
over, by denoting with Pθ (θ ∈ [0, 2π)) the θ-half-plane having the z-

17



Fig. 4. Applied boundary conditions for the three investigated loading scenarios.
From left to right: tension test, torsion test and three-point bending test. Dimen-
sions in the bending test sketch corresponds to the ones actually employed in the
experiments and are given in micrometers.

axis as origin and forming an angle θ with the rz-half-plane, two new
osteon boundary surfaces can be identified, that is Σ′0 := Ω′ ∩ P0 and
Σ′π

2
:= Ω′ ∩ Pπ

2
. In the T-test, Σu ≡ Σ′B,1 ∪ Σ′0 ∪ Σ′π

2
: the osteon has460

been fully constrained (u = 0) on Σ′B,1, whereas symmetry conditions
(u · n̂ = 0) have been enforced on Σ′0 ∪ Σ′π

2
. An incremental longitudinal

load p distributed upon Σ′B,2 has been additionally applied.
• In the Θ-test, the portion Ω′ has been again considered, so that the

boundaries Σu and Σp, as well as the osteon geometrical symmetry planes,465

are the same of those employed in the T-test. On the other hand, in
this case, an incremental circumferential load is enforced on Σ′B,2 and

antisimmetry conditions (described by the condition u · t̂ = 0, t̂ denoting
a general tangential direction to Σ′0 or Σ′π

2
) have been imposed on Σ′0∪Σ′π

2
.

Boundary Σ′B,1 has been fully constrained.470

• In the B-test, the only portion Ω′′ ⊂ Ω such that θ ∈ [0, π] and z ∈ [0, L
2
] is

actually modelled. As a result, by denoting with PM the plane of equation
z = L

2
, three new osteon boundaries Σ′′0 := Ω′′ ∩ P0, Σ′′π := Ω′′ ∩ Pπ

and Σ′′M := Ω′′ ∩ PM can be identified. In this case, opposite and equal
incremental loads have been applied on portions Σl ⊂ Σ and Σs ⊂ Σ475

respectively corresponding to the loaded region and to the free support
zone in the actual three-point bending experiment. The dimensions of
such zones are equal to the ones adopted in [31] and are synthetically
reported in the sketch in Fig. 4. Simple support and symmetry conditions
have been enforced on the edge of Σs closer to ΣM and on Σ′′0 ∪Σ′′π ∪Σ′′M ,480

respectively.

Second-order displacement-based tetrahedral elements have been employed to
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Table 4
Type and values of incremental loading applied in the numerical simulations for
the T-, Θ-, and B-tests. The deformation parameter evaluated in each case is also
reported.

Loading increments

Mechanical test Type of applied loading Value Deformation parameter evaluated

T-test Incremental force per unit area p [MPa] 5.0000 Elongation [%]

Θ-test Incremental torque T [×10−5 N m] 1.4955 Angle of twist [crad]

B-test Incremental force F [N] 0.1226 Deflection [µm]

discretize the osteon geometrical domain Ω0. The average mesh element size
has been set equal to h = 1

2
δlam, thereby generating unstructured meshes

having about 6.500.000 elements and 27 millions degrees of freedom.485

The progressive damage within the osteonal structure is simulated by im-
plementing a numerical iterative procedure through customized codes devel-
oped in Matlab environment, additionally exploiting FE solver-core libraries
of Comsol Multiphysics. Post-processing phases have been performed in both
applications. It is important to preliminarly observe that, to avoid spurious490

mesh sensitivity of the results deriving from the local damage approach, a
regularization technique similar to the one described in [MIO] has been im-
plemented. Starting from the discretized model of the osteon in the reference
configuration, the undamaged anisotropic constitutive properties are assigned.
The loading process consists in a sequence of equal loading increments enforced495

on the previously-introduced boundary surfaces, whose values are reported in
Table 4. Once the solution of linearly-elastic problem (Eq. (1)) is computed
at a given computational step, the actual value of stress field σ is evaluated
at each mesh Gauss point and employed to compute functions Fia, Flam de-
scribed by Eqs. (11) and (12), respectively. If local failure occurs nowhere in500

Ω, namely conditions Fia(σ) < 1 and Flam(σ) < 1 contemporary hold for each
Gauss point, the algorithm evaluates a proper deformation parameter depend-
ing on the particular loading condition addressed (see Table 4), and updates
the material properties for the successive loading step. On the contrary, if lo-
cal failure conditions are detected, the same displacement step is iteratively505

repeated until further variations in the damage pattern are no longer revealed.
Such an approach ensures the stress redistribution in the neighbourhood of the
failed zone (i.e., equilibrium condition), as well as the compatibility of each
incremental solution. When the algorithm fails to find convergence conditions,
the osteon is assumed to be completely failed.510
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3 Results and discussion

3.1 Preliminary results: obtained homogenized stiffness tensors

For completeness, in the following are briefly reported the homogenized elas-
tic stiffness tensors CMCF , Clam computed via the multiscale homogenization
procedure described in Sections 2.2.1 and 2.2.2, and by employing values of515

model parameters listed in Tables 1 and 2.

