The real-time exhaled volatile organic compounds (VOCs) have been suggested as a new biomarker to detect and monitor physiological processes in the respiratory system. The VOCs profile in exhaled breath reflects the biochemical alterations related to metabolic changes, organ failure, and neuronal activity, which are, at least in part, transmitted via the lungs to the alveolar exhaled breath. Breath analysis has been applied to investigate cancer, lung failure, and neurodegenerative diseases. There are by far no studies on the real-time monitoring of VOCs in sensory stimulation in healthy subjects. Therefore, in this study we investigated the breath parameters and exhaled VOCs in humans during sensory stimulation: smell, hearing, sight, and touch. Responses sensory stimulations were recorded in 12 volunteers using an iAQ-2000 sensor. We found significant effects of sensory stimulation. In particular, olfactory stimulation was the most effective stimulus that elicited the greatest VOCs variations in the exhaled breath. Since the olfactory pathway is distinctly driven by the hypothalamic and limbic circuitry, while other senses project first to the thalamic area and then re-project to other brain areas, the findings suggest the importance of olfaction and chemoreception in the regulation lung gas exchange. VOCs variations during sensory activation may become putative indicators of neural activity.

Influence of sensory stimulation on exhaled volatile organic compounds

MAZZATENTA, ANDREA;CACCHIO, Marisa Adriana;DI GIULIO, Camillo
2016

Abstract

The real-time exhaled volatile organic compounds (VOCs) have been suggested as a new biomarker to detect and monitor physiological processes in the respiratory system. The VOCs profile in exhaled breath reflects the biochemical alterations related to metabolic changes, organ failure, and neuronal activity, which are, at least in part, transmitted via the lungs to the alveolar exhaled breath. Breath analysis has been applied to investigate cancer, lung failure, and neurodegenerative diseases. There are by far no studies on the real-time monitoring of VOCs in sensory stimulation in healthy subjects. Therefore, in this study we investigated the breath parameters and exhaled VOCs in humans during sensory stimulation: smell, hearing, sight, and touch. Responses sensory stimulations were recorded in 12 volunteers using an iAQ-2000 sensor. We found significant effects of sensory stimulation. In particular, olfactory stimulation was the most effective stimulus that elicited the greatest VOCs variations in the exhaled breath. Since the olfactory pathway is distinctly driven by the hypothalamic and limbic circuitry, while other senses project first to the thalamic area and then re-project to other brain areas, the findings suggest the importance of olfaction and chemoreception in the regulation lung gas exchange. VOCs variations during sensory activation may become putative indicators of neural activity.
978-3-319-24484-6
978-3-319-24482-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11564/643816
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact