In this paper the orthogonal decomposition is used in order to reconstruct the noiseless component of a temporal stochastic process. For weakly stationary processes, the proposed methodology is based on the joint application of the spectral analysis in the frequency domain (Fourier analysis) and in the time domain (Karhunen Lo´eve expansion). For non stationary processes the orthogonal decomposition is realized in the wavelet domain.

Spectral Analysis in Frequency and Time Domain for Noisy Time Series

FONTANELLA, Lara;
2004-01-01

Abstract

In this paper the orthogonal decomposition is used in order to reconstruct the noiseless component of a temporal stochastic process. For weakly stationary processes, the proposed methodology is based on the joint application of the spectral analysis in the frequency domain (Fourier analysis) and in the time domain (Karhunen Lo´eve expansion). For non stationary processes the orthogonal decomposition is realized in the wavelet domain.
2004
9783540208891
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/104756
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact