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Computations of risk measures in the context of the dividend valuation model is a crucial aspect 
to deal with when investors decide to buy a share of common stock. This is achieved by using 
a Markov chain model of growth-dividend evolution, imposing an assumption that controls the 
growth of the dividend process and in turn allows for the computation of the moments of the price 
process and the fulfillment of a set of transversality conditions which allows avoiding the presence 
of speculative bubbles in the market. The probability distribution of the fundamental value of the 
stock is recovered by solving a moment problem, based on the solution of a maximum-entropy 
approach from which it is possible to compute classical risk measures based on these fundamental 
variables. The methodology is applied to real dividend data from the S&P 500 index. Results 
show that our model provides complete information about the fundamental price not limited to 
its expectation.

1. Introduction

Even though the Market Efficiency Hypothesis (EMH) states that the fundamental analysis should ‘not work’ in predicting future 
values [1], the past literature has discovered a lot of anomalies that led to successful trading strategies linked to earning or returns 
momentum, earning surprises, stock issuance, and others which allowed investors to make profits due to the differences between the 
market price and the true value of the stock [2,3].

The first evidence of a misalignment between market prices and fundamental values can be dated back to Williams [4], who was 
the first to acknowledge the existence of these differences. Since then, the literature has attempted to address two main questions. 
The first one is related to the estimation of the fundamental or fair value of a stock. To this extent, many scholars addressed their 
interest in the intrinsic long-term value by proposing different valuation approaches, starting from the classical Gordon growth model 
[5] and its extensions, which are all based on a deterministic behavior of the dividend growth [see, e.g., 6–9]. However, because the 
expected dividend growth, which is positively correlated with expected returns, cannot be considered constant [10], other authors 
introduced a stochastic process to model this growth. In particular, Hurley and Johnson [11,12] modeled the growth as a Markov 
dividend stream, and Yao [13] extended their works using a trinomial dividend valuation. On this path, Ghezzi and Piccardi [14]

generalize the previous approaches by modeling the dividend growth with an n-state Markov chain, while D’Amico [15] moves a step 
forward with the introduction of a semi-Markov process. For a comprehensive review of the dividend discount models, we refer the 
reader to [16]. All Markov chain based models are flexible and can be designed to reproduce some stylized facts of the stocks, e.g., 
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momentum, mean reversion, and cyclic behaviors [see, e.g., 17]. Moreover, a more recent work introduces a stochastic multi-period 
model adopting a compound non-homogenous Poisson process for the dividend growth [18].

The second question attains to the possibility of using the signals from the fundamental analysis to build investment portfolio 
selection strategies. Indeed, this last question is more interesting to practitioners; however, it has recently received little attention 
from academia. For example, Zhang and Yan [3] connect the theory of the fundamental analysis with the portfolio selection strategies. 
The authors derive a closed-form information ratio of the investors who can gain information about the fundamentals of a security, 
allowing them to solve a portfolio choice problem in a continuous-time framework. To this extent, the authors point out that the 
fundamental analysis theory should not be limited to the assessment of fair prices (or returns) and whether there are misalignments 
with the market prices, but it can also help in the valuation of the fundamental risk as compared to its market counterpart. On a 
similar perspective, Barbu et al. [19], extending the work of [14], concentrate their attention on the second moment of the price 
process including the computation of the risk advanced by [20]. Moreover, D’Amico and De Blasis [21] propose a similar approach to 
a multivariate setting departing from the explicit formula for the covariance between random stock price by [22]. Finally, D’Amico 
[23] performs the same computation but employs a semi-Markov model with general phase space.

This paper extends previous work on the Markov chain dividend model from a mathematical point of view, departing from the 
results concerning the first two moments and moving to general results on the moments of any order. This extension requires the 
advancement of a general condition that allows us to control the expansion of the moments of the dividend growth process. This 
condition is sufficient for the fulfillment of the set of transversality conditions, thus ruling out bubbles from the financial markets. 
The moments of the price process are finally expressed in terms of a recurrent type system of linear equations. From a methodological 
point of view, we recover the density function of the price process and the consequential computation of some risk indicators solving 
a maximum entropy problem. Finally, from a financial point of view, our results allow the investors to compare the market risk 
perception and the true risk motivated by the fundamental variable; the latter may be used for accurate investment decisions. To our 
knowledge, our paper is the first one contributing to the literature with the analysis of higher moments, thus it might help fill this 
gap, which is also highlighted by [3].

The paper unfolds as follows. Section 2 describes how the Markov chain is implemented in the stock valuation, Section 3 intro-

duces the computation of the moments of the price process, while Section 4 explains how these moments are employed to retrieve 
the probability density function and thus computing some risk measures. Section 5 shows the results of the empirical application of 
the proposed model. Finally, Section 6 closes the manuscript.

2. The Markov chain dividend valuation model

Consider a stock that pays dividends on schedule. Since the dividend value is unknown in advance, it is usually assumed that it 
is generated by the discrete-time stochastic process 𝐷 = {𝐷(𝑡)}𝑡∈ℕ. The latter is defined on a complete probability space (Ω,  , ℙ)
equipped with a filtration { (𝑡)}𝑡≥0 expressing the natural filtration produced by the process 𝐷 and a physical (or real–world) 
probability measure ℙ.

The random variable 𝑃 (𝑡) that describes the fundamental value of a stock at time 𝑡, is related to the dividend process by means 
of the fundamental financial relation:

𝑃 (𝑡) = 𝐷(𝑡+ 1) + 𝑃 (𝑡+ 1)
𝑟

, (1)

being 𝑟 a certain constant discounting factor, i.e., one plus the required rate of return for the stock. The price at time 𝑡 is expressed 
according to 𝑝(𝑡) ∶= 𝔼𝑡[𝑃 (𝑡)] which translates to

𝑝(𝑡) =
𝔼𝑡[𝐷(𝑡+ 1) + 𝑃 (𝑡+ 1)]

𝑟
, (2)

with 𝔼𝑡 being the conditional expectation operator based on the information known at time 𝑡.
It should be highlighted that the value 𝑃 (𝑡) cannot be quantified in terms of the information set 𝑡 that the economy had access to 

up until time 𝑡. To demonstrate this point, we observe that 𝑃 (𝑡) depends on the upcoming dividend 𝐷(𝑡 +1) as well as the upcoming 
value 𝑃 (𝑡 + 1), where the latter is dependent on upcoming payouts and values as it can be seen through an iteration of equation (2).

To avoid the presence of bubbles in the market [see, 24], Samuelson [25] assumes the validity of the transversality condition

lim
𝑖→∞

𝔼𝑡[𝑃 (𝑡+ 𝑖)]
𝑟𝑖

= 0. (3)

Thus, the solution of the price function in (1) can be expressed as

𝑝(𝑡) =
∞∑
𝑖=1

𝔼𝑡[𝐷(𝑡+ 𝑖)]
𝑟𝑖

. (4)

Relation (4) relates the fundamental value of a stock to the discounted present value of the future dividend it generates.

In the traditional stock valuation models, several assumptions about the dividend process have been made. For example, Gordon 
[5] assumes a constant growth rate while other authors introduce 2-stage and 3-stage models [see, e.g., 6–9].

Contrary to the traditional literature, the Markov chain stock model considers the dividend growth rate as a sequence of discrete 
random variables {𝐺(𝑡)}𝑡∈ℕ described by a Markov process with a finite state-space 𝐸 [see, e.g., 11–14,19]. The set 𝐸 contains the 
2

possible values assumed by the growth-dividend process at any time.
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Specifically, assuming that the dividend series obeys the difference equation

𝐷(𝑡+ 1) =𝐺(𝑡+ 1)𝐷(𝑡), (5)

the price can be described as follows [14]

𝑝(𝑡) = 𝑑(𝑡)
∞∑
𝑖=1

𝔼(𝑡)

[∏𝑖

𝑗=1𝐺(𝑡+ 𝑗)
]

𝑟𝑖
=∶ 𝑑(𝑡)𝜓(𝑔(𝑡)), (6)

where 𝑑(𝑡) and 𝑔(𝑡) are the values assumed by the dividend and the dividend growth process at time 𝑡, and 𝜓(𝑔(𝑡)) is the price-

dividend ratio. It is important to note that in all analyzed models the discounting factor 𝑟 is considered constant.

Ghezzi and Piccardi [14] and Barbu et al. [19] started from equation (5) to develop the Markov stock valuation model. Departing 
from the same formulation, we extend the previous work by computing the nth moment of the price process, which requires a more 
complex demonstration approach.

3. The computation of the moments of the price process

The objective of this section is to demonstrate how to calculate the higher-order moments of the price process. We advance a 
sufficient condition for the finiteness of the moments and the fulfillment of the transversality conditions. The price-dividend ratio of 
any order is successively determined using a recurrent set of linear equations, which provides the moments of the price process.

Let us consider again the fundamental relationship between prices and dividends in an efficient market:

𝑃 (𝑡) = 𝐷(𝑡+ 1) + 𝑃 (𝑡+ 1)
𝑟

. (7)

Raising to the nth power both on the right and left sides, and substituting into 𝑃 (𝑡 +1) the corresponding representation given by 
relation (7), gives:

𝑃 (𝑛)(𝑡) ∶= (𝑃 (𝑡))𝑛 =
(
𝐷(𝑡+ 1) + 𝑃 (𝑡+ 1)

𝑟

)𝑛

=
(
𝐷(𝑡+ 1)

𝑟
+ 1
𝑟
⋅
𝐷(𝑡+ 2) + 𝑃 (𝑡+ 2)

𝑟

)𝑛

A simple iterative argument gives:

𝑃 (𝑛)(𝑡) =

(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

+ 𝑃 (𝑡+𝑁)
𝑟𝑁

)𝑛

,

which can be further expanded using Newton’s binomial formula:

𝑃 (𝑛)(𝑡) =
𝑛∑
𝑘=0

(
𝑛

𝑘

)(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑘

⋅
(
𝑃 (𝑡+𝑁)
𝑟𝑁

)𝑛−𝑘

=

(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑛

+
𝑛−1∑
𝑘=0

(
𝑛

𝑘

)(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑘

⋅
(
𝑃 (𝑡+𝑁)
𝑟𝑁

)𝑛−𝑘
.

The previous relationship is particularly informative from a financial point of view. It affirms that the nth order moment of the 
price process does depend on the nth power of the sum of the discounted dividends plus an additional term that involves lower order 
powers of the price process itself at time 𝑡 +𝑁 . This last part tells us that the risk, measured by the nth power of the price process, 
depends on its own temporal paths, which are represented by the power of any order up to the nth. This implies that the risk may 
increase purely as a result of an anticipated rise in the future risk represented by the values (𝑃 (𝑘 +𝑁), 𝑃 (2)(𝑘 +𝑁), … , 𝑃 (𝑛)(𝑘 +𝑁)), 
with no connection to the inherent risk of the dividend process that is detailed in the addend 

(∑𝑁

𝑖=1
𝐷(𝑡+𝑖)
𝑟𝑖

)𝑛
.

Previous relations are expressed in terms of random variables. Our next step is to move to the corresponding expected values. 
Accordingly, we obtain

𝑝(𝑛)(𝑡) ∶= 𝔼(𝑡)
[
𝑃 (𝑛)(𝑡)

]
= 𝔼(𝑡)

[(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑛]
+
𝑛−1∑
𝑘=0

(
𝑛

𝑘

)
𝔼(𝑡)

⎡⎢⎢⎣
(

𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑘

⋅
(
𝑃 (𝑡+𝑁)
𝑟𝑁

)𝑛−𝑘⎤⎥⎥⎦ .
(8)

Now, if ∀𝑘 = 0, 1, … , 𝑛 − 1 it results that

lim 𝔼(𝑡)

⎡⎢( 𝑁∑ 𝐷(𝑡+ 𝑖)
)𝑘

⋅
(
𝑃 (𝑡+𝑁)

)𝑛−𝑘⎤⎥ = 0, (9)
3

𝑁→∞ ⎢⎣ 𝑖=1 𝑟𝑖 𝑟𝑁 ⎥⎦
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then we obtain that

𝑝(𝑛)(𝑡) = lim
𝑁→∞

𝔼(𝑡)

[(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑛]
= 𝔼(𝑡)

[( ∞∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑛]
, (10)

where the final equality results from the monotone convergence theorem being applied to the series of random variables 𝑋𝑁 ∶=(∑𝑁

𝑖=1
𝐷(𝑡+1)
𝑟𝑖

)
which are non-negative and increasingly converging to 

∑∞
𝑖=1

𝐷(𝑡+1)
𝑟𝑖

.

Now, if we consider the multiplicative nature of our dividend model (see equation (5)) we have the final representation

𝑝(𝑛)(𝑡) = 𝔼(𝑡)

⎡⎢⎢⎣
( ∞∑
𝑖=1

∏𝑖

𝑗=1𝐺(𝑡+ 𝑗)𝑑𝑡
𝑟𝑖

)𝑛⎤⎥⎥⎦ . (11)

The relations (10) and (11) express the moments of the price process as dependent on the expectation of the dividend process, 
making it the desired arrival point in an efficient financial market. As a result, we have a representation of the price and risk measures 
that simply takes into account the dividends. Hence, the dividend dynamic is the fundamental variable that explains the behavior of 
the price process.

We observe that in Equation (11), 𝑑𝑡 is known, as well as 𝐺(𝑡) = 𝑔(𝑡), therefore

𝑝(𝑛)(𝑡)
𝑑𝑛
𝑡

= 𝜓𝑛(𝑔(𝑡)) = 𝔼(𝑡)

⎡⎢⎢⎣
( ∞∑
𝑖=1

∏𝑖

𝑗=1𝐺(𝑡+ 𝑗)

𝑟𝑖

)𝑛⎤⎥⎥⎦ . (12)

The quantity 𝜓𝑛(𝑔(𝑡)) is the price-dividend ratio of order 𝑛 which will be a key variable in the computation of the price moments. 
In particular, the price-dividend ratio is dependent on the dividend growth level at time 𝑡, which represents a known initial condition. 
As the dividend growth varies, it provides different price-dividend levels, thus different price moments.

Our objective is to advance sufficient conditions on the parameters of the model such that the moments of the price process are 
finite and the transversality conditions (9) are fulfilled. To this end, given the Markov chain model with state space 𝐸 = {𝑔1, 𝑔2, ..., 𝑔𝑠}
and transition probabilities matrix 𝑷 =

(
𝑝𝑖𝑗

)
, 𝑖, 𝑗 ∈𝐸, we assume that

Assumption 𝐀𝐧. �̄�(𝑘) ∶= max𝑖∈𝐸
{∑

𝑗∈𝐸 𝑝𝑖𝑗𝑔
𝑘
𝑗

}
< 𝑟𝑘, ∀𝑘 = 1, 2, ..., 𝑛.

It is worth noting that this assumption is the natural extension of those considered in [14] and [19] that were set to compute the 
fundamental price (expectation of the price process) and a preliminary measure of risk such as the second order moment of the price 
process within a Markov chain dividend valuation model.

Theorem 3.1. Let 𝐷(𝑡) = 𝑑𝑡 > 0 and 𝐺(𝑡) = 𝑔𝑖 ∈𝐸. Under the hypothesis

𝐀𝐧 ∶ �̄�(𝑘) ∶= max
𝑖

{∑
𝑗∈𝐸

𝑝𝑖𝑗𝑔
𝑘
𝑗

}
< 𝑟𝑘, ∀𝑘 = 1,2, ..., 𝑛,

we have that the series

𝑝(𝑛)(𝑡) = 𝔼(𝑡)

⎡⎢⎢⎣
( ∞∑
𝑖=1

∏𝑖

𝑗=1𝐺(𝑡+ 𝑗)𝑑𝑡
𝑟𝑖

)𝑛⎤⎥⎥⎦ <∞,

and the following asymptotic condition is satisfied ∀𝑘 = 0, … , 𝑛 − 1

lim
𝑁→∞

𝔼(𝑡)

⎡⎢⎢⎣
(

𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑘 (
𝑃 (𝑡+𝑁)
𝑟𝑁

)𝑛−𝑘⎤⎥⎥⎦ = 0. (13)

Proof. See Appendix A.1. □

Remark 1. Theorem 3.1 presents a sufficient condition that satisfies the transversality conditions (13). Consequently, the presence 
of speculative bubbles in the model is avoided and therefore the representation of moments of the price process as convergent series 
that depend only on the dividend process is permitted. Furthermore, assumption 𝐀𝐧 controls each moment of the dividend growth 
process in order to be able to provide a corresponding result on the moments of the price process.

Remark 2. Theorem 3.1 provides a broad generalization of the results given in [14] and [19] where only the first- and second-order 
moments were considered, respectively. Additionally, it should be noted that the proof uses a different approach because the Cauchy-
4

Schwarz inequality does not apply in our context, making it impossible to directly extend the techniques employed in [19]. Indeed, 
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when considering the moments of order 𝑘 > 𝑛∕2 the inequality requires information on the moment of order 2𝑘 which is greater than 
the maximum order 𝑛 considered.

According to the results obtained in Theorem 3.1, we can evaluate the moments of the price process directly by computing the 
corresponding series involving the expectation of the dividend process. However, below we show an alternative method of calculation 
that can be conveniently represented by introducing a set of auxiliary functions called price-dividend ratios of higher orders. This 
method was previously used for Markov and semi-Markov chain models for the computation of the price [14,15,23] for the risk 
measured with the second-order moment [19,23] and in a multivariate setting [21].

Before showing the representation of the price-dividend ratio of order 𝑛, we introduce some matrix notation. Let 𝐈 be the identity 
matrix of dimension 𝑠 × 𝑠. For any 𝑟 ≠ 0, we define 𝐈𝑟 ∶= 𝑟𝐈 and more in general 𝐈𝑛

𝑟
= 𝐈𝑟𝑛 .

