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Neural tissue is a hierarchical multiscale system with intracellular and extracellular
diffusion compartments at different length scales. The normal diffusion of bulk water
in tissues is not able to detect the specific features of a complex system, providing
nonlocal, diffusion measurement averaged on a 10-20 µm length scale. Being able to
probe tissues with sub-micrometric diffusion length and quantify new local parameters,
transient anomalous diffusion (tAD) would dramatically increase the diagnostic potential
of diffusion MRI (DMRI) in detecting collective and sub-micro architectural changes
of human tissues due to pathological damage. In DMRI, the use of tAD parameters
quantified using specific DMRI acquisition protocols and their interpretation has often
aroused skepticism. Although the derived formulas may accurately fit experimental
diffusion-weighted data, the relationships between the postulated dynamical feature
and the underlying geometrical structure remains elusive, or at most only suggestive.
This work aimed to elucidate and validate the image contrast and information
that can be obtained using the tAD model in white matter (WM) through a direct
comparison between different diffusion metrics and histology. Towards this goal,
we compared tAD metrics extracted from pure subdiffusion (α-imaging) and super-
pseudodiffusion (γ-imaging) in excised mouse spinal cord WM, together with T2 and
T2∗ relaxometry, conventional (normal diffusion-based) diffusion tensor imaging (DTI)
and q-space imaging (QSI), with morphologic measures obtained by optical microscopy,
to determine which structural and topological characteristics of myelinated axons
influenced tAD contrast. Axon diameter (AxDiam), the standard deviation of diameters
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(SDax.diam), axonal density (AxDens) and effective local density (ELD) were extracted
from optical images in several WM tracts. Among all the diffusion parameters obtained
at 9.4 T, γ-metrics confirmed a strong dependence on magnetic in-homogeneities
quantified by R2∗ = 1/T2∗ and showed the strongest associations with AxDiam and
ELD. On the other hand, α-metrics showed strong associations with SDax.diam and
was significantly related to AxDens, suggesting its ability to quantify local heterogeneity
degree in neural tissue. These results elucidate the biophysical mechanism underpinning
tAD parameters and show the clinical potential of tAD-imaging, considering that
both physiologic and pathologic neurodegeneration translate into alterations of WM
morphometry and topology.

Keywords: transient anomalous diffusion, q-space imaging, DTI, histology, diffusion parameters validation,
mouse spinal cord, white matter (WM), microstructures

INTRODUCTION

Living tissues and specifically, brain tissues, are complex
biological systems better described by complex systems science
(Anderson, 1972; Ngai, 2011), which provides radical new
ways of understanding the underlining physics and biology
compared to the laws of conventional biophysics. Therefore,
new strategies related to diffusion magnetic resonance imaging
(DMRI) aspiring to perform early diagnosis and more sensible
and specific follow-up of pathologies, should be based on the
same aforementioned principles.

In the last two decades, DMRI based on the normal
Brownian diffusion, has revolutionized MRI diagnostics and
translational MRI studies as it obtains intra-voxel information
on tissues by exploiting the diffusion of biological water
in the tissues themselves (Jones, 2011). Microstructural
information is achieved independently from the image
resolution (related to the voxel size) and is limited by
the intrinsic resolution lD, approximately equal to the
square root of the mean square displacement (MSD) of
the diffusing protons. MSD = 6D1 is the mean squared
distance traveled by water molecules in a given time interval
1 (or diffusion time), D is the diffusion coefficient, a useful
parameter to characterize particle diffusion in the normal
case, for which a linear scaling relation between MSD and
1 exists.

In human investigations, DMRI provides a measure of water
proton displacement by probing motion at the mesoscopic length
scale (lD around 10-20 µm), which is orders of magnitude smaller
than the macroscopic MRI resolution (typically 1-2 millimeters
for clinical MRI scanners). In animal model investigations
performed at a very high magnetic field, specific DMRI protocols
allow probing tissues with lD around the micrometer scale
(Shemesh et al., 2013; Porcari et al., 2016; Gao et al., 2020;
Müller et al., 2020).

From the point of view of diffusing biological water, neural
tissue is a hierarchical multiscale system with different length
scales of intracellular and extracellular diffusion compartments,
an intricate microvasculature network, submicroscopic traps,
and dead space microdomains that transiently entrap diffusing
molecules, roughness and barriers, hindering and trapping

water diffusion. The normal diffusion of bulk water in
tissues is not capable of detecting any of the characteristics
above, providing nonlocal, diffusion measurement averaged
on the lD length scale. As well summarized by Di Tullio
et al. (2019) and introduced above, normal or Brownian
diffusion is identified by the linear growth in time of
the MSD and by the Gaussian shape of the molecular
motion propagator. Processes departing from at least one
of the above conditions define anomalous diffusion, thus a
nonlinear growth in time of the MSD and/or a non-Gaussian
displacement distribution.

With its capability to probe tissues with lD below the
micrometer scale, transient anomalous diffusion (tAD) (Capuani
and Palombo, 2020) and its new local parameters would
dramatically increase DMRI diagnostic potential in detecting
collective, micro and sub-micro architectural changes of human
tissues due to pathological damage. Anomalous diffusion
(Metzler and Klafter, 2000; Burov et al., 2011; Metzler et al.,
2014; Chakraborty and Roichman, 2020) is ubiquitously observed
in many complex biological systems, ranging from soft matter,
e.g., the cell cytoplasm, membrane (Saxton and Jacobson,
1997; Tolić-Nørrelykke et al., 2004; Golding and Cox, 2006;
Zaid et al., 2009; Weigel et al., 2011; Javanainen et al., 2012;
Hofling and Franosch, 2013; Honigmann et al., 2013; Jeon
et al., 2016; Metzler et al., 2016; Pöschke et al., 2016) and,
extracellular space (ECS) (Sykovà and Nicholson, 2008; Sherpa
et al., 2014; Nicholson, 2015; Xiao et al., 2015) to the nucleus
(Bronstein et al., 2009; Stadler and Weiss, 2017; Pierro et al.,
2018) and neuro-physiological systems (Allegrini et al., 2015;
Paradisi and Allegrini, 2017).

Different from the normal diffusion, anomalous diffusion
is characterized by an MSD of diffusing particles growing
nonlinearly in time. MSD ∝ 1ν with ν 6= 1, and ν < 1
for subdiffusion, ν > 1 for superdiffusion (Metzler
and Klafter, 2000). There are different well established
theoretical frameworks describing anomalous diffusion
phenomena, such as the continuous time random walk
(CTRW) (Metzler and Klafter, 2000) and the fractional
Brownian motion (FBM) (Deng and Barkai, 2009;
Magdziarz et al., 2009). These have been corroborated
substantially by Monte Carlo simulations together with
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experimental evidence, mainly obtained with fluorescent
spectroscopy (Metzler et al., 2014, 2016; Sherpa et al., 2014;
Xiao et al., 2015).

The use of anomalous diffusion parameters quantified using
specific DMRI acquisition protocols and its interpretation has
often aroused skepticism and misgiving (Jelescu and Budde,
2017; Novikov et al., 2019). Although the derived formulas
may accurately fit experimental diffusion weighted (DW) data
(Magin et al., 2008; De Santis et al., 2011; Grinberg et al.,
2014; Yu et al., 2018), and fractional diffusion equations
models (Zhou et al., 2010; Magin et al., 2020; Wang et al.,
2021) capture and characterize the multi-exponential features
of the signal attenuation, the relation between the postulated
dynamical feature and the underlying geometrical structure
remains elusive or at most, only suggestive. Further, the fact that
the stretched-exponential function, the function type predicted
by the anomalous diffusion theory to quantify the superdiffusion
and subdiffusion parameters, was used in a qualitative way to
fit experimental diffusion-weighted images (DWI) data (Capuani
and Palombo, 2020) added confusion to the scenario.

In this paper, we follow the acquisition instructions,
the nomenclature, and the anomalous diffusion parameter
interpretations of Capuani and Palombo (2020). Specifically:
(a) anomalous diffusion in biological tissues is transient, i.e.,
for very short and very long diffusion times normal diffusion
with a finite D0 and a finite D∞ (Novikov et al., 2019;
Capuani and Palombo, 2020), respectively, is found; (b) transient
subdiffusion can be quantified in a multiscale heterogeneous
medium characterized by at least three different length scales,
and subdiffusion quantifies the local disorder degree (Palombo
et al., 2011, 2012, 2013; Capuani et al., 2013); (c) to quantify
subdiffusion, DW data from a pulse field gradient (PFG)
sequence must be collected varying 1 while keeping gradient
strength g constant. Conversely, to quantify superdiffusion, DW
data must be collected varying g while keeping 1 constant; (d) no
real superdiffusion can be quantified in biological tissues. Using
tAD signal representation, pseudo-superdiffusion parameters,
which depend on magnetic susceptibility differences 1χ and
magnetic inhomogeneities, are quantified (Palombo et al., 2011,
2012; Caporale et al., 2017; Guerreri et al., 2019).

This work aims to elucidate and validate (Jelescu and Budde,
2017) the image contrast and information obtained using the
tAD model in white matter (WM) through a direct comparison
between different diffusion metrics and histology. Due to the
peculiar characteristics of complex tissue that the tAD could
highlight, in addition to the conventional parameters describing
the geometry of the tissue, such as the axons diameter and the
axons density, we quantified some local parameters, such as the
effective local density (ELD) that reflects how closely the axons
are packed (Comin et al., 2014).

Towards this goal, we compared tAD metrics extracted from
subdiffusion (α-imaging) and pseudo-superdiffusion (γ-imaging)
in the WM of an excised mouse spinal cord, together with
T2 and T2∗ relaxometry, conventional (normal diffusion-based)
diffusion tensor imaging (DTI) (Basser and Jones, 2002) and
q-space imaging (QSI) (Callaghan, 1991; King et al., 1997),
with morphologic measures resolved by optical microscopy, to

determine which structural and topological characteristics of
myelinated axons influenced tAD contrast. Three main factors
motivated the choice of the sample for this study: (a) in the
spinal cord the myelinated fibers, organized in coherent bundles
with a certain orientation dispersion, are clearly distinguishable
from the gray matter nuclei; (b) the cylindrical geometry of the
sample itself leads to a simplification of the diffusion acquisition
and description; (c) mouse spinal cord is commonly employed in
studies of demyelination.

Structural and topological characteristics (axon diameter,
AxDiam, the standard deviation of diameters, SDax.diam, axonal
density, AxDens and ELD) were extracted from optical images
in several WM tracts. Among all the diffusion parameters
quantified at 9.4 T, γ-metrics confirmed a strong dependence on
magnetic inhomogeneities quantified by R2∗ = 1/T2∗ (Palombo
et al., 2011, 2012; Caporale et al., 2017; Guerreri et al.,
2019) and showed the strongest associations with AxDiam
and ELD while α-metrics showed strong associations with
SDax.diam and was significantly related with AxDens. QSI-
metrics was strongly related to AxDens. DTI-metrics showed
non-significant trends with morphology (P > 0.05), and
none was sensitive to SDax.diam. These results elucidate the
biophysical mechanism underpinning of tAD parameters and
show the clinical potential of tAD-imaging, considering that
both physiologic and pathologic neurodegeneration translate into
alterations of WM morphometry and topology.

MATERIALS AND METHODS

Sample Preparation
All applicable international, national, and/or institutional
guidelines for the care and use of animals were followed. The
mouse spinal cord was extracted after apposite treatment aimed
at optimizing fixation, fully described in Ong et al. (2008).
A C57 BL6 mouse, (8-9 months, 25-30 mg, Charles River,
Wilmington, MA, United States) was anesthetized with an
intraperitoneal injection of 10 mg ketamine/1 mg acepromazine
per ml, and perfused through the heart with 20 ml of phosphate
buffer solution (PBS) and 20 ml of fixing solution with 4%
glutaraldehyde and 2% paraformaldehyde in 10 mM PBS.
Following fixation, the entire spinal cord was dissected out and
post-fixed for at least two weeks in a different fixing solution
(2.5% glutaraldehyde and 2% paraformaldehyde in 0.1 M
sodium cacodylate). The combination of glutaraldehyde and
paraformaldehyde was chosen for its effectiveness in preserving
the myelin sheath ultra-structure and intra-axonal cytoskeletal
protein (Schwartz et al., 2005). The fixed mouse spinal cord
was then inserted in a 5 mm-diameter capillary for the MRI
examination (Figure 1).

Optical Imaging
Optical histologic imaging was performed after MRI at the
thoracic and lumbar locations, approximately corresponding to
the slices imaged with MRI. The sample preparation followed the
protocol described in Sommese et al. (2012). Briefly, the spinal
cord was dehydrated in ascending series of ethyl alcohol and
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FIGURE 1 | Excised mouse spinal cord in a 5 mm glass capillary for MRI
examination. The specimen is about 2.6 cm in length, with maximum cross
section of 4 mm × 2.5 mm at the level of the cervical and lumbar
enlargements. Different tracts of the spinal cord are indicated. FV = frontal
view, LV = lateral view. Black arrow indicates static magnetic field direction.

then embedded in epon. Semi-thin (1.5 µm) sections of spinal
cord were cut with a glass knife, then stained with 1% toluidine
blue solution prepared in 1% sodium tetraborate buffer for light
microscopy observations.

Diffusion Magnetic Resonance Imaging
Acquisitions
The capillary containing the fixed mouse spinal cord (MSC) was
inserted in the 10 mm-diameter bore of a Bruker Avance-400 high
resolution spectrometer operating at a magnetic field strength of
9.4 T (maximum gradient strength 1,200 mT/m, rise time 100 µs),
so that the ideal cylindrical axis was parallel to the static magnetic
field B0 (Figure 1). ParaVision 3.0 software was employed for
data acquisition. The MSC was scanned along three orthogonal
directions, with slice packages placed in the thoracic and lumbar
sections. The DWIs were acquired using a Pulsed Gradient
Stimulated Echo (PGSTE) sequence, with specific acquisition
parameters for γ-imaging, α-imaging DTI and QSI experiments,
listed in Table 1. The temperature of the specimen was monitored
and kept constant at T = 22◦C, with oscillations of +/− 0.5◦C,
to control for spurious increase of diffusivity due to temperature
(Hasegawa et al., 1994).

Diffusion-Weighted Images Data Analysis
Diffusion-Weighted Images SNR
The signal to noise ratio (SNR) was computed by considering the
ratio between the mean intensity in a selected region of interest
(ROI) and the standard deviation of the background intensity.
Three different tissues were considered and compared: ‘fluid’
stands for the fixative solution, ‘wm’ stands for the white matter
of the lateral column of the spinal cord, and ‘gm’ stands for the
gray matter taken in the lateral portion next to the central canal,
and not overlapping with it.

Diffusion-Weighted Images Denoising
The signal produced from the attenuation due to the random
motion of water molecules is affected by noise, especially at
high b-values. It is fundamental to provide indications about
the SNR of the image, to ensure the reliability of the DWIs
data. Among the techniques used to artificially increase the SNR
there is data smoothing through 2D spatial filters such as Wiener
filter (employing a gaussian kernel). However, this filter changes
the stochastic properties of noise, causing data biases, and
complicating the fitting procedure of DWIs. Recently, a denoising
procedure specific for DWIs was developed and released as an
opensource package (Kellner et al., 2016; Veraart et al., 2016).
This procedure allows to reduce the noise level, removing the
Gibbs artifacts and the RF-spiking, and consequently increases
the SNR. The process consists of two steps: first, through Partial
Component Analysis (PCA), the noise is reduced with the
function ‘dwi-denoise’ (Veraart et al., 2016); in the second step,
carried out by the function ‘mrdegibbs’, the Gibbs ringing artifact
is removed, as explained fully in Kellner et al. (2016).

Transient Anomalous Diffusion Metrics
Pseudo-Superdiffusion: γ-Imaging
The γ metrics (Palombo et al., 2012; Caporale et al., 2017)
is extracted from a series of DWI experiments, performed at
increasing diffusion gradient strengths g, keeping 4 constant
(Capuani and Palombo, 2020; Table 1.). This technique allows
the extraction of γ parameter, quantifying water pseudo-
superdiffusion in tissues (Palombo et al., 2012; Caporale et al.,
2017). The γ exponent is an adimensional parameter defined in
the interval [0, 1], and it is extracted by fitting the stretched
exponential function to signal attenuation S(q):

S(q) = A · e−Dgen·qγ
·4
+c (1)

with q = ϒHgδ (δ, is the gradient-pulse width, ϒH is the
nuclear gyromagnetic ratio), A and c amplitude and offset,
respectively, and Dgen a generalized diffusion constant. Exploiting
the cylindrical approximation, the spinal cord can be imaged
along three orthogonal directions (the first one, γ1, parallel to the
B0-field, the other two, γ2 and γ3, in the axial plane). Mean-γ
(Mγ) is the average of the three exponents; its anisotropy, Aγ,
and the longitudinal and radial values (γpar, γort), respectively,
parallel and orthogonal to the main axonal fiber orientations, are
derived as follows:

Mγ =

∑3

i = 1
γi/3 (2)

Aγ =

√√√√3
[(

γ1−Mγ

)2
+
(
γ2−Mγ

)2
+
(
γ3−Mγ

)2
]

2(γ12+γ22+γ32)
(3)

γpar = γ1 (4)

γort =
γ2+γ3

2
(5)
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TABLE 1 | Acquisition parameters for the Pulse Gradient Stimulated Echo sequences.

DTI γ -imaging α -imaging q-space imaging

Slice thickness (mm) 1.0 1.0 2.0 0.75

FOV (mm2) 4.5 x 4.5

In-plane spatial resolution (µm2) 35 x 35

Matrix size 128 x 128

TR (s) 3.5 3.5 (4 - 4) 3.5

TE (ms) 12

Diffusion gradient duration δ

(ms)
2

Diffusion gradient separation 1

(ms)
40 40 40, 60, 80, 150, 300,

500, 800
40

Mixing time (ms) 34 34 34, 54, 74, 144, 294,
494, 794

34

Diffusion gradient directions (1 0 0)
(0 1 0)
(0 0 1)

(1/
√

2 1/
√

2 0)
(1/
√

2 0 1/
√

2)
(0 1/
√

2 1/
√

2)

(1 0 0)
(0 1 0)
(0 0 1)

(1 0 0)
(0 1 0)
(0 0 1)

(1 0 0)

Effective b-value range for each
direction (b0, bmax ) (s/mm2)
(effective b-value takes into
account the contributions from
imaging gradients)

61.2, 1561.2
61.2, 1561.2
61.2, 2142.0
61.2, 1561.2
61.2, 1971.9
61.2, 1971.9

61.2 - 8521.2
61.2 - 8521.2
61.2 - 9496.6

67.9 - 1493.6
67.9 - 1493.6
66.9 - 1491.7

74.7-14171

Effective g value range for
each direction (g0, gmax ) (mT/m)

73.7-372.4
. . .

73.7-418.5

73.7- 869.9
73.7- 869.9
73.7- 918.4

77.7 - 80.8
77.7 - 80.8
76.9 - 80.7

81.5-1122

Number of b-values (excluding
b0)

1 16 7 30

Number of averages 8 8 16 (for 1 = 40, 80 ms)
32 (150, 300 ms)
64 (500, 800 ms)

16

Transient Subdiffusion: α-Imaging
In the α-imaging technique several DWI experiments are
performed increasing the diffusion time 4 and keeping the
diffusion gradient strength g constant (Table 1). The α exponent
quantifies water transient subdiffusion in tissues (Capuani et al.,
2013; Palombo et al., 2013). It is a dimensionless parameter
defined in the interval [0, 1], and it is extracted by fitting the
stretched exponential function:

S(4) = A · e−Dgen·q2
·4

α

+c (6)

to the signal attenuation S(4). By acquiring DWI along three
orthogonal directions one may derive the mean α (Mα), the
α anisotropy (Aα) and the longitudinal and radial values
(αpar , αort):

Mα =

∑3

i = 1
αi/3 (7)

Aα =

√
3
[
(α1−Mα)

2
+(α2−Mα)

2
+(α3−Mα)

2]
2(α12+α22+α32)

(8)

αpar = α1 (9)

αort =
α2+α3

2
(10)

Conventional Diffusion and T2∗ Maps
T2∗ maps were obtained to investigate the dependence of tAD
parameters on magnetic inhomogeneities. T2∗ weighted images
were acquired using gradient echo fast imaging (GEFI) sequences
with 15 TE values varying in the range (1.8, 40) ms (TE = 1.8, 2,
4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40 ms), TR = 1200 ms,
matrix 128x128, FOV = 4.5x4.5mm2, NEX = 8-16.

To obtain mean diffusivity (MD), fractional anisotropy (FA),
radial diffusivity (Dort) and axial diffusivity (Dpar), DWIs along
six gradient directions using b = 0, 1000 s/mm2 were acquired
(Table 1). A mono-exponential model for DW signal decay was
used (Basser and Jones, 2002).

Investigation of the Dependence of γ-Metrics From
Magnetic Field in-Homogeneities
With the double purpose of verifying the dependence of γ-
metrics on magnetic field in-homogeneities, and of verifying
that γ-metrics for the fluid in the capillary approached unity (as
predicted by theory) we considered five ROIs, other than those
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selected on the optical microscopies. By thresholding the MD
map of axial and sagittal slices of the mouse spinal cord, five
ROIs were extracted, comprising: the medium surrounding the
spinal cord, the gray-matter, the interface between white matter,
and white matter more or less densely packed. Mean values of
γ-metrics and R2∗ (the inverse of T2∗) were extracted, and the
linear regression was evaluated.

Q-Space Imaging (QSI)
Unlike diffusion tensor imaging, QSI identifies the molecular
diffusion probability density function without the need to assume
a normal diffusion with Gaussian distribution processes.

In QSI, the attenuation of the echo signal is recorded as a
function of the q-value, defined as ( 1

2π)ϒHgδ (Callaghan, 1991).
The echo attenuation S(q) along an arbitrary gradient direction
is the Fourier Transform of molecular displacement probability
function, P(r,1):

S
(
q
)
=

∫
P(r,4)ei2πq·rdr (11)

When a single gradient direction is used, the one-dimensional
displacement probability function may be referred to as the
displacement profile. The 1D-QSI displacement profile has a
particularly simple interpretation if the gradients are applied
perpendicularly to the axon fibers, in presence of a tubular
geometry as in the case of spinal cord. The displacement profile
can be fitted with a Lorentzian curve, centered in 0:

L
(
x, y0

)
=

1
π
·

y0

x2+y02+c (12)

With c the offset term, and y0 equal to half the full width at
half maximum (FWHM). The FWHM correlates with the scale of
restrictions which, in WM, is the mean axon diameter averaged
over the imaging volume (Ong et al., 2008; Ong and Wehrli, 2010;
Cohen et al., 2016).

If the range of q-values is limited, the ‘low q-value
approximation’ (Ong et al., 2008; Ong and Wehrli, 2010) can be
used. It consists in a bi-exponential model where Zics and Zecs
represent the width of the intra (ICS) and extra (ECS) cellular
space, respectively:

S
(
q
)
= f · e−2π2

·q2
·Z2

ecs+
(
1−f

)
· e−2π2

·q2
·Z2

ics (13)

with f the fraction of ECS, and 1-f the fraction of ICS, including
the myelin compartment.