CMCF [GPa] =



4.676 1.621 2.006 0 0.004 0

1.621 13.531 3.792 0.003 −0.057 0

2.006 3.792 40.523 0.006 −0.952 0

0 0.003 0.006 4.079 0 −0.073

0.004 −0.057 −0.952 0 1.287 0

0 0 0 −0.073 0 1.152


(18)

Clam [GPa] =



8.523 2.957 2.607 0.111 −1.646 −0.072

2.957 32.252 4.571 −1.137 −0.442 −0.292

2.607 4.571 12.522 0.070 −0.583 −0.061

0.111 −1.137 0.070 4.312 −0.101 −0.695

−1.646 −0.442 −0.583 −0.101 2.091 0.097

−0.072 −0.292 −0.060 −0.695 0.097 2.832


(19)

3.2 Osteon micromechanical behaviour

In the following, FE-based predictions of the osteon mechanical behaviour
obtained by employing the previously-described multiscale approach are de-
tailed. For each numerically-addressed loading condition, obtained results are520

compared to the corresponding experimental ones available in the literature.
In particular, reference is made to [62],[63],[31] for the T-, Θ and B-test, re-
spectively. Numerical results are provided in terms of:

• plots of applied load vs. the related deformation parameter (see Table 4);
• osteon moduli of elasticity, as well as load and deformation values at525

failure state, namely at the last step of numerical convergence;
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(a) (b) (c)

Fig. 5. Mechanical response of a single osteon in the different loading scenarios
investigated: (a) T-test, (b) Θ-test, (c) B-test. In each panel, the load-deformation
curve obtained with present model (solid black line) is shown in comparison with two
exemplary curves obtained in the corresponding benchmark experiments (dashed
gray lines) whose results are available in [31,62,63].

• fracture pattern, defined as the set of all elements which experienced
interlaminar or intralaminar failure at failure state.

Panels in Fig. 5 report the numerically-experienced load-deformation curves
(continuous black lines) obtained in the T-test (Fig. 5(a)), Θ-test (Fig. 5(b))530

and B-test (Fig. 5(c)) compared to two exemplary curves (dashed gray lines)
corresponding to experimental outcomes available in the previous-cited works.
Moreover, Table 5 reports the values of three mechanical parameters charac-
teristic for each loading condition computed with present model, in compar-
ison with the corresponding ones obtained in the benchmark experiments.535

Obtained numerical results prove that the proposed multiscale constitutive
framework is able to accurately describe the mechanical response of single
osteons up to failure in different loading scenarios.

The osteon mechanical behaviour predicted by present numerical model is
generally characterized by a very rapid propagation of damage. This aspect540

is suggested by the curves depicted in Fig. 5, which, for each addressed load-
ing condition, approximate to a straight line just shortly before the point of
global failure, thus exhibiting a narrow range of load values in the post-elastic
regime. Such an evidence is fully in agreement with the experimental findings
especially when the T- and B-tests are concerned, as discussed in [31, 63, 66]545

and as can be seen from the comparison between numerical and experimen-
tal curves in Fig. 5. On the other hand, in the case of torsional loading, the
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Table 5
Values of the osteon moduli of elasticity, ultimate load and ultimate deformation
parameter in T-, Θ- and B-test computed with present model and compared to
the experimental values obtained in the benchmark experiments and available in
[31, 62, 63]. Experimental values are given in terms of mean value and standard
deviation.

Test Evaluated parameters Experimental values Present model

T-test Tensile modulus of elasticity (11.68 ± 6.98) GPa 10.47 GPa

Ultimate tensile strength (193.48 ± 31.97) MPa 200 MPa

Elongation at breaking point (2.15 ± 0.55) % 1.95%

Θ-test Shear modulus of elasticity (17.17 ± 3.35) GPa 7.19 GPa

Ultimate torque (31.04 ± 2.77)×10−5 N m 29.91×10−5 N m

Ultimate angular deflection (18.09 ± 4.19)×10−2 rad 24.37×10−2 rad

B-test Bending modulus of elasticity (2.69 ± 0.93) GPa 2.67 GPa

Ultimate bending load (2.61 ± 0.38) N 2.70 N

Ultimate bending deflection (66.01 ± 17.65) µm 62.26 µm

osteon mechanical behaviour experienced in the tests performed by Ascenzi
and coworkers is linear elastic only for low values of the applied load. The
deviation from linearity occurs very early with respect to the failure point,550

suggesting that torsional loading conditions, contrary to the tensile or bending
ones, are more prone to induce plastic deformations of bone tissue at lamellar
level. Since present model disregards any plastic behaviour of materials, the
numerically-predicted deviation from linearity results slightly delayed with re-
spect to the experimental values, and the post-elastic regime is numerically555

described by a smaller portion of the curve than the experimentally-obtained
one.

The stiffness in the elastic regime for T- and B-tests, characterized by the slope
of the initial linear branch of the associated loading curve, lies within the range
of values predicted by the benchmark experiments (see Table 5). Present model560

predicts a lower stiffness compared to the experiments only in the case of the
Θ-test. Such a discrepancy might be caused by a numerical underestimation
of the Clam,(0) components related to the shear stiffness. However, Ascenzi
et al. in [63] highlighted that the modulus of torsional elasticity recorded in
the experiments might result overestimated due to some spurious effects that565

induce an artificial increase of the stiffness, like the end effect of the jaws,
the particular aspect ratio (length over diameter) of the specimen tested and
the occurrence of axial and/or bending displacement components which are
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Fig. 6. Onset and evolution of damage pattern for a single osteon loaded in tension
(T-test). The value of force per unit area at which the damage pattern is attained
is also shown.

constrained by the end conditions. In fact, the predicted modulus of torsional
stiffness predicted by present model is instead in accordance with the values570

found by other authors ([68–70]).

The breaking point, i.e. the point at which global failure of the osteon is ex-
perienced, is equally accurately predicted by the numerical model in terms
of both ultimate load and corresponding ultimate deformation parameter val-
ues. Previous considerations are confirmed by comparing values obtained from575

present numerical model to the experimental ones available from the bench-
mark experiments, summarized in Table 5.

Figs. 6, 7 and 8 depict the damage patterns attained at three different increas-
ing values of the applied load predicted by present numerical model when T-,
Θ and B-test are addressed, respectively. The fracture pattern experienced580

in the corresponding benchmark mechanical tests performed by Ascenzi and
coworkers is also shown.

The evolution of damage patterns illustrated in Figs. 6, 7 and 8 highlights some
aspects of microdamage propagation in single osteons which are in common
between the different loading conditions investigated. As expected, the onset of585
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damage process, corresponding to the point at which a deviation from linearity
is noticed in the curves in Fig. 5, occurs particularly in the neighbourhood
of lacunae, which acts as stress intensifiers. This evidence emphasizes the
fundamental role of the lacunar voids, which therefore cannot be neglected in
the numerical modelling of a single osteon. The type of stress which mainly590

triggers the damage process is obviously dependent on the particular loading
condition. Moreover, as highlighted by the pattern of damaged elements in
the first row of Figs 6, 7 and 8, both the intralaminar and interlaminar failure
criteria equally contribute to microcrack opening and propagation, since failed
regions at the beginning of damage propagation involve areas both within the595

lamellae and between them.

At the failure state, the damage pattern within the osteonal structure pre-
dicted in each loading scenario (illustrated in the last row of Figs. 6, 7, 8),
resembles the one noticed in the mechanical experiments. In particular, in
the case of T-test, as the applied loading increases, failed elements gradually600

tends to concentrate in the central zone of the osteon, which corresponds to
the region having an higher local density of lacunae. As a consequence, the pre-
dicted main fracture surface, which may be identified with an uninterrupted
sequence of failed elements, approximately passes through the central zone of
the osteon. These findings are perfectly in-line with the experimental fracture605

patterns observed by Ascenzi and Bonucci in [62], as can be also seen in Fig.
6. The numerically-predicted damage pattern at failure state in the case of
a torsional loading condition appears as the most irregular one, with several
multiple cracks whose initial obliquity with respect to the osteon long axis is
generally around 45◦ (see Fig. 7), approximately following a direction almost610

Fig. 7. Onset and evolution of damage pattern for a single osteon loaded in torsion
(Θ-test). The value of torque at which the damage pattern is attained is also shown.
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Fig. 8. Onset and evolution of damage pattern for a single osteon loaded in bending
(B-test). The value of bending load at which the damage pattern is attained is also
shown.

parallel to the orientation of the majority of MCFs. Such an evidence is again
in line with the experimental findings since, as stated by Ascenzi et al. in
[63], for many tested osteon samples “cracks affected osteons at a variety of
level”. Finally, by addressing the B-test, numerically-experienced failure zone
is located on the tension side of the central part of the osteon, in agreement615

with the experimental evidence reported in [31] (see Fig. 8). Specifically, the
failure mechanism under a bending load results as a quick spread of damage
originating in the area around the Haversian canal and gradually propagating
towards the compressive side of the osteon.

3.3 Sensitivity analysis with respect to the tissue degree of mineralization620

Several evidence proved that biological factors such as ageing or the occur-
rence of disease affect the structure and composition of bone tissue at each
length scale, mainly causing a decrease in the degree of mineralization [16,71].
Therefore, aiming to assess the predictability of present multiscale model in
case of biophysical alterations of bone tissue, a parametric study with respect625

to the degree of mineralization Φ has been carried out to assess the sensitivity
of the model. In particular, the MCFs equivalent properties have been ob-
tained by employing values of Φ ∈ {0.20, 0.30, 0.40}, where the highest value
is considered as representative of a perfectly healthy tissue while the lowest
one of a low calcified tissue [9,16]. In this concern, owing to the high number of630

geometrical and constitutive variables involved, only the along-the-fibril-axis
crystal edge length `HA has been varied. Indeed, both the crystal thickness bHA
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(a) (b) (c)

Fig. 9. Effect of HA volume fraction at the nanoscale on the mechanical behaviour of
a single osteon in the different loading scenarios investigated: (a) T-test, (b) Θ-test,
(c) B-test.

and depth dHA, as well as the lateral spacings between adjacent HA platelets
∆b and ∆d show a very limited range of variability, as well-documented in the
literature [9, 36, 52].635

Panels in Fig. 9 report the curves representative of the mechanical behaviour
of a single osteon loaded in tension (Fig. 9(a)), in torsion (Fig. 9(b)) and bend-
ing (Fig. 9(c)) for values of HA volume fraction equal to herein considered. It
can be clearly seen that such a nanostructural parameter deeply affects the
mechanical response of cortical bone at the microscale. In particular, moving640

from Φ = 0.40 to Φ = 0.20, the stiffness reduces by 45.7%, 43.6% and 35.2%
for the T-, Θ- and B-tests, respectively. On the other hand, that the point of
deviation from linearity is almost independent from the HA volume fraction
Φ, especially for the tensile and bending loading conditions. Such an evidence
is probably a consequence of the herein-assumed hypothesis of independence645

of the strength parameters from Φ, situation which is well-documented in the
literature (see e.g. [72]). Similarly, the post-elastic regime is described by a
range of load values approximately independent from Φ. In the case of Θ-test,
a decrease in the degree of mineralization reflects mainly in a decrease of the
torsional load value at which deviation from linearity occurs, and not in a650

widening or narrowing of the post-elastic range of load values. On the other
hand, the deformation experienced up to the point of global failure result
higher for lower values of Φ. Previous considerations are in accordance with
the outcomes of tensile tests conducted on single osteons by Ascenzi et al.,
who tested several osteon samples having both a high and low degree of min-655

eralization [66]. Unfortunately, the influence of bone mineral content on the
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experimental-based mechanical behaviour of single osteons for torsional and
bending loading conditions was not analyzed by the authors, and therefore a
direct comparison could not have been made. Nevertheless, since numerical
results obtained for different values of mineral content closely match to the660

experimental ones for the T-test, and due to the similarity between the ex-
perimental and numerical curves for a fully calcified tissue (Φ = 0.40), it can
be assumed that present multiscale model characterizing a single osteon as a
perfectly brittle material with a stress-based damage description furnish accu-
rate results for all values of Φ in several loading conditions. Obtained fracture665

patterns recorded for the values of Phi herein investigated are similar to the
ones illustrated through the text, and have not herein reported for the sake of
brevity.

4 Concluding remarks

In this paper, the mechanical response of a single osteon (i.e. of cortical bone670

tissue at the sub-macroscale level) has been numerically investigated by adopt-
ing a multiscale constitutive framework, implemented in home-made FE-based
codes. In detail, the geometry of a typical osteon has been reconstructed by
considering the osteon as a multi-layered hollow cylinder made up of sev-
eral coaxial cylindrical lamellae. All the geometrical dimensions have been675

established based on average values found in the literature. Homogeneous
anisotropic constitutive properties of lamellar tissue have been obtained via
a bottom-up multistep homogenization approach starting from the nanoscale,
and the effect of the interlamellar areas, modelled as thin elastic interfaces
between two subsequent lamellae, has been accounted for. A progressive dam-680

age approach has been implemented to model the osteon as a perfectly-brittle
material.

The proposed computational approach has been validated by simulating in a
FE framework three different loading conditions of which experimental results
were available. Presented results highlighted that the present refined modelling685

strategy is able to accurately predict and describe the mechanical behaviour
of typical single osteons up to complete failure in many loading conditions.
Moreover, a stress-driven damage evolution revealed effective in describing the
mechanical response of the osteon when different values of the bone degree
of mineralization are considered. Specifically, as the mineralization degree de-690

creases, a rather marked decrease in the stiffness, a more extended post-elastic
phase in terms of deformation and an invariance of the point of damage onset
have been predicted. As a consequence, proposed model is able to account for
the influence of nanostructural features and parameters on the osteon global
mechanical response at the sub-macroscale.695
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Accordingly, proposed numerical procedure provides an insight on the mi-
croscale failure mechanisms of bone structures which can be useful for defin-
ing refined bottom-up constitutive descriptions of cortical bone tissue at the
organ level. Moreover, present model opens towards the prediction of bone
mechanical behaviour when disease- or ageing-induced structural and/or mor-700

phological alterations in any of the bone micro- or nano-structural features
(e.g., variations in the collagen fibres orientations, thinning of lamellae, in-
creasing in the lacunae volume fraction, alteration in the morphology and
shape of HA platelets) occur.

Future work will be devoted to perform parametric studies on the previously-705

mentioned micro- and nano-structural parameters, as well as to overcome the
limitations of present study. More irregular geometries and possible residual
stress and prestress will be considered. Plasticity effects will be taken into ac-
count to describe more accurately the osteon mechanical response, especially
when torsional stress is present. Furthermore, the non-linear mechanics of col-710

lagen fibrils at the nanoscale, which is governed by both entropic and energetic
mechanisms, will be included in order to characterize more effectively the me-
chanical response of mineralized collagen fibrils, especially in the case of very
low values of bone degree of mineralization.

A Matrix form of stress and strain transformation tensors715

Let {Opqr} and {Op′q′r′} be two different orthogonal cartesian coordinate sys-
tems. The positions of axes p′, q′, r′ with respect to axes p, q, r can be specified
by means of three angles Θp, Θq, Θr representing the angles of consecutive ro-
tations of primed system {Op′q′r′} about the p, q, r axes, respectively, taken
positive in the counterclockwise direction. In present model, for the j-th sub-720

layer constituting a given lamella, it results Θp = χj, Θq = 0 and Θr = ψj,
respectively. Moreover, let symbols ch = cos Θh, sh = sin Θh (h ∈ {p, q, r}) be
introduced for the sake of compactness. Then, the matrix form of tensors Tj
and Dj employed in Eq. (7) is [44]:

Tj = Tpj T
q
j Trj (A.1)

Dj = Dp
j D

q
j Dr

j (A.2)
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where:725

Tpj =



1 0 0 0 0 0

0 c2
p s2

p 2cpsp 0 0

0 s2
p c2

p −2cpsp 0 0

0 −cpsp cpsp c2
p − s2

p 0 0

0 0 0 0 cp −sp
0 0 0 0 sp cp


(A.3)

Tqj =



c2
q 0 s2

q 0 2cqsq 0

0 1 0 0 0 0

s2
q 0 c2

q 0 −2cqsq 0

0 0 0 cq 0 −sq
−cqsq 0 cqsq 0 c2

q − s2
q 0

0 0 0 sq 0 cq


(A.4)

Trj =



c2
r s2

r 0 0 0 2crsr

s2
r c2

r 0 0 0 −2crsr

0 0 1 0 0 0

0 0 0 cr −sr 0

0 0 0 sr cr 0

−crsr crsr 0 0 0 c2
r − s2

r


(A.5)

Dp
j =



1 0 0 0 0 0

0 c2
p s2

p cpsp 0 0

0 s2
p c2

p −cpsp 0 0

0 −2cpsp 2cpsp c
2
p − s2

p 0 0

0 0 0 0 cp −sp
0 0 0 0 sp cp


(A.6)
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Dq
j =



c2
q 0 s2

q 0 cqsq 0

0 1 0 0 0 0

s2
q 0 c2

q 0 −cqsq 0

0 0 0 cq 0 −sq
−2cqsq 0 2cqsq 0 c2

q − s2
q 0

0 0 0 sq 0 cq


(A.7)

Dr
j =



c2
r s2

r 0 0 0 crsr

s2
r c2

r 0 0 0 −crsr
0 0 1 0 0 0

0 0 0 cr −sr 0

0 0 0 sr cr 0

−2crsr 2crsr 0 0 0 c2
r − s2

r


(A.8)
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