Moreover, for any column vector 𝐠 = (𝑔1, … , 𝑔𝑠)⊤, 𝐠𝑛 = (𝑔𝑛1 , … , 𝑔𝑛
𝑠
)⊤ with ( )⊤ as the transpose of a vector, we define by

𝐈𝐠 = (𝐼𝑔(𝑖, 𝑗))𝑖,𝑗∈𝐸, 𝐼𝐠(𝑖, 𝑗) =

{
𝑔𝑖, if 𝑖 = 𝑗,
0, if 𝑖 ≠ 𝑗, (14)

and more in general it results that 𝐈𝑛𝐠 = 𝐈𝐠𝑛 and 𝐈−1𝐠 = 𝐈𝐠−1 .

According to Equation (12), we define the vector 𝚿𝑛 of price-dividend ratios of order 𝑛.

Definition 3.1. The generic element of the column vector 𝚿𝑛 = (𝜓𝑛(𝑔1), … , 𝜓𝑛(𝑔𝑠))⊤, given 𝐺(𝑡) = 𝑔𝑘 and 𝐷(𝑡) = 𝑑𝑡, is

𝜓𝑛(𝑔𝑘) = 𝔼(𝑡)

[( ∞∑
𝑖=1

∏𝑖

ℎ=1𝐺(𝑡+ ℎ)
𝑟𝑖

)𝑛]
.

Observe that 𝚿0 = (1, … , 1)⊤.

Proposition 3.2. Suppose that hypothesis 𝐀𝐧 holds. Then, the vector 𝚿𝑛 is the unique and non-negative solutions of the linear system of 
equations(

𝑰𝑛
𝑟
− 𝑷 ⋅ 𝑰𝑛

𝑔

)
⋅𝚿𝑛 = 𝑷 ⋅

(
𝑛−1∑
𝑚=1

(
𝑛

𝑚

)
𝒈𝑛◦𝚿𝑛−𝑚 + 𝒈𝑛

)
, (15)

where ⋅ denotes the usual row-by-column matrix product and ◦ is the Hadamard element-by-element product.

Proof. See Appendix A.2. □

Finally, we observe that the price-dividend ratio for each fixed order 𝑛 satisfies the system (15), which is of recurrent nature in 
the sense that when solving it for the nth order we need to know the solutions of the corresponding systems at lower order moments. 
For example, the price-dividend ratio of order three can be obtained according to

𝚿3 =
(
𝑰3
𝑟
− 𝑷 ⋅ 𝑰3

𝑔

)−1
⋅ 𝑷 ⋅

(
3𝒈3◦𝚿2 + 3𝒈3◦𝚿1 + 𝒈3

)
,

where inverse matrix of 
(
𝑰3
𝑟
− 𝑷 ⋅ 𝑰3

𝑔

)
exists according to Proposition 3.2. This can be done conditionally to the knowledge of the 

price-dividend ratios of first and second order that can be obtained from the same proposition setting 𝑛 = 1 and 𝑛 = 2 obtaining:

𝚿1 =
(
𝑰 𝑟 − 𝑷 ⋅ 𝑰𝑔

)−1
⋅ 𝑷 ⋅ 𝒈,

𝚿2 =
(
𝑰2
𝑟
− 𝑷 ⋅ 𝑰2

𝑔

)−1
⋅ 𝑷 ⋅

(
2𝒈2◦𝚿1 + 𝒈2

)
.

4. Risk measures based on the moment problem

The knowledge of the moments 𝑝(𝑘)(𝑔𝑖, 𝑑𝑡), 𝑘 = 1, … , 𝑛, conditionally on the observed dividends 𝐷(𝑡) = 𝑑𝑡 and their growth values 
𝐺(𝑡) = 𝑔𝑖, enables us to look for the associated probability density function (PDF) 𝑓 (⋅; 𝑔𝑖, 𝑑𝑡) of the price process at time 𝑡. For the 
rest of this section, we will suppress the use of the dividend and growth values at time 𝑡 to facilitate notation and denote the PDF of 
the price according to 𝑓 (⋅).

To this extent, we can consider the classical moment problem in which the density is derived from the knowledge of its moments 
𝑝(𝑛)(𝑡),

∫
Ω

𝑥𝑛𝑓 (𝑥)𝑑𝑥 = 𝑝(𝑛)(𝑡), 𝑛 = 0,1,2, ..., (16)
5

where Ω is the support of the distribution.
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The PDF 𝑓 (𝑥) allows us to calculate any risk measures related to the price process. The most common risk measures employed 
by the financial literature are the value-at-risk (VaR) and the expected shortfall (ES), also known as conditional value-at-risk (cVaR) 
[see, e.g. 26,27].

In our context, the VaR at level 𝛼 represents the smallest price that will not be exceeded with probability 1 − 𝛼. Therefore, given 
the PDF 𝑓 (𝑥) with its cumulative distribution function (CDF) 𝐹 (𝑥), we can write

𝑉 𝑎𝑅𝛼(𝑃 ) = 𝑠𝑢𝑝{𝑥 ∈ℝ ∶ 𝐹 (𝑥) ≤ 1 − 𝛼} = 𝐹−1(1 − 𝛼), (17)

where 𝐹−1 is the inverse of the CDF.

The VaR measure presents some limitations because it does not take into account the shape of the tail of the price distribution 
because it only considers the worst price at a certain confidence level. On the contrary, the ES measures the expected price given 
that the VaR has been reached [see, 28]. It can be computed as the average VaR as

𝐸𝑆𝛼(𝑃 ) =
1
𝛼

𝛼

∫
0

𝑉 𝑎𝑅𝛾 (𝑃 )𝑑𝛾. (18)

Therefore, to compute the previous risk measures, we have to solve the general inverse problem in (16) which poses some 
difficulties in finding a unique density, 𝑓 (𝑥), as in practical application we only know 𝑁 + 1 moments, which lead to infinite 
functions with the same first 𝑁 + 1 moments.

To overcome this problem, the common approach in the literature is to find an approximation procedure to construct specific 
sequences of functions 𝑓𝑁 (𝑥), which will converge to the true distribution 𝑓 (𝑥) as 𝑁 → ∞. Following this scheme, Mead and 
Papanicolau [29] employed the maximum-entropy approach to identify a definite procedure for the construction of a sequence of 
approximations. They consider the positive density 𝑓 (𝑥) as a probability density and then maximize its entropy under the condition 
that the first 𝑁 + 1 moments be equal to the true moments 𝑝(𝑛)(𝑡), 𝑛 = 0, 1, ..., 𝑁 .

The procedure consists in maximizing the information entropy of the distribution 𝑓 (𝑥), defined as

𝑆 = −∫
Ω

𝑓 (𝑥) ln𝑓 (𝑥)𝑑𝑥, (19)

subject to the known 𝑁 + 1 moments,

∫
Ω

𝑥𝑛𝑓 (𝑥)𝑑𝑥 = 𝑝(𝑛)(𝑡), 𝑛 = 0,1,2, ...,𝑁, (20)

with 𝑝(0)(𝑡) = 1.

Introducing the Lagrange multipliers, we can maximize the following entropy functional

𝐻 = 𝑆 +
𝑁∑
𝑛=0

𝜆𝑛

⎛⎜⎜⎝∫Ω 𝑥𝑛𝑓 (𝑥)𝑑𝑥− 𝑝(𝑛)(𝑡)
⎞⎟⎟⎠ , (21)

by taking its derivatives with respect to 𝜆𝑛 and 𝑓 (𝑥) and setting them to zero. 𝜕𝐻

𝜕𝑓 (𝑥) = 0 gives us the constraints defined in (20), 

however, the partial derivative 𝜕𝐻
𝜕𝜆𝑛

= 0 allows us to obtain the density as a function of the Lagrange multipliers, as

𝑓 = 𝑓𝑁 (𝑥) = 𝑒−1+
∑𝑁
𝑛=1 𝜆𝑛𝑥

𝑛
= 𝑒

∑𝑁
𝑛=0 𝜆𝑛𝑥

𝑛
, (22)

where we can set the value of 𝜆0 as (𝜆0 − 1).
The maximum entropy is obtained by solving the following non-linear system of equations

∫
Ω

𝑥𝑛𝑒
∑𝑁
𝑛=0 𝜆𝑛𝑥

𝑛
𝑑𝑥 = 𝑝(𝑛)(𝑡), 𝑛 = 0,1,2, ...,𝑁, (23)

which can be solved numerically using a globally convergent Newton solver, as proposed by Saad and Ruai [30]. The authors 
implement the procedure in their software PyMaxEnt developed in Python language. Moreover, they suggest setting the initial 
guesses as follows

𝜆𝑖 =

{
−ln

√
2𝜋 𝑖 = 0

0 otherwise,

based on empirical observations and a Gaussian distribution with zero mean and unit variance.
6

Finally, the obtained PDF allows us to compute the risk measures defined in (17) and (18).
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Table 1

Summary statistics of the S&P 500 index price and dividend 
series.