Histological Investigation and
Quantitative Analysis
A specific software for the extraction of morphologic and
topologic parameters from 2D optical microscopy images of MSC
was developed in MATLAB R2016b (MathWorks, Inc., Natick,
MA, United States) (see Supplementary Appendix 1). Briefly, the
script takes in input selected 2D optical microscopies, performs
pre-processing (Wiener filter of width 0.2 µm), segmentation,
object recognition, applies selection rules, and provides the
desired quantitative measures in output. Optical microscopies
were digitized and segmented (Figure 2) into four tissue

classes, based on thresholds intensity: intracellular space (ICS),
extracellular fluid (ecs), myelin (myel), and the pixels belonging
to other structures/cells not ascribable to any of the other three
types (other). Indicating with fxxx the fraction of area occupied
by the specific tissue class, the following normalization rule was
considered:

fics + fecs + fmyel + fother = 1 (14)

The squared pixel dimension of each image is
0.033 µm × 0.033 µm. A pixel-wise adaptive Wiener method
based on statistics estimated from a local neighborhood of each
pixel was applied prior to the segmentation. The mask associated
to the ics component was polished through surface, circularity
and uniformity thresholds, as described in literature (Comin
et al., 2014): briefly, the algorithm discarded: those objects
with an area smaller than a specific value defined by the user,
presumably representing speckles and non-axons spots; the
objects for which the ratio of the perimeter to the square root of
the area was larger than 6.2, corresponding to elongated ellipses
with b > 6a, with a and b the semi-minor and semi-major axes
of the ellipse, respectively; the objects with a ratio σ/µ > 0.5 of
the standard deviation σ and the mean intensity µ, assumed to
contain debris or multiple tissue types.

Six ROIs were manually drawn encompassing six WM
tracts: funiculus gracilis (fg), dorsal-Corticospinal tract (dCST),
rubrospinal tract (RST), spino-thalamic tract (STT), vestibulo-
spinal tract (VST), reticulo-spinal tract (ReST) (Figure 3). In each
region, axon diameter (Ax. diam.), diameter SD (SD ax. diam),
axon density (Ax. Dens.) and effective local density (ELD) as
extracted in Comin et al. (2014) were estimated. The Ax Dens
was derived from the ratio between the fraction of area occupied
by axolemmas, and the area of an axon with average diameter
computed over the ROI, and approximated to a circle. Effective
local density (Comin et al., 2014) is a modified version of the
axon density, and reflects how closely the axons are packed. It
is an estimate of the density of axons around the axons, ignoring
axon-free regions. A high value of ELD indicates that axon free-
areas are clustered, while a low ELD indicates that axon-free areas
are spread out. Different from the standard axonal density, which
does not consider the various obstacles in the ECS not recognized
as axons and not passing the selection rules, the ELD accounts for
the area not occupied by axons.

Average values across the ROIs and the specimens where
considered, with their standard deviations, using the masks
provided by the segmentation procedure. The analysis was
carried out by two different operators. The average histological
characteristics of the considered white matter tracts are listed
in Table 2.

Statistical Analysis
Pearson’s correlation coefficients were computed between the
diffusion metrics and the histological characteristics. P < 0.05 was
used to demonstrate statistical significance.

Extraction of d-µMRI Parametric Maps
Conventional DTI analysis was performed by means of FSL
5.0 DTIFIT routine (FMRIB Software Library v5.0, FMRIB,
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FIGURE 2 | Representative optical image segmentation. Optical image of the spino-thalamic tract (STT) in the thoracic segment at the level T3/T4, with the result of
the threshold-based segmentation algorithm, yielding binary masks for myelin and intracellular space.

FIGURE 3 | Mouse spinal cord histology. (A) Optical image of the thoracic segment at the level T3/T4, with magnifications (×100) of selected white matter tracts.
The scalebar is indicated (bar = 5µm for each magnification). (B) T2-weighted image showing the corresponding slice. The ventral side of the cord is adjacent to the
capillary walls. Fg = funiculus gracilis, dCST = dorsal cortico-spinal tract, STT = spino-thalamic tract, ReST = reticulo-spinal tract, VST = vestibulo-spinal tract,
rRST = right rubro-spinal tract.

TABLE 2 | Average regional histologic characteristics of WM tracts.

dCST fg rRST ReST STT VST

Axon Diameter (µm) 0.82 ± 0.04 0.93 ± 0.06 1.23 ± 0.07 1.50 ± 0.08 1.53 ± 0.05 2.2 ± 0.19

Diameter SD (µm) 0.49 ± 0.09 0.48 ± 0.05 0.75 ± 0.11 0.82 ± 0.12 0.79 ± 0.20 0.81 ± 0.13

Axon Density (105/mm2) 3.63 ± 0.49 3.04 ± 0.21 1.91 ± 0.36 1.56 ± 0.26 1.48 ± 0.11 0.69 ± 0.22

Effective local density (x10−3) 3.8 ± 1.8 3.4 ± 1.3 2.7 ± 1.3 2.2 ± 0.3 3.0 ± 1.8 1.6 ± 1.1

Oxford, United Kingdom), which returns the maps of Mean
Diffusivity (MD), Fractional Anisotropy (FA), and the 3
eigenvalues (λ1, λ2, λ3) and eigenvectors (V1, V2, V3) from the
diagonalization of the tensor.

The PGSTE data were fitted to the theoretical models
of γ-imaging, α-imaging and q-space imaging (respectively,
represented by Eq. 1, Eq. 6, Eq. 12, and Eq. 13) using custom
MATLAB scripts (MATLAB R2016a), employing a non-linear
least square estimation procedure with ‘trust-region reflective’
algorithm for minimization, and parallel computing.

The non-linear fit expression used for γ-imaging was:

S(q)

S0
= p1 · e(−p2·qp3−D0q2

0)·4 + p4 (15)

As suggested by Jones and Basser’s paper (Jones and Basser,
2004), we included in the fitting procedure a separate “noise”
parameter, the p4 parameter, to take the noise floor into account.
We fixed the offset p4 = 0.15, because the parameterized additive
constant p4 converged to 0.15 for different initializations of p4
in the non-linear fit with four parameters performed in previous
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fit tests. The other three-parameters returned the multiplicative
constant p1, the generalized diffusion constant (p2 = Dgen) and
the value proportional to the gamma-exponent (p3 = 2γ) for
each of the three orthogonal directions on a voxel-by-voxel
basis, taking about 6 minutes for each slice on a 2.6 GHz 4-
cores machine with 16.0 GB RAM. The signal attenuations were
thus normalized to the background signal, and to the image
without diffusion weighting (S0). The parameters were initialized,
respectively, to [1, 1∗10−10 1.8], with lower bounds [0, 0, 0] and
upper bounds [Inf, Inf 2].

For the α-imaging there is the necessity to normalize the
signal attenuations to the background and to the receiver gain
(RG), which increases with noise, thus with the observation time
(RG = 64, 64, 64, 64, 421.147, 855.654, 2801.08); furthermore, the
use of a logarithmic fit provides inferior norm of residuals. The
non-linear fit expression used for α-imaging was thus:

ln(Sd
(
4, q

)
) ∼ ln(p1)− p2

2q2
0 · 4

p3 (16)

where ‘d’ denotes the direction of acquisition (d = 1,2,3), p1 is
a multiplicative constant, p2 represents the generalized diffusion
constant in the sub-diffusive regime, p3 represents the α exponent
we are looking for, q2

0 is the mean q-value, considering all the used
mixing times (which is not expected to vary among experiments,
since we selected carefully the intensity of diffusion gradient to
be constant, with δ fixed). The output provided by the scanner is
the b-value, thus we derived q-value from: q =

√
b

4π2
(
4−

δ
3

) . The

parameters were initialized as follows: (p10, p20, p30) = [max(Sd),
MD, 0.9], with lower bounds [0, 0, 0.5] and upper bounds [Inf,
Inf 1.1]. For the α-imaging it was necessary to segment the spinal
cord, fitting the WM and the gray matter (GM) + fluid separately.
The generalized diffusion constant was initialized to the value of
MD, in the order of 10−3/10−4 mm2/s. The required time for
the fitting procedure was about 2.5 minutes for each slice on a
2.6 GHz 2-cores machine with 16.0 GB RAM.

Because PGSTE was used, to avoid bias in α-metric estimation,
the relaxation time T1 of the fixed mouse spinal cord at 9.4 T
was previously measured. It was about 600 ms in the GM and
760 ms in the WM. Therefore, in a preliminary step, to take into
account the T1 signal decay during the mixing time TM∼1, we
use both Eq. 15 and a modified Eq. 15 setting p1·e−1/T1 instead
of p1 to perform the fitting procedure. We found that both fitting
procedures provided the same α value, and slightly different p1
and p2 parameters.

For the q-space imaging the signal attenuations were
normalized to the background and to S0. The non-linear fit
expression used in the case of ‘low q-value approximation’ was:

S(q)

S0
= p1 · e−2π2p2

2q2
+ (1− p1)e−2π2p3

2q2
+ p4 (17)

To take into account the noise floor (Jones and Basser, 2004),
we fixed the offset p4 = 0.2, because the parameterized additive
constant p4 converged to 0.20 for different initializations of
p4 in previous tests of non-linear fit with four parameters.
The other three-parameters returned the relative fraction of the
extracellular compartment (p1 = proportional to fecs), the mean

square displacement in the extracellular compartment (p2 = Zecs)
and of the intracellular compartment p3 = Zics. The parameters
were initialized, respectively, to [max(S (q)∗0.7), 5∗10−6, 0.15],
with lower bounds [0, 0, 0] and upper bounds [2, 10−2,10−2]. The
fitting procedure requires about 3 min for each slice on a 2.6 GHz
2-cores machine with 16.0 GB RAM. As in the α-imaging, it is
better to segment the tissues, and let the fit work on WM and
GM separately. The multiplicative constant in p1 represents the
fecs, and it is ascribable to the fractions of ECS. The initializations
to 0.3 and 0.7 provide the same norm of residuals, causing an
indetermination in the right estimate of fecs.

By mirroring the signal attenuations with respect to 0, and
performing a Fourier Transform (using “dft.m” function in
MATLAB, and a customized function called “dftgh6.m”), it was
possible to derive the Lorentzian shaped pdf of displacements.
This curve, which was truncated at 11 values, because of
fluctuating tails due to noise (we are in the short pulse gradient
approximation, SPGA, yet we have too little qmax to achieve the
acceptable resolution), was fitted to the Lorentzian described in
Eq. 12, that is:

L (x) = p1 +
1
π
·

p2

x2 + p22 (18)

Where p1 represents an offset, p2 is the parameter controlling the
width of the curve (the FWHM of which is 2p2). The parameters
were initialized as [1, 1], and set free to vary within lower bounds
[−Inf 0] and upper bounds [Inf, 10−4]. The fitting procedure
requires about 2.5 minutes for each slice on a 2.6 GHz 2-cores
machine with 16.0 GB RAM.

RESULTS

Diffusion-Weighted Images Acquisitions:
SNR and the Effect of
Diffusion-Weighted Images Denoising
The reliability of tAD maps depends on the SNR of DWIs at each
b-value. We found that SNR of acquired DWIs was greater than
10 in both GM and WM and in each diffusion gradient direction
and strength used.

The effect of denoising on raw DWIs was examined. At a
visual inspection, the denoised images are less grainy compared
to the raw data and the RF-spiking line has disappeared. What is
left untouched, is the spiral-like artifact consisting in white/gray
stripes, that is not attributable to Gibbs ringing artifact, and thus
not corrected by the type of processing used here. However, this
artifact affects only free water in the capillary (Figure 4). The
denoised images show higher SNR (Figure 5), which is double
the SNR computed in raw data.

Parametric Maps
In Figure 6, Mγ, Aγ maps and optical images of the same thoracic
and lumbar segments of mouse spinal cord are displayed. Please
note that the pseudo-superdiffusion maps (γ-maps) highlight
boundaries and barriers between tissues with different magnetic
susceptibilities. As expected, the results reported here, confirm
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FIGURE 4 | Denoising and removal of Gibbs ringing artifact in DWI used to
obtain α-imaging. Comparison between the raw DWIs and the DWIs after
denoising and the removal of Gibbs ringing artifact, for the lumbar slice of the
spinal cord, considering the DWIs acquired along z-direction and using
increasing diffusion time, 1.

the central role of the local 1χ in providing γ contrast, as
already observed and described (Palombo et al., 2012; Caporale
et al., 2017). In Figure 7, an example of transient subdiffusion in
thoracic segments of mouse spinal cord is reported, whereas in
Figure 8 conventional DTI maps together with QSI maps and T2
and T2∗ maps are displayed. It is possible to notice that WM and
GM are weakly contrasted in the α compared to the γ, QSI and
DTI parametric maps, showing a different image contrast.

tAD-Metrics Relation With Magnetic
Inhomogeneity
No significant linear correlation was found between R2∗ mean
values obtained in each of the five selected regions (from fluid
to GM and WM) and transient subdiffusion parameters (α-
metrics). Conversely, a significant linear correlation was found
between R2∗ and pseudo-superdiffusion parameters (γ-metrics),
as showed in Figure 9, in complete agreement with previous
investigation performed in materials (Palombo et al., 2011, 2012)
and human brain tissues (Caporale et al., 2017; Guerreri et al.,
2019).

Linear Correlations Between DTI, QSI,
tAD Diffusion Metrics and Histology
The Pearson’s correlation coefficients of the linear correlations
between the diffusion-MRI metrics and the histologic features are
listed in Table 3.

None of the DTI parameters showed significant correlations
with histological parameters. Dort showed a positive, and FA
a negative trend with the axonal diameter. Compared to other

parameters, however, Mγ, and γpar showed the strongest positive
correlations (with P < 0.001 for Mγ) with the axonal size
(AxDiam). Conversely, Mα and αpar were inversely related (with
significant P for Mα) to the axonal size.

None of the DTI-metrics showed significant correlations with
the SD of axons distribution, whereas Mγ, Aγ, γort , αpar , Zics and
FWHM were related with the dispersion of axonal size.

Among the DTI parameters, Dort showed a negative
trend with the derived axonal density, matching with
the results by Schwartz et al. (2005), relatively to the
transverse (radial) apparent diffusion coefficient and
axons count. α and γ-metrics were also related to axonal
density, with correlations approaching significance, and
P < 0.05 for Mγ, Aα and αpar . Based on the results in
Table 3, the parameters which best reflected the derived
axonal density are the ones obtained with q-space imaging
(Zics and FWHM).

We also considered the correlations with the ELD. While Dort
showed a negative trend with ELD (r = −0.810, P > 0.05), γ-
metrics (in particular Mγ and γort) and QSI metrics (FWHM and
Zics) showed strong negative correlations (r =−0.92, P < 0.01 for
Mγ; r =−0.94, P < 0.005 for γort; r =−0.84, P < 0.05 for FWHM;
r = −0.87, P < 0.05 for Zics). No correlation was found between
α-metrics and ELD.

DISCUSSION

The development of new advanced DMRI models to improve
the diagnostic potential of diffusion MRI is intrinsically
limited, since DMRI is an indirect measure of medium
microstructure and relies on inferences from models and
estimation of relevant diffusion parameters (Jelescu and
Budde, 2017). The use of anomalous diffusion parameters to
increase the sensibility and specificity of DMRI investigations
has often aroused skepticism and misgiving (Jelescu and
Budde, 2017; Magin et al., 2020; Wang et al., 2021). Although
the derived formulas may accurately fit experimental
DW data, the relation between the postulated dynamical
features and the underlying geometrical structure remains
elusive or at most only suggestive. Therefore, efforts to
validate parameters estimated by anomalous diffusion
models with complementary techniques such as optical
microscopy of fixed tissue specimens are high desirable
(Jelescu and Budde, 2017).