Price Dividend 𝑃𝑡∕𝑃𝑡−1 𝐷𝑡∕𝐷𝑡−1

Obs 1824 1824 1823 1823

mean 357.941 7.282 1.005 1.003

std 763.238 13.216 0.041 0.011

min 2.730 0.180 0.735 0.911

25% 7.920 0.423 0.985 1.000

50% 17.770 0.912 1.007 1.004

75% 168.675 7.541 1.028 1.008

max 4674.773 66.920 1.503 1.060

Fig. 1. S&P 500 index price and dividend series.

Table 2

5-states dividend discretization and median value for each state.

State 1 State 2 State 3 State 4 State 5

Intervals [0.911, 0.996) [0.996, 1.001) [1.001, 1.007) [1.007, 1.012) [1.012, 1.06]

Median 0.991 1.000 1.004 1.009 1.018

5. Application

We apply the proposed model to the series of dividends from the S&P 500 index from Shiller [31]. The data, ranging from January 
1871 to December 2022, are regularly updated and available at http://www .econ .yale .edu /~shiller /data .htm. The dividends are 
generally paid quarterly, however, for the estimation of the Markov chain transition probabilities, we use the monthly dividends 
from the dataset which are computed as a linear interpolation from quarter data since 1926, while the dividends before 1926 are 
interpolated from annual data. The index prices are monthly averages of daily closing prices. The summary statistics of the monthly 
dividends and prices up to December 2022, along with their growth series, are reported in Table 1 while their trends are shown in 
Fig. 1. To allow for a direct comparison, the figure shows two different scales for prices and dividends, with values reported on the 
left and right axes, respectively, and both expressed in US dollars. In particular, we notice that both trends are comparable to each 
other showing a direct relationship between the two quantities.

According to the model described in Section 2, we assume that the dividend growth series follows a Markov chain. Thus, to 
estimate the transition probabilities, we have to discretize the growth series. To this extent, we follow the procedure in [19] which 
consider a central state containing all continuous values falling within half standard deviation radius from the zero growth. Then, 
the adjacent states are defined at steps of one standard deviation up to the extremes of the distribution. As in [19], we follow this 
approach because the highest frequencies of the distribution are concentrated in the middle of the distribution; therefore, it is natural 
to include them within the central state of the discretized series. On the contrary, we leave the tails of the distribution to the external 
states. A visual representation of the discretization, along with the histogram of the dividend growth process, is shown in Fig. 2

in which the continuous distribution is divided into 5 states (right chart). Furthermore, Table 2 reports the intervals of the 5-state 
dividend growth discretization along with the median value for each state. The latter can be used as the representative value for 
7

each state.

http://www.econ.yale.edu/~shiller/data.htm
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Fig. 2. Dividend growth histogram (left) and 5-state discretization (right).

Once we obtain the discretized growth values, we can estimate the transition probabilities from the monthly data using the non-

parametric estimator 𝑝𝑖𝑗 =𝑁(𝑖, 𝑗)∕𝑁(𝑖) where 𝑁(𝑖, 𝑗) is the number of transitions from state 𝑔𝑖 to state 𝑔𝑗 and 𝑁(𝑖) is the total visits 
to state 𝑔𝑖:

𝑷 =

⎛⎜⎜⎜⎜⎜⎝

0.917 0.042 0.025 0.013 0.003
0.037 0.842 0.090 0.025 0.006
0.012 0.048 0.862 0.061 0.017
0.009 0.019 0.080 0.857 0.035
0.017 0.006 0.046 0.091 0.840

⎞⎟⎟⎟⎟⎟⎠
. (24)

We note that the matrix in (24) is diagonally dominant, that is

∀𝑖 ∈𝐸, 𝑝𝑖𝑖 ≥ 1 − 𝑝𝑖𝑖,

highlighting that the dividend growth process shows low mobility, which means that the probability of being in the same state is 
never lower than 84%. Moreover, the probability distributions appearing on the different rows of the matrix 𝑷 are stochastically 
ordered in the sense that

𝐩𝑖⋅ ≤𝑠𝑡 𝐩𝑗⋅, ∀𝑖 < 𝑗.
The symbol ≤𝑠𝑡 denotes the usual stochastic ordering relation between two probability distributions. This means that ∀𝑖 < 𝑗 and 

∀𝑘 ∈ {1, … , 5} it results that

𝑘∑
ℎ=1

𝑝𝑖ℎ ≥
𝑘∑
ℎ=1

𝑝𝑗ℎ.

There is only a slight violation of this empirical evidence that appears for 𝑖 = 4, 𝑗 = 5 and 𝑘 = 1 having that 𝑝41 = 0.009 < 𝑝51 =
0.017. Hence, from a practical point of view, we can say that being in a lower state of the dividend growth process implies lower 
chances of arrival in higher states of the process as compared to starting from a higher state.

The next step is solving the system of equations in (15) to find the unique solutions, i.e., the price-dividend ratios 𝜓𝑛(𝑔𝑖). Now, 
because the dividends are paid quarterly, to obtain more realistic values we modify the required parameters to a quarterly scale. We 
compute the third power of the transition probability matrix to have quarterly transitions, then we estimate the required discounting 
factor from the quarterly observed price returns as the average of the median returns of each state. Then, using the transition 
probability matrix, the state values reported in Table 2, and the obtained value for the discounting factor 𝑟 = 1.019, we controlled 
for assumption 𝐀𝐧 and computed the price-dividend values up to the 10th moment for each state of the Markov chain. Results are 
reported in Table 3 and scaled for readability. According to Definition 3.1 and for each moment’s order, the table presents a price-

dividend ratio for each state of the dividend growth process. Specifically, 𝜓1 = 62.731 gives us the price-dividend ratio of the first 
order when the dividend growth process 𝐺(𝑡) = 𝑔1. We highlight that the price-dividend ratios increase monotonically at each order 
with respect to the states 𝑔𝑖, similar to what is reported in [19]. Moreover, we note that this behavior directly translates from the 
transition probabilities, which are monotonic among the states of the Markov chain.

The price dividend ratios allow computing the price moments 𝑝(𝑛)(𝑔𝑖, 𝑑𝑡), which depend on the state of the dividend growth and 
the dividend at time 𝑡. As an example, Table 4 reports the first ten price moments for each state as of December 2022, when the 
dividend value was $66.92. The values of the first moment are reported in thousands of US dollars, while higher moments are scaled 
by the nth power of thousands of US dollars, e.g., the second moment is expressed in millions of US dollars, and so on. This scaling is 
necessary to keep the values within a reasonable range for the numerical computation of the maximum entropy. To read the table, we 
8

need to compute the state of the dividend growth process as of December 2022. Specifically, the value of the dividend in November 
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Table 3

Price-dividend ratios of the S&P 500 index.

𝜓1 𝜓2 ⋅ 102 𝜓3 ⋅ 104 𝜓4 ⋅ 106 𝜓5 ⋅ 108 𝜓6 ⋅ 109 𝜓7 ⋅ 1011 𝜓8 ⋅ 1013 𝜓9 ⋅ 1015 𝜓10 ⋅ 1017

State 1 62.731 39.809 25.554 16.592 10.895 72.355 48.591 32.996 22.654 15.726

State 2 64.670 42.276 27.933 18.653 12.588 85.834 59.138 41.165 28.949 20.566

State 3 65.583 43.467 29.112 19.701 13.470 93.044 64.924 45.761 32.579 23.427

State 4 66.244 44.348 30.002 20.509 14.164 98.826 69.655 49.591 35.661 25.901

State 5 67.035 45.437 31.137 21.570 15.104 106.899 76.459 55.263 40.361 29.784

The quarterly discounting factor 𝑟 = 1.019 is computed from the observed price returns.

Table 4

Prices moments of the S&P 500 index as of December 2022.

𝑝(1) 𝑝(2) 𝑝(3) 𝑝(4) 𝑝(5) 𝑝(6) 𝑝(7) 𝑝(8) 𝑝(9) 𝑝(10)

State 1 4.198 17.827 76.582 332.748 1462.243 6498.404 29204.166 132710.063 609756.274 2832549.326

State 2 4.328 18.932 83.712 374.088 1689.357 7708.913 35543.151 165569.553 779186.729 3704402.086

State 3 4.389 19.466 87.246 395.109 1807.818 8356.496 39020.679 184051.939 876877.295 4219608.927

State 4 4.433 19.860 89.914 411.306 1900.951 8875.787 41864.054 199455.789 959841.374 4665309.738

State 5 4.486 20.348 93.314 432.595 2027.135 9600.805 45953.461 222269.851 1086337.847 5364704.636

𝑝(1) prices in thousands of US dollars. Last paid dividend in December 2022: $ 66.92.

Fig. 3. Probability density functions of the S&P 500 index price as of December 2022.

Table 5

Statistics of the price process distribution.

Mean Std Skew Kurt

State 1 4197.94 452.51 0.26 3.09

State 2 4327.70 450.77 0.22 3.10

State 3 4388.78 452.11 0.22 3.11

State 4 4433.02 456.97 0.21 3.11

State 5 4485.95 473.44 0.21 3.10

Prices in US dollars.

Last paid dividend in December 2022: $ 66.92.

2022 was $66.39, therefore the dividend growth 𝐺(𝑡) =𝐷(𝑡)∕𝐷(𝑡 − 1) = 66.92∕66.39 = 1.008 corresponds to state 4 of the Markov 
chain. Finally, we consider the price 𝑝(1)(𝑔4, 66.92) = $4, 433.00 as the corresponding price of the index for that specific time.

The results of the price moments allow us to obtain information on the shape of the distribution. Specifically, we can compute 
the mean, standard deviation, skewness and kurtosis, that we report in Table 5. Moreover, from the computed price moments, we 
can infer the PDFs, as well as the CDFs, of the price process corresponding to each state for a specific date using the maximum 
9

entropy approach described in Section 4. We perform several computations with different 𝑁 +1 moments, starting from the first two 
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Fig. 4. Cumulative distribution functions of the S&P 500 index price as of December 2022.

Table 6

95% Value-at-risk and Expected Shortfall of the S&P 500 index price as of December 2022.

Panel A: 95% Value-at-Risk

2 moments 3 moments 4 moments 5 moments 10 moments

State 1 3440 3476 3476 3476 3302

State 2 3572 3609 3609 3601 3291

State 3 3631 3660 3660 3660 3240

State 4 3667 3697 3697 3697 3155

State 5 3693 3723 3723 3723 3556

Panel B: 95% Expected Shortfall

2 moments 3 moments 4 moments 5 moments 10 moments

State 1 3157 3215 3200 3288 2892

State 2 3286 3438 3438 3399 2885

State 3 3343 3370 3372 3465 2845

State 4 3376 3413 3415 3507 2801

State 5 3394 3432 3434 3523 3165

moments up to the first ten moments. Results are shown in Figs. 3 and 4 in which prices are expressed in thousands of US dollars. 
The Lagrange multipliers derived from the maximization of the entropy functional are reported in the appendix. It is worth noting 
that the PDFs up to the first five moments are quite comparable, with a small difference occurring when using the first ten moments. 
In particular, we observe a fatter left tail showing a higher mass concentrated in the lower range of prices, especially for the three 
central states. The same behavior is noticeable from the CDFs charts.

The knowledge of the PDFs and CDFs of the price process allows us to compute the risk measures introduced in Section 4. In 
particular, we compute the 95% Value-at-risk and Expected Shortfall as of December 2022 for each state of the Markov chain. Results 
are reported in Table 6. Unsurprisingly, the ES values are lower than the VaR ones, as they are more sensitive to the shape of the tail 
of the distribution.

These results could be useful in different ways. For example, we can directly compare these risk measures with their market 
counterparts to understand whether a stock or index is under- or over-valued. More specifically, if the VaR (or ES) computed from 
the market prices is higher than the fundamental one, then we could state that the market is attributing a higher risk to a stock 
with lower fundamentals and vice versa. Also, we could implement portfolio selection strategies based on the previously cited risk 
measures. In particular, this approach could be relevant for long-term investment strategies in which the role of the fundamentals 
has a greater impact.

6. Conclusion

In this paper, we extended the Markov stock model analyzed in [19] with the computation of the nth-order moment of the price 
process after advancing sufficient conditions for the finiteness of the moments and controlling for the transversality conditions. From 
10

the knowledge of the first 𝑁 + 1 moments, we were able to construct the probability density function and the related cumulative 
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distribution function of the price process using the maximum entropy approach described in [29]. Therefore, we computed some 
measures of risk, such as the Value-at-Risk and the Expected Shortfall. The Application to the price and dividend series of the S&P 
500 index showed that the use of higher moments helps in the construction of the PDFs and CDFs of the price process.

From a practitioner point of view, an investor can compare the true risk motivated by the dividend process, as computed by our 
model, with the market risk perception. The former may be used for accurate investment decision, e.g., portfolio selection strategies.

Further development of this research might consider a different specification of the assumption 𝐀𝐧 to allow more flexibility or 
the relaxation of the fixed discount rate assumption with the inclusion of a stochastic behavior and its relations with the dividend 
process.

Data availability

The authors have shared the link to the data.

Acknowledgements

The authors would like to thank the anonymous reviewers for their useful comments and suggestions.

Appendix A

A.1. Proof of Theorem 3.1

First, we are going to prove that 𝑝(𝑛)(𝑡) <∞. To this extent, we start with the assumption that 𝐺(𝑡) = 𝑔𝑖 and 𝐷(𝑡) = 𝑑𝑡 and we 
denote by

𝑝(𝑛)(𝑔𝑖, 𝑑𝑡) = 𝑝(𝑛)(𝑡) = lim
𝑁→∞

𝔼(𝑡)

[(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑛]
,

so that the dependence on the value of the dividend process and of the growth dividend process at the current time 𝑡 is highlighted. 
The nth-order moment can be represented according to

𝑝(𝑛)(𝑔𝑖, 𝑑𝑡) = lim
𝑁→∞

𝔼(𝑡)

⎡⎢⎢⎣
(

𝑁∑
𝑖1=1

𝐷(𝑡+ 𝑖1)
𝑟𝑖1

)
⋅

(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑛−1⎤⎥⎥⎦
= lim
𝑁→∞

𝑁∑
𝑖1=1

𝔼(𝑡)

⎡⎢⎢⎣
𝐷(𝑡+ 𝑖1)
𝑟𝑖1

⋅

(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑛−1⎤⎥⎥⎦ .
An iteration of the previous argument gives

𝑝(𝑛)(𝑔𝑖, 𝑑𝑡) = lim
𝑁→∞

𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

…
𝑁∑
𝑖𝑛=1

𝔼(𝑡)

[
𝐷(𝑡+ 𝑖1)𝐷(𝑡+ 𝑖2)…𝐷(𝑡+ 𝑖𝑛)

𝑟
∑𝑛
𝑗=1 𝑖𝑗

]
.

Now, we consider the addend 𝔼(𝑡)

[
𝐷(𝑡+𝑖1)𝐷(𝑡+𝑖2)…𝐷(𝑡+𝑖𝑛)

𝑟

∑𝑛
𝑗=𝑖 𝑖𝑗

]
where 𝑖𝑗 ∈ {1, 2, … , 𝑁}, ∀𝑗 = 1, … , 𝑛. In general, given a n-tuple 

(𝑖1, 𝑖2, … , 𝑖𝑛), we denote as 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑛) one of its increasing permutations such that 𝜃𝑖 ≤ 𝜃𝑗 , ∀𝑖 ≤ 𝑗.
Note that one permutation (𝜃1, 𝜃2, … , 𝜃𝑛) can correspond to a different n-tuple (𝑖1, 𝑖2, … , 𝑖𝑛). For example, (𝜃1 = 1, 𝜃2 = 2, 𝜃3 =

2, 𝜃4 = 3) corresponds to (𝑖1 = 1, 𝑖2 = 3, 𝑖3 = 2, 𝑖4 = 2) but also to (𝑖1 = 3, 𝑖2 = 2, 𝑖3 = 1, 𝑖4 = 2).
In general, the number of n-tuples that have the same increasing permutation depends on the number of elements 𝑛 and the 

number of different elements 𝑘 which are part of the n-tuple (𝑖1, 𝑖2, … , 𝑖𝑛); we denote this number by 𝐵(𝑛; 𝑘, 𝜽).
Therefore, we have that

lim
𝑁→∞

𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

…
𝑁∑
𝑖𝑛=1

𝔼(𝑡)

[
𝐷(𝑡+ 𝑖1)𝐷(𝑡+ 𝑖2)…𝐷(𝑡+ 𝑖𝑛)

𝑟
∑𝑛
𝑗=1 𝑖𝑗

]

= lim
𝑁→∞

𝑁∑
𝜃1=1

𝑁∑
𝜃2≥𝜃1

…
𝑁∑

𝜃𝑛≥𝜃𝑛−1

𝐵(𝑛;𝑘,𝜽) ⋅ 𝔼(𝑡)
[
𝐷(𝑡+ 𝜃1)𝐷(𝑡+ 𝜃2)…𝐷(𝑡+ 𝜃𝑛)

]
𝑟
∑𝑛
𝑗=1 𝑖𝑗

.

We observe that 𝐵(𝑛; 𝑘, 𝜽) does not depend on 𝑁 and can be bounded according to 𝐵(𝑛; 𝑘, 𝜽) ≤ (𝑛!)𝑛. See the appendix for proof and 
additional details.

Also, we note that 
∑𝑛

𝑗=1 𝑖𝑗 =
∑𝑛

𝑗=1 𝜃𝑗 , therefore,

𝔼(𝑡)
[
𝐷(𝑡+ 𝜃1)𝐷(𝑡+ 𝜃2)…𝐷(𝑡+ 𝜃𝑛)

]

11

𝑟
∑𝑛
𝑗=1 𝜃𝑗



Applied Mathematics and Computation 471 (2024) 128611G. D’Amico and R. De Blasis

=
𝔼(𝑡)

[∏𝜃1
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
∏𝜃2

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

∏𝜃𝑛
ℎ𝑛=𝜃𝑛−1+1

𝐺(𝑡+ ℎ𝑛)
]
𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗

, (A.1)

with 
∏𝜃𝑖

ℎ𝑖=𝜃𝑖−1+1
∙ = 1 if 𝜃𝑖−1 + 1 > 𝜃𝑖.

The expected value in (A.1) can now be computed using the tower property of the conditional expectation:

𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛−1∏
ℎ𝑛=𝜃𝑛−1+1

𝐺(𝑡+ ℎ𝑛)𝔼(𝑡+𝜃𝑛−1)[𝐺(𝑡+ 𝜃𝑛)]

]
𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗

,

but 𝔼(𝑡+𝜃𝑛−1)[𝐺(𝑡 + 𝜃𝑛)] ≤ �̄�(1) from hypothesis 𝐀𝐧 with 𝑘 = 1. Therefore, we have that

𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛∏
ℎ𝑛=𝜃𝑛−1+1

𝐺(𝑡+ ℎ𝑛)

]
𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗

≤ 𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛−1∏
ℎ𝑛=𝜃𝑛−1+1

𝐺(𝑡+ ℎ𝑛)

]
�̄�(1)𝑑𝑛

𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗

.

Iterating this strategy with the tower property of conditional expected value at each time 𝑡 +𝑚, with 𝑚 ∈ {𝜃𝑛−1 + 1, … , 𝜃𝑛−1}, we 
obtain

𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛∏
ℎ𝑛=𝜃𝑛−1+1

𝐺(𝑡+ ℎ𝑛)

]
𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗

≤ 𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛−1∏
ℎ𝑛−1=𝜃𝑛−2+1

𝐺2(𝑡+ ℎ𝑛−1)

]

⋅

(
�̄�(1)

)𝜃𝑛−𝜃𝑛−1
𝑟𝜃𝑛−𝜃𝑛−1

𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗−(𝜃𝑛−𝜃𝑛−1)

.

The iteration can continue for each time 𝑡 +𝑚, with 𝑚 ∈ {𝜃𝑛−2 + 1, … , 𝜃𝑛−1} as follows

𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛∏
ℎ𝑛=𝜃𝑛−1+1

𝐺(𝑡+ ℎ𝑛)

]
𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗

≤ 𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛−1−1∏
ℎ𝑛−1=𝜃𝑛−2+1

𝐺2(𝑡+ ℎ𝑛−1)𝔼(𝑡+𝜃𝑛−1)[𝐺
2(𝑡+ 𝜃𝑛−1)]

]

⋅

(
�̄�(1)

)𝜃𝑛−𝜃𝑛−1
𝑟𝜃𝑛−𝜃𝑛−1

𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗−(𝜃𝑛−𝜃𝑛−1)

.

We observe that 𝔼(𝑡+𝜃𝑛−1)[𝐺
2(𝑡 + 𝜃𝑛−1)] ≤ �̄�(2) from hypothesis 𝐀𝐧 with 𝑘 = 2 and by iteration we have

𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛∏
ℎ𝑛=𝜃𝑛−1+1

𝐺(𝑡+ ℎ𝑛)

]
𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗

≤ 𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛−2∏
ℎ𝑛−2=𝜃𝑛−3+1

𝐺3(𝑡+ ℎ𝑛−2)

]

⋅
(
�̄�(2)

𝑟2

)𝜃𝑛−1−𝜃𝑛−2 ( �̄�(1)
𝑟

)𝜃𝑛−𝜃𝑛−1 𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗−(𝜃𝑛−𝜃𝑛−1)−2(𝜃𝑛−1−𝜃𝑛−2)

.

This strategy can be still applied again on all times, this gives

𝔼(𝑡)

[
𝜃1∏
ℎ1=1

𝐺𝑛(𝑡+ ℎ1)
𝜃2∏

ℎ2=𝜃1+1
𝐺𝑛−1(𝑡+ ℎ2)…

𝜃𝑛∏
ℎ𝑛=𝜃𝑛−1+1

𝐺(𝑡+ ℎ𝑛)

]
𝑑𝑛
𝑡

𝑟
∑𝑛
𝑗=1 𝜃𝑗

≤
(
�̄�(𝑛)

𝑟𝑛

)𝜃1

⋅
(
�̄�(𝑛−1)

𝑟𝑛−1

)𝜃2−𝜃1
⋅… ⋅

(
�̄�(2)

𝑟2

)𝜃𝑛−1−𝜃𝑛−2
⋅
(
�̄�(1)

𝑟

)𝜃𝑛−𝜃𝑛−1

⋅
𝑑𝑛
𝑡∑𝑛 ∑𝑛 ,
12
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where 𝜃0 ∶= 0.

We note that the last factor is equal to one considering 
∑𝑛

𝑗=1 𝜃𝑗 −
∑𝑛

𝑗=1 𝑗(𝜃𝑛+1−𝑗 − 𝜃𝑛−𝑗 ) = 0, see the appendix for a proof of this 
last relation.

Therefore, we established that

𝑝(𝑛)(𝑔𝑖, 𝑑𝑡) = lim
𝑁→∞

𝔼(𝑡)

[(
𝑁∑
𝑖=1

𝐷(𝑡+ 1)
𝑟𝑖

)𝑛]

≤ lim
𝑁→∞

𝑁∑
𝜃1=1

𝑁∑
𝜃2≥𝜃1

…
𝑁∑

𝜃𝑛≥𝜃𝑛−1
𝐵(𝑛;𝑘,𝜽)

(
�̄�(𝑛)

𝑟𝑛

)𝜃1

⋅… ⋅

((
�̄�(1)

)
𝑟

)𝜃𝑛−𝜃𝑛−1

𝑑𝑛
𝑡

= lim
𝑁→∞

𝑁∑
𝑆1≥1

𝑁∑
𝑆2≥0

…
𝑁∑

𝑆𝑛≥0
𝐵(𝑛;𝑘,𝜽)

(
�̄�(𝑛)

𝑟𝑛

)𝑠1

⋅… ⋅

((
�̄�(1)

)
𝑟

)𝑠𝑛

𝑑𝑛
𝑡
<∞,

with 𝑠𝑖 = 𝜃𝑖 − 𝜃𝑖−1, considering that 
∑
𝑠𝑖≥0

(
�̄�(𝑛−1+1)

𝑟𝑛−𝑖+1

)𝑠𝑖
< ∞ being �̄�(𝑎) < 𝑟𝑎, ∀𝑎 = 1, 2, ..., 𝑛 from condition 𝐀𝐧 and the fact that 

𝐵(𝑛; 𝑘, 𝜽) ≤ (𝑛!)𝑛 independent of 𝑁 .

Now, it remains to verify the validity of equation (9). First, let us consider the case 𝑘 = 0. The equation becomes

lim
𝑁→∞

𝔼(𝑡)

[(
𝑃 (𝑡+𝑁)
𝑟𝑁

)𝑛]
= 0.

To verify its validity, we note that

𝑝(𝑛)(𝑔𝑖, 𝑑𝑡) = 𝔼(𝑡)

[( ∞∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑛]
<∞,

but 𝐷(𝑡 + 𝑖) =
∏𝑖

ℎ=1𝐺(𝑡 + ℎ)𝑑𝑡, therefore

𝑝(𝑛)(𝑔𝑖, 𝑑𝑡) = 𝔼(𝑡)

[( ∞∑
𝑖=1

∏𝑖

ℎ=1𝐺(𝑡+ ℎ)
𝑟𝑖

)𝑛

𝑑𝑛
𝑡

]

= 𝔼(𝑡)

[( ∞∑
𝑖=1

∏𝑖

ℎ=1𝐺(𝑡+ ℎ)
𝑟𝑖

)𝑛]
𝑑𝑛
𝑡
=∶ 𝜓𝑛

(
𝑔𝑖
)
𝑑𝑛
𝑡
,

having set in general

𝜓𝑛 (𝐺(𝑡)) =
𝑝(𝑛)(𝐺(𝑡), 𝑑𝑡)

𝑑𝑛
𝑡

.

Now, set �̄�𝑛(𝑡) =max𝑖∈𝐸{𝜓𝑛(𝑔𝑖)}, then

0 ≤ 𝔼(𝑡)

[
𝑃 𝑛(𝑡+ 𝑗)
𝑟𝑗𝑛

]
≤ �̄�𝑛(𝑡)𝔼(𝑡)

[
𝐷𝑛(𝑡+ 𝑗)
𝑟𝑗𝑛

]
. (A.2)

However, because we noted that 𝔼(𝑡)

[(∑∞
𝑗=1

𝐷(𝑡+𝑖)
𝑟𝑖

)𝑛]
<∞ and considering that “surely”

∞∑
𝑗=1

𝐷𝑛(𝑡+ 𝑗)
𝑟𝑗𝑛

≤
( ∞∑
𝑗=1

𝐷(𝑡+ 𝑗)
𝑟𝑗

)𝑛

, (A.3)

as the mixed products, which are non-negative random variables, are missing; from the relation in (A.3), it follows that

∞∑
𝑗=1

𝔼(𝑡)

[
𝐷𝑛(𝑡+ 𝑗)
𝑟𝑗𝑛

]
≤ 𝔼(𝑡)

[( ∞∑
𝑗=1

𝐷(𝑡+ 𝑗)
𝑟𝑗

)𝑛]
<∞.

Therefore, in (A.2) we have that

0 ≤ lim
𝑗→∞

𝔼(𝑡)

[
𝑃 𝑛(𝑡+ 𝑗)
𝑟𝑗𝑛

]
≤ lim
𝑗→∞

𝔼(𝑡)

[
𝐷𝑛(𝑡+ 𝑗)
𝑟𝑗𝑛

]
= 0

⇒ lim
𝑗→∞

𝔼(𝑡)

[
𝑃 𝑛(𝑡+ 𝑗)
𝑟𝑗𝑛

]
= 0.

This proves the validity of the transversality condition for 𝑘 = 0. Now, we prove the validity of (9) ∀𝑘 = 1, 2, ..., 𝑛 − 1.

We observe that because 𝑃 (𝑡) = 𝐷(𝑡+1)+𝑃 (𝑡+1)
𝑟

, with 𝑟 > 1, then 𝑃 (𝑡 + 1) = 𝑟𝑃 (𝑡) −𝐷(𝑡 + 1) ≤ 𝑟𝑃 (𝑡), and given the non-negativity of 
13

𝐷(𝑡 + 1)
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𝑃 (𝑡+ 1)
𝑟

≤ 𝑃 (𝑡)⇒ 𝑃 (𝑡+ 2)
𝑟

≤ 𝑃 (𝑡+ 1)

⇒
𝑃 (𝑡+ 2)
𝑟2

≤ 𝑃 (𝑡+ 1)
𝑟

≤ 𝑃 (𝑡),
and in general we can say that 

{
𝑃 (𝑡+𝑁)
𝑟𝑁

}
𝑁∈ℕ

is a sequence of decreasing non-negative random variables in 𝑁 .

Also, because we proved that lim𝑁→∞ 𝔼(𝑡)

[(
𝑃 (𝑡+𝑁)
𝑟𝑁

)𝑛]
= 0, then

𝑌𝑁 ∶= 𝑃 (𝑡+𝑁)
𝑟𝑁

𝐿𝑛

←←←←←←←←←←←←←←←←←←←←←←←←→
𝑁→∞

0

where the symbol 
𝐿𝑛

←←←←←←←←←←←←←←←←←←←←←←←←→
𝑁→∞

denotes the convergence in 𝐿𝑛 as 𝑁 goes to infinity. Since the convergence in 𝐿𝑛 implies the convergence 

in 𝐿𝑘 for 𝑘 ≤ 𝑛, we have

𝑃 (𝑡+𝑁)
𝑟𝑁

𝐿𝑘

←←←←←←←←←←←←←←←←←←←←←←←←→
𝑁→∞

0, ∀𝑘 ≤ 𝑛.

Now, we consider the random variable 𝑋𝑁 ∶=
(∑𝑁

𝑖=1
𝐷(𝑡+𝑖)
𝑟𝑖

)𝑘
, and because

lim
𝑁→∞

𝔼(𝑡)

⎡⎢⎢⎣
(

𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑘⎤⎥⎥⎦ ≤ lim
𝑁→∞

𝔼(𝑡)

⎡⎢⎢⎣
( ∞∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑘⎤⎥⎥⎦ = 𝑝(𝑘)(𝑔𝑖, 𝑑𝑡) <∞,

we have that(
𝑁∑
𝑖=1

𝐷(𝑡+ 𝑖)
𝑟𝑖

)𝑘

𝐿𝑘

←←←←←←←←←←←←←←←←←←←←←←←←→
𝑁→∞

𝑝(𝑘)(𝑔𝑖, 𝑑𝑡) ∈ℝ.

It follows the convergence in law of the random vector(
𝑌𝑁

𝑋𝑁

) 
←←←←←←←→

(
0

𝑝(𝑘)(𝑔𝑖, 𝑑𝑡)

)
,

and from the continuous mapping theorem, taken the function ℎ(𝑥, 𝑦) = 𝑥 ⋅ 𝑦, we have

𝔼(𝑡)
[
ℎ(𝑌𝑁 ,𝑋𝑁 )

]
= 𝔼(𝑡)

[
𝑌𝑁 ⋅𝑋𝑁

]
←←←←←←←←←←←←←←←←←←←←←←←←→
𝑁→∞

𝔼(𝑡)
[
0 ⋅ 𝑝(𝑘)(𝑔𝑖, 𝑑𝑡)

]
= 0.

A.2. Proof of Proposition 3.2

Let 𝐷(𝑡) = 𝑑𝑡 and 𝐺(𝑡) = 𝑔𝑖, ∀𝑛 ∈ℕ, then according to equations (7) and (12) we have

𝜓𝑛(𝑔𝑖) =
𝑝(𝑛)(𝑔𝑖, 𝑑𝑡)

𝑑𝑛
𝑡

⇒ 𝜓𝑛(𝑔𝑖)𝑑𝑛𝑡 = 𝑝
(𝑛)(𝑔𝑖, 𝑑𝑡) = 𝔼(𝑡)

[(
𝐷(𝑡+ 1) + 𝑃 (𝑡+ 1)

𝑟

)𝑛]
=

𝑛∑
𝑚=0

(
𝑛

𝑚

)
𝔼(𝑡)

[
𝐷𝑚(𝑡+ 1)𝑃 𝑛−𝑚(𝑡+ 1)

] 1
𝑟𝑛
.

Considering the generic expected value

𝔼(𝑡)
[
𝐷𝑚(𝑡+ 1)𝑃 𝑛−𝑚(𝑡+ 1)

]
= 𝔼(𝑡)

[
𝐺𝑚(𝑡+ 1)𝑑𝑚

𝑡
Ψ𝑛−𝑚 (𝐺(𝑡+ 1))𝐺𝑛−𝑚(𝑡+ 1)𝑑𝑛−𝑚

𝑡

]
= 𝑑𝑛

𝑡

∑
𝑗∈𝐸

𝑝𝑖𝑗𝑔
𝑛
𝑗
Ψ𝑛−𝑚(𝑔𝑗 ),

and substituting, we obtain

𝜓𝑛(𝑔𝑖) =
1
𝑟𝑛

𝑛∑
𝑚=0

(
𝑛

𝑚

)∑
𝑗∈𝐸

𝑝𝑖𝑗𝑔
𝑛
𝑗
Ψ𝑛−𝑚(𝑔𝑗 )

⇒ 𝑟𝑛𝜓𝑛(𝑔𝑖) −
∑
𝑗∈𝐸

𝑝𝑖𝑗𝑔
𝑛
𝑗
Ψ𝑛(𝑔𝑗 ) =

∑
𝑗∈𝐸

𝑝𝑖𝑗𝑔
𝑛
𝑗

(
𝑛∑

𝑚=0

(
𝑛

𝑚

)
Ψ𝑛−𝑚(𝑔𝑗 )

)
.

14

The previous equation can be simply arranged in matrix form to give (15).
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The uniqueness of the solution of (15) can be established by observing that 𝑑𝑡 ∈ℝ, 𝑝(𝑛)(𝑔𝑖, 𝑑𝑡) <∞ then 𝜓𝑛(𝑔𝑖) =
𝑝(𝑛)(𝑔𝑖,𝑑𝑡)

𝑑𝑛
𝑡

exists and 

is unique in virtue of the fact that the series expressing 𝑝(𝑛)(𝑔𝑖, 𝑑𝑡) converges to a unique value. The non-negativity is a consequence 
of the fact that both 𝑝(𝑛)(𝑔𝑖, 𝑑𝑡) and 𝑑𝑡 are non-negative.

A.3. Extra proofs

This appendix contains the proof of two properties that have been used inside the proof of Theorem 3.1. The first is related to the 
number of n-tuples that have the same increasing permutation, which here we explain in detail.

Let 𝒊 = (𝑖1, 𝑖2, … , 𝑖𝑛) ∈ ℕ𝑛(𝑁) be a n-tuple of natural numbers such that 𝑖𝑗 ≤ 𝑁, ∀𝑗 = 1, … , 𝑛. Let 𝕆𝑛(𝑁) = {(𝜃1, … , 𝜃𝑛) ∶ 𝜃𝑖 ∈
ℕ, ∀𝑖 = 1, … , 𝑛, and 𝜃𝑖 ≤ 𝜃𝑖+1, ∀𝑖 = 1, … , 𝑛 − 1} be the set of n-tuples of non-decreasing natural numbers not greater than 𝑁 .