In this work, in an attempt to explain the underpinning
biophysical mechanisms and validate parameters of tAD, we
analyzed excised tissue of mouse spinal cord using different
diffusion protocols already known and validated two different
protocols to quantify pure subdiffusion parameters (α-metrics)
and pseudo-superdiffusion (γ-metrics). The extracted parameters
were compared and correlated to histological parameters
extracted by optical microscopy.

The discussion is organized as follows. First, we checked
the validity of the parameters AxDiam, SDax.diam, AxDens,
and ELD extracted from the histological images that we
carried out by developing a dedicated software (the details
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FIGURE 5 | Signal to noise ratio (SNR) of diffusion-weighted images (DWIs). SNR of DWIs collected for α-imaging plotted against the b-values (b0 plus other 7
b-values, in the range 67.9, 1493.6 s/mm2) for DWIs acquired with the diffusion gradient acting along the z (longitudinal) direction with 4 ranging from 40 ms to
800 ms. (A) Raw data, before the noise removal; (B) data after the use of dwidenoise function; (C) data after the removal of Gibbs ringing artifact. SNR computed in
the unringed DWIs is the highest for each of the three tissues (fluid = capillary solution; wm = white matter, right column; gm = gray matter, right ventral horn), up to
the longest diffusion time. This comparison was made considering the lumbar section of the spinal cord.

FIGURE 6 | Histology and γ-imaging parametric maps. Optical images of the thoracic segment at the level T2/T3 (A) and of the lumbar segment at level L3/L4 (B).
Scalebar is 100 µm. (C,D) Parametric maps of mean-γ (Mγ) and γ-anisotropy (Aγ) for the corresponding thoracic and lumbar segments. Axial, coronal and sagittal
views are shown, from left to right.

are reported in Supplementary Appendix 1). Subsequently,
we verified the strong dependence of the γ-metric on the
magnetic field in-homogeneities that we had already observed
leading us to define the γ-metric not as a real anomalous

diffusion metric, but as a metric that exploits the signal
representation of the superdiffusion signal decay to provide
useful parameters for the discrimination of different tissue
features. We then discussed the results related to the correlations
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FIGURE 7 | α-imaging parametric maps. Transient subdiffusion maps of thoracic segment at the level T2/T3. Parametric maps of α-anisotropy (Aα), mean-α (Mα), α

orthogonal to the WM fibers (αort), and α parallel to the WM fibers (αpar). α-anisotropy is shown with a different colorbar. The parametric maps are extracted from the
axial slices in the thoracic segments T2 (top row) and T3 (bottom).

FIGURE 8 | DTI, T2-relaxometry and Q-space imaging. Parametric maps obtained from DTI (fractional anisotropy, FA; mean diffusivity, MD; longitudinal diffusivity,
Dpar; radial diffusivity, Dort), Q-space imaging (Zics, representing the width of the intra-cellular space, y0, the FWHM of the Lorentzian, and fecs, fraction of
extracellular space) and T2 and T2* maps, for three axial slices corresponding, respectively, to the thoracic sections T3 and T2, and to the lumbar section L3. FA and
fecs are unitless, while for other parameters the unit of measurement is indicated near the colorbar.
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FIGURE 9 | Plots of γ-imaging metrics as a function of R2*. Mean-γ (Mγ), γ-anisotropy (Aγ) and longitudinal γ (γpar ) plotted as a function of R2* in axial (A-C) and in
sagittal slices (D). The tissue was divided in different regions by applying thresholds on the mean-diffusivity map. The distinct regions are listed in the legend and
comprise: the medium surrounding the spinal cord (fluid), two ROIs in the white matter (wm1, wm2), one in the gray matter (gm1), and one at the interface (gm-wm).
The Pearson’s correlation coefficient is indicated in the box, together with the level of significance, P. The black line represents the linear fit.

TABLE 3 | Linear correlations between DTI, QSI, tAD diffusion metrics and histology.

Axon Diameter Diameter SD Axon Density Effective local density

MD − − −0.79 −

FA −0.68 − 0.56 0.78

Dort 0.80 − −0.77 −0.81

Dpar − − − −

Mγ 0.98**** 0.88* −0.83* −0.92**

Aγ −0.95*** −0.89* 0.80∧ 0.90*

γ ort 0.86* 0.84* −0.78 −0.94***

γ par 0.95*** 0.77 −0.75 −

Mα −0.82* −0.76 0.68 −

Aα −0.72 −0.64 0.83* −

αort − − − −

αpar −0.80∧ −0.90* 0.85* −

Zics 0.77 0.88* −0.89* −0.87*

Zecs −0.83* − − −

FWHM 0.72 0.85* −0.84* −0.84*

*P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001, ∧P = 0.055; ort = orthogonal; par = parallel; ics = intra-cellular space; ecs = extra-cellular space.

between diffusion metrics and histological parameters, providing
an interpretation of the observed phenomena. Finally, we
focused on the correlations observed with a new parameter,

ELD, which should better express the characteristics of brain
tissues described as a complex system, better than conventional
structural parameters.
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Histological Parameters
To quantify AxDiam, SDax.diam, AxDens, and ELD we
previously quantified the ECS, ICS and the myelin fraction.
All our morphological parameters were compared with those
derived by Ong et al. (2008) and Ong and Wehrli (2010)
extracted from the same type of mouse spinal cord, using
Transmission Electron Microscopy (TEM) images, with a
resolution of 0.1 µm × 0.1 µm in the histology, and a pixel
resolution of 0.27 µm × 0.27 µm in the segmented images.
Comparing ECS, ICS and myelin fractions through a z-test,
we concluded that the measured fractions of occupied area
are in agreement with literature, except for the fractions
of ICS and ECS in dCST. However, the morphological
parameters derived by Ong are referred to the cervical
section while we have investigated thoracic-lumbar tract.
Our morphological derived parameters AxDiam, SDax.diam,
AxDens showed significant positive correlations with those
derived by Ong et al. (2008) and Ong and Wehrli (2010) (see also
Supplementary Figure 5).

Regarding the estimation of the ELD parameter, we found
only one paper in literature, in which ELD is estimated in
a monkey brain. Our results show that ELD values are two
orders of magnitude smaller than those calculated in the paper
by Comin et al. (2014). In our opinion, the difference is
due to the different characteristics of the monkey brain tissue
compared to that of the mouse spinal cord and to the different
experimental conditions.

Dependence of the γ-Metric on the
Magnetic Field in-Homogeneities and on
Axonal Size
In this paper, we found again a strong linear correlation
between γ-metrics and magnetic susceptibilities quantified
by R2∗. This result confirms the observations reported in
previous papers obtained in packed polystyrene beads (Palombo
et al., 2011, 2012), and in in vivo human brains (Caporale
et al., 2017; Guerreri et al., 2019). In the presence of a static
magnetic field, B0, differences in magnetic susceptibility
(1χ) between adjacent diffusion compartments generate
a different amount of magnetization due to the relation:
M = χB0. Therefore, local magnetic inhomogeneity generated
by 1χB0 are found at the interface between different tissues.
In the mouse spinal cord, a local 1χ between ECS and
axon myelin is a source of image contrast in WM region
(Figure 6) that appears more heterogeneous compared to
MD map (Figure 8). Importantly, all values of γ-metrics
parameters are inversely correlated with magnetic susceptibilities
(Figure 9) and directly correlated with AxDiam (Table 3).
In particular, Mγ assumed higher values in parallel to higher
axon diameters and lower values when quantified in WM
characterized by smaller axon diameters (see Supplementary
Appendix 2). The fact that Mγ is positively related to the
axonal size may be linked to microtubules and neurofilaments
being progressively more dispersed inside the axolemma,
which reduces the 1χ experimented by spins during
water displacements.

Correlations Between tAD Diffusion
Metrics and Histological Parameters
Mα is inversely related to the axonal size (Table 3), probably
because the ROIs with the largest axons (VST, for example), are
those with the highest heterogeneity in the axon size distribution.
Indeed, in previous works performed on monodispersed and
polydisperse polystyrene microbeads in water (Palombo et al.,
2011, 2013), Mα showed a dependence on bead size distribution,
assuming higher values in more homogeneous bead size samples
and lower values in more heterogeneous bead sizes. To
corroborate this interpretation, we found that αpar is inversely
correlated with SDax.diam. This feature can highlight the ability
of α measured along the axon direction, to highlight packing
correlation length for neuronal fibers, as well as the degree
of structural disorder along the neurites already supposed in
time dependence diffusion, D(t), studies (Novikov et al., 2019).
Moreover, our result is in agreement with observations reported
in a recent study on mice corpus callosum (Gatto et al., 2019)
where a decrease in α values was associated with an increase of
longitudinal axons tortuosity. γ-metrics, Mγ is inversely related
to AxDens (Table 3). In fact, as axonal density increases, the local
susceptibility differences between myelin and ECS decrease, and
therefore the Mγ value increases, in accordance with the results
reported in Figure 9 and in the previous section.

The AxDens is derived from the ratio between the fraction
of area occupied by axolemmas, and the area of an axon with
average diameter computed over the ROI, and approximated
to a circle. Based on the results listed in Table 3, the
parameters which best reflect the axonal density are those
obtained with q-space imaging model (Zics and FWHM).
However, αpar showed a positive correlation with AxDens in
agreement with the aforementioned elucidations related to α-
metrics features. As axonal density increases, local heterogeneity
decreases and therefore the value of α increases, as suggested in
Palombo et al. (2013).

Effective Local Density
With the idea of quantifying histological parameters useful for
better describing tissues as complex systems, we have quantified
the ELD parameter. Differently from the standard axonal density,
which does not consider the various obstacles in the ECS not
recognized as axons, ELD accounts for the area not occupied
by axons. In a study involving rhesus monkeys, ELD was
able to discriminate between youth and elderly based on the
axonal density of white matter in the fornix (Comin et al.,
2014).Unexpectedly, we did not observe any correlation between
the α-metric parameters and ELD. Conversely, γ-metrics (in
particular Mγ and γort) and QSI metrics (FWHM and Zics)
showed strong negative correlations with ELD (Table 3). We
conjecture that local magnetic field in-homogeneities may be
responsible for these results.

Limits to Take Into Account
This study has some limitations. First, we assumed that the
anomalous diffusion reference frame coincided with the DTI
reference frame, and we considered a set of three orthogonal
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directions (one parallel to the magnetic field and the main
orientation of the myelinated fibers in the spinal cord, the other
two in the orthogonal plane) to characterize the mean value
and the anisotropy of the γ and α parameters. This first order
approximation was used in our previous works (De Santis et al.,
2011; Caporale et al., 2017; Guerreri et al., 2019), and the resulting
scalar invariant metrics provided complementary information
with respect to DTI-metrics. However, provided that the DW
acquisition is performed in a sufficient number of directions
(at least 12, 3 for the stretched exponent, 3 for the effective
anomalous diffusion coefficient, and 6 to define the anomalous
diffusion reference frame), it would be possible to overcome the
first order approximation and to derive the intrinsic anomalous
diffusion reference frame. Obviously, this would involve having a
greater number of parameters to estimate and therefore acquiring
much more experimental data.

A second limitation of this study is that we ignored the
orientation distribution of myelinated fibers. Studies on excised
and in vivo human spinal cord showed a certain orientation
dispersion of the neurites. In the paper by Grussu et al. (2016),
healthy human spinal cord specimens at the upper lumbar and
thoracic level are examined using optical imaging and directional
statistics to map the orientation dispersion of the neurites. The
orientation dispersion (OD) quantifies how parallel the neurites
are to each other. In another work, Grussu et al. (2015) used
multi-shell diffusion MRI with the NODDI model to estimate
the OD index (ODI) in a human cervical spinal cord in vivo.
Interestingly, OD reduction can be found in multiple sclerosis
lesions with loss of myelin, indicating a less complex neurite
architecture (Grussu et al., 2017). The orientation dispersion
of neurites can be modeled by a distribution function, taken
from directional statistical models, such as Watson, Von Mises,
or Gaussian, and their weighted versions (Grussu et al., 2016).
However, in our work we assumed that the orientations of
the WM fibers were non-dispersed, that is, the fibers were
parallel to each other. This can potentially bias the estimated
anomalous diffusion metrics, and even reduce the sensitivity of
the parameters towards the underlying microstructure. On the
other hand, we note that the same assumptions are implied in the
derivation of the conventional DTI metrics. Further studies on
the impact of the OD on the quantification of γ and α parameters
are warranted. In this regard, a comparison between the ODI
index and γ-metrics in the human brain was recently highlighted
(Guerreri et al., 2019), whereas a first investigation of γ-metrics
dependence on neurite orientation distribution can be found in
paper (Caporale et al., 2017).

Moreover, we did not take into account the presence of
crossing fibers. In Lundell et al. (2011) work, excised cervical
spinal cords of vervet monkeys are examined with high angular
resolution diffusion imaging (HARDI). Collateral fibers are found
in the dorsal and ventral horns, and in the lateral WM, mainly
towards the cervical enlargement. Another method to resolve
the complex microarchitecture of neurites in the rat spinal cord
(and brain) (Özarslan et al., 2006b) highlighted the presence
of crossing fibers, where the ventral roots penetrate the WM.
Therefore, in our study, we cannot exclude that crossing fibers
at the level of the ventral spinal roots have contributed to and

partially contaminated the signal in the voxels belonging to
certain WM tracts, such as the reticulo-spinal tract and the
spino-thalamic tract.

Other papers by Özarslan et al. (2006a, 2012) showed
results related to sub-diffusion maps in the rat hippocampus
obtained using different gradient directions to account for tissue
anisotropy. However, the concomitant use of different q values
(i.e., g strength change) together with the variation of the
diffusion time may have compromised the sub-diffusion contrast.

CONCLUSION

In conclusion, in this work, we quantified tAD parameters
representing pure subdiffusion (α-metrics) and pseudo-
superdiffusion (γ-metrics) in an excised mouse spinal cord
to elucidate how tissue features affect tAD quantitatively.
Toward this goal, accurate histology of the mouse spinal cord
was performed after DMRI scanning to directly compare
tAD parameters with geometrical and topologic parameters
extracted by optical microscopy. The results discussed here
confirm the strong dependence of the γ-metrics on magnetic in-
homogeneities already suggested in previous papers performed
on heterogeneous samples and on the human brain (Capuani
and Palombo, 2020). On the other hand, α-metrics results
corroborated by histological validation suggest the potential of
pure subdiffusion parameters to highlight new information,
complementary to conventional DMRI investigation to
characterize complex biological systems. This work suggests
that α-metrics may quantify the local heterogeneity degree
in neural tissue.