Let us define a function that for each n-tuple 𝒊∈ ℕ𝑛(𝑁) assigns one element 𝜽= (𝜃1, … , 𝜃𝑛) ∈𝕆𝑛(𝑁), which is its non-decreasing 
permutation,

Π𝑁 ∶ℕ𝑛(𝑁)→𝕆𝑛(𝑁), such that Π𝑁 ((𝑖1,… , 𝑖𝑛)) = (𝜃1,… , 𝜃𝑛),

with 𝜃1 ∶= 𝑚𝑖𝑛{𝑖1, … , 𝑖𝑛}, 𝜃𝑗 ∶= 𝑚𝑖𝑛{𝑖
(𝑗)
1 , 𝑖

(𝑗)
2 , … , 𝑖(𝑗)

𝑛−(𝑗+1)}, ∀𝑗 = 2, 3, … , 𝑛, and 𝑖(𝑗) being the vector obtained from 𝒊 removing the 
elements 𝜃1, 𝜃2, … , 𝜃𝑗−1. Obviously, 𝑖(𝑗) ∈ℕ𝑛−(𝑗+1)(𝑁).

For example, if 𝒊 = (1, 2, 8, 2, 5) ∈ ℕ5(8) then Π8(𝒊) = (1, 2, 2, 5, 8) = 𝜽. The relation Π𝑁 is a non-injective function, indeed if 
we consider the vectors 𝒊 = (1, 2, 8, 2, 5) ∈ ℕ5(8) and 𝒊 = (2, 8, 2, 5, 1) ∈ ℕ5(8), we have that Π8((1, 2, 8, 2, 5)) = (1, 2, 2, 5, 8) and 
Π8((2, 8, 2, 5, 1)) = (1, 2, 2, 5, 8).

Let Π−1
𝑁
(𝜽) be the complete inverse image of the ordered tuple 𝜽. We are interested in establishing the cardinality of Π−1

𝑁
(𝜽). To 

this extent the following result holds.

Proposition A.1. Let 𝜽 ∈ 𝕆𝑛(𝑁) and 𝑘 ≤ 𝑛 be the number of the different elements composing 𝜽. Let 𝑚1, 𝑚2, … , 𝑚𝑘 be the respective 
number of elements such that 

∑𝑘

𝑙=1𝑚𝑙 = 𝑛.

Let us denote with 𝐵(𝑛; 𝑘, 𝒎) the cardinality of Π−1
𝑁
(𝜽), then

𝐵(𝑛;𝑘,𝒎) =
𝑘∏
𝑗=𝑖

(
𝑛−

∑𝑗−1
𝑖=1 𝑚𝑖
𝑚𝑗

)
,

where 
∑0
𝑗=1 ∙ = 0 by convention.

Proof. The proof is based on a simple application of the fundamental counting principle. Because the vector 𝜽 has 𝑚1 elements 
which are equal to the smallest element of 𝜽, they can assume 

( 𝑛

𝑚1

)
possible positions. For each of them, the remaining 𝑚2 elements 

equal to the second smallest element of 𝜽 can be put in the 𝑛 −𝑚1 remaining positions following 
(𝑛−𝑚1
𝑚2

)
different combinations. We 

can continue with the other elements of 𝜽 up to the 𝑚𝑘 elements which assume the maximum value and can be put in 
(𝑛−∑𝑘−1

𝑖=1 𝑚𝑖
𝑚𝑘

)
=(𝑚𝑘

𝑚𝑘

)
= 1 different positions.

We apply the counting principle and obtain

𝐵(𝑛;𝑘,𝒎) =
(
𝑛

𝑚1

)
⋅
(
𝑛−𝑚1
𝑚2

)
⋅… ⋅

(
𝑛−

∑𝑘−1
𝑖=1 𝑚𝑖
𝑚𝑘

)
=

𝑘∏
𝑗=𝑖

(
𝑛−

∑𝑗−1
𝑖=1 𝑚𝑖
𝑚𝑗

)
.

We note that such value is independent of 𝑁 . □

Now, we prove a second result we used in the proof of Theorem 3.1.

Proposition A.2. For each 𝜽 ∈𝕆𝑛(𝑁) the following identity holds

𝑛∑
𝑗=1

𝜃𝑗 −
𝑛∑
𝑗=1

𝑗(𝜃𝑛+1−𝑗 − 𝜃𝑛−𝑗 ) = 0, (A.4)

where we set 𝜃0 = 0 by convention.

Proof. For 𝑛 = 1 the equation holds as we have 𝜃1 − 1(𝜃1 − 𝜃0) = 0 which is evidently true because 𝜃0 = 0.

Let us assume that the relation (A.4) holds true for 𝑛 − 1 such that

𝑛−1∑
𝑗=1

𝜃𝑗 −
𝑛−1∑
𝑗=1

𝑗(𝜃𝑛−1+1−𝑗 − 𝜃𝑛−1−𝑗 ) = 0. (A.5)
15

Now, we prove the equation for 𝑛. We first observe that



Applied Mathematics and Computation 471 (2024) 128611G. D’Amico and R. De Blasis

Table A.7

Lagrange multiplier for the computation of the maximum entropy.

State 1 State 2 State 3 State 4 State 5

2 moments 𝜆0 −43.112 −46.159 −47.190 −47.140 −45.012

𝜆1 20.480 21.275 21.448 21.206 19.992

𝜆2 −2.439 −2.458 −2.443 −2.392 −2.228

3 moments 𝜆0 −78.784 −79.561 −81.254 −80.514 −76.080

𝜆1 46.239 44.691 44.990 44.046 41.019

𝜆2 −8.568 −7.870 −7.809 −7.547 −6.919

𝜆3 0.480 0.413 0.403 0.384 0.345

4 moments 𝜆0 −100.465 −80.116 −75.872 −73.935 −72.590

𝜆1 66.951 45.207 40.055 38.071 37.884

𝜆2 −15.905 −8.048 −6.130 −5.533 −5.875

𝜆3 1.623 0.440 0.152 0.085 0.192

𝜆4 −0.066 −0.002 0.014 0.016 0.008

5 moments 𝜆0 −445.956 −406.558 −396.959 −380.883 −336.378

𝜆1 479.663 425.331 408.923 387.430 334.937

𝜆2 −211.071 −183.321 −173.951 −162.999 −138.283

𝜆3 47.296 40.447 37.954 35.223 29.398

𝜆4 −5.356 −4.523 −4.202 −3.866 −3.180

𝜆5 0.243 0.202 0.186 0.170 0.138

10 moments 𝜆0 1263.731 860.586 −40.089 −83.965 3745.537

𝜆1 −1870.641 −1520.880 44.719 115.608 −7096.398

𝜆2 957.738 1097.986 −101.707 −164.609 5782.093

𝜆3 −122.501 −403.449 154.590 184.792 −2641.560

𝜆4 −47.767 75.685 −113.984 −115.568 740.867

𝜆5 3.301 −8.254 45.210 39.316 −133.310

𝜆6 10.856 2.544 −10.033 −6.902 16.536

𝜆7 −4.546 −1.070 1.168 0.395 −1.734

𝜆8 0.828 0.221 −0.046 0.058 0.184

𝜆9 −0.074 −0.022 −0.003 −0.010 −0.015

𝜆10 0.003 0.001 0.000 0.000 0.001

𝑛∑
𝑖=1

𝜃𝑖 =
𝑛−1∑
𝑖=1

𝜃𝑖 + 𝜃𝑛,

and using the inductive hypothesis (A.5) we have that

𝑛∑
𝑖=1

𝜃𝑖 =
𝑛−1∑
𝑖=1

𝑖(𝜃𝑛−𝑖 − 𝜃𝑛−1−𝑖) + 𝜃𝑛

=
𝑛∑
𝑗=2

(𝑗 − 1)(𝜃𝑛+1−𝑗 − 𝜃𝑛−𝑗 ) + 𝜃𝑛

=
𝑛∑
𝑗=2

𝑗(𝜃𝑛+1−𝑗 − 𝜃𝑛−𝑗 ) −
𝑛∑
𝑗=2

𝜃𝑛+1−𝑗 +
𝑛∑
𝑗=2

𝜃𝑛−𝑗 + 𝜃𝑛

=
𝑛∑
𝑗=2

𝑗(𝜃𝑛+1−𝑗 − 𝜃𝑛−𝑗 ) + 𝜃𝑛 − 𝜃𝑛−1 −
𝑛∑
𝑗=3

𝜃𝑛+1−𝑗 +
𝑛∑
𝑗=2

𝜃𝑛−𝑗

=
𝑛∑
𝑗=1

𝑗(𝜃𝑛+1−𝑗 − 𝜃𝑛−𝑗 ) −
𝑛−1∑
ℎ=2

𝜃𝑛−ℎ +
𝑛−1∑
𝑗=2

𝜃𝑛−𝑗 + 𝜃0

=
𝑛∑
𝑗=1

𝑗(𝜃𝑛+1−𝑗 − 𝜃𝑛−𝑗 ),

being 𝜃0 = 0. □

A.4. Lagrange multipliers

Table A.7 reports the Lagrange multipliers derived from the computation of the maximum entropy for different first 𝑁 + 1
moments and for each state of the Markov chain.
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