Although with the limitation of having used a simplified model
of parallel, and not dispersed axons in the spinal cord, this
work corroborates the previously introduced concept of pseudo-
superdiffusion and underlines the potential of subdiffusion
(α-metrics) to obtain local and complementary information
compared to conventional DMRI techniques.
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Supplementary Material 

 

 

1. Appendix 1: quantitative analysis of optical microscopies  

The customized script to extract features from the optical microscopies of the mouse spinal cord was 

compiled in MATLAB (MATLAB R2016a, Natick, Massachusetts: The MathWorks Inc.), referring to 

the method adopted by Comin et al. [1]. The script takes in input the selected optical microscopies of 

each region of interest (ROI) placed in the white matter (WM) of mouse spinal cord and reads the 

information in terms of pixels intensity. Then the following steps are executed: 

- image calibration, thus converting pixels into µm (the scale factor used is 1 pixel = 0.0333 µm) 

by measuring how many pixels are included in the unit bar in the image; 

- low-pass filtering, using a pixel-wise adaptive Wiener method, based on statistics estimated 

from a local neighborhood of each pixel [2]. The size of the neighborhoods is provided as a σ 

value, and set as 6 by default, which in the case of Comin’s paper [1] corresponds to σ = 0.025 

µm, while in our case corresponds to a σ = 0.2 µm;  

- segmentation of the image into three tissue classes, to compute the fractions of intra- and extra-

cellular space (ics and ecs, respectively) and myelin (myel). A fourth class is considered, 

including all the elements not clearly attributable to the other three, with the normalization rule 

f_ics + f_ecs + f_myel + f_other = 1.  

The script is set up to identify the objects given by the sum of ics-mask and other-mask, since these 

masks individuate the areas with the highest intensity, corresponding to the axolemma. Other structures 

non-attributable to axons are discarded in the following steps, through the application of geometric 

selection criteria. 

 

1.1 Selection rules 

The next step is the cropping of a homogeneous area of the ROI, in order to extract further histologic 

characteristics of white matter tracts, such as axon diameter, the standard deviation of the distribution 

of axon diameters, axonal density, and the effective local density.  

Some selection rules are also described in the Methods section of Comin’s paper [1]: 

- surface threshold: by taking the ics mask as an input, the function allows the user to select the 

minimum axon diameter (minimum area), in order to set a cut-off on the object area, excluding 

thus speckles and non-axons spots with less pixels than the lower threshold; 

- circularity threshold: the objects passing the first high-pass filter are detected through a Canny 

edge detector (with a threshold set to 0.99). Those objects with a ratio of perimeter to square 

root of area larger than 6.2 are discarded. This means that, approximating the axial section of 

axons to an ellipse, the cut-off on circularity translates into discarding objects with a ratio 
𝑃

√𝐴
=

2𝜋∙√
𝑎2+𝑏2

2

𝑎∙𝑏∙𝜋
> 6.2, which corresponds to all the elongated ellipses with b > 6a (where a and b are 

the semi-minor and semi-major axes of the ellipse, respectively);  
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- uniformity thresholds: pixels belonging to the same tissue compartment are likely to present 

homogeneous intensities. The objects with a ratio between the standard deviation and the mean 

intensity 
𝜎

𝜇
> 0.5 are discarded, as supposed to contain more than one tissue, or debris.  

Furthermore, a visual check is performed, and objects erroneously attributed to axons are manually 

selected, and deleted.  

 

1.2 Measurement of morphological parameters 

All those objects passing the selection rules and the visual check are considered by another function, 

which extracts the morphological quantities of interest. Two types of diameters are considered: 

- the Feret diameter, corresponding to the diameter of an isoperimetric circumference (with the 

same perimeter as the object); 

- the diameter of an equivalent circle (with the same area as the object’s one; see Ong et al.’s 

paper [3]).  

Axons are polydisperse, therefore there is a distribution of axon sizes: we assumed this distribution to 

be a gaussian one. The mean axons diameters and the related standard deviations (SDax.diam) are thus 

derived from a gaussian fit, for each considered white matter region.  

The axonal density is computed as the ratio between the number of objects (passing the selection rules) 

and the area of the cropped region in the white matter tract, measured in µm2.  

We also calculated an ‘effective local density’ (eld), considering the distribution of nearest neighbors’ 

distances from a given object, to the n-th nearest neighbor. The eld is evaluated by fitting the power 

law behavior 〈𝑟𝑛〉~√
𝑛

𝜌𝜋
 , which, for 𝑛 ≥ 8 provides values of effective local density with a relative 

error lower than 0.016, as described in Comin et al. [1]. The effective local density is an estimate of 

the local axonal density, ignoring the presence of large free-axons region (for example the blobs 

containing myelin and axons debris), or of neuron nuclei and blood vessels. The function calculates 

the effective local density from the intercept of the linear regression. A region with isolated, clustered, 

axon-free spots will provide an effective local density higher than the axon density, because the 

positions allowable for occupation are less, with a consequent increasing of the axon density; a region 

with many, homogeneously distributed axon-free spots, will provide a lower effective local density.  

 

1.3 Optical microscopy and ROIs selection 

The mouse spinal cord was cut at three different levels and analyzed with a Zeiss Axioskop light 

microscope. Optical images of the fixed mouse spinal cord were collected at the thoracic level 

(approximately at the level T3), thoracic-lumbar sections and at the lumbar enlargement, 

(approximately at the L7 level - Supplementary Figure 1). Specifically, several regions of interest 

(ROIs) were scanned at a higher magnification. Among the selected ROIs (Supplementary Figure 2), 

only one included ascending-sensory fibers (funiculus gracilis, fg), while the others were placed in 

descending-motor tracts: dorsal Cortico-Spinal Tract, Rubro-Spinal Tract, Reticulo-Spinal Tract, 

medial Vestibulo-Spinal Tract, Spino-Thalamic Tract (respectively, dCST, RST, ReST, VST, STT).  

By using histological reference images, the ROIs were manually drawn by three different operators 

referring to the mouse white matter ATLAS, and subsequently intersected.  

 



 
3 

 

Supplementary Figure 1. The optical microscopy was performed at three levels. From left to right, 

the thoracic section, the thoracic-lumbar section, and the lumbar enlargement are shown. Each image 

corresponds to a magnification of x20. The tiny scalebar at the top corresponds to 20 μm.  

 

 

 

 

Supplementary Figure 2. The ROIs selected in the spinal cord white matter. The dorsal tracts are the 

funiculus gracilis, fg (1) and the dorsal Cortico-Spinal Tract, dCST (2); the lateral tract considered is 

the right Rubro-Spinal Tract, rRST (3); the ventral tracts are the Vestibulo-Spinal Tract, VST (4), the 

Reticulo-Spinal Tract, ReST (5), and the Spino-Thalamic Tract, STT (6). The regions of interest (ROIs) 

are superimposed on a Mγ map. 
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2. Appendix 2: Linear regression between -metrics, α-metrics and histologic features 

 

 

Supplementary Figure 3. Correlation plots between α-imaging metrics and histologic features. 

Pearson’s correlation coefficient r and the significance level P are indicated in the plots. Fg = funiculus 

gracilis; dCST = dorsal Cortico-Spinal Tract; RST = rubro-spinal tract; VST = vestibulo-spinal tract; 

ReST = reticulo-spinal tract; STT = spino-thalamic tract; Ax. Diam. = axonal diameter; SDax.diam. = 

standard deviation of the distribution of axonal sizes; Ax. Dens. = derived axonal density.  
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Supplementary Figure 4. Correlation plots between -imaging metrics and histologic features. 

Pearson’s correlation coefficient r and the significance level P are indicated in the plots. Fg = funiculus 

gracilis; dCST = dorsal Cortico-Spinal Tract; RST = rubro-spinal tract; VST = vestibulo-spinal tract; 

ReST = reticulo-spinal tract; STT = spino-thalamic tract; Ax. Diam. = axonal diameter; SDax.diam. = 

standard deviation of the distribution of axonal sizes; Ax. Dens. = derived axonal density. 
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3. Appendix 3: Agreement between the histologic features and literature 

 
Supplementary Figure 5.  Structural parameters derived from the processing of light microscopy 

images plotted against structural parameters derived in Ong et al. using TEM images. The derived 

axonal density and the effective local density are plotted against the axonal density computed in Ong 

et al.[3] in a) and b); the axon diameter (ax diam) and the standard deviation of the distribution of 

diameters (ax SD) are plotted against the analogous structural parameters in c) and d). rP=Pearson’s 

correlation coefficient; PP=significance level; rS=Spearman’s correlation coefficient; PS=significance 

level.  
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