The paper reminds the basic ideas of stochastic calculus via regularizations in Banach spaces and its applications to the study of strict solutions of Kolmogorov path dependent equations associated with "windows" of diffusion processes. One makes the link between the Banach space approach and the so called functional stochastic calculus. When no strict solutions are available one describes the notion of strong-viscosity solution which alternative (in infinite dimension) to the classical notion of viscosity solution.

Calculus via regularizations in Banach spaces and Kolmogorov-type path-dependent equations

DI GIROLAMI, Cristina;
2016-01-01

Abstract

The paper reminds the basic ideas of stochastic calculus via regularizations in Banach spaces and its applications to the study of strict solutions of Kolmogorov path dependent equations associated with "windows" of diffusion processes. One makes the link between the Banach space approach and the so called functional stochastic calculus. When no strict solutions are available one describes the notion of strong-viscosity solution which alternative (in infinite dimension) to the classical notion of viscosity solution.
File in questo prodotto:
File Dimensione Formato  
7_AMS2015_CossoDiGirolamiRusso.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 283.01 kB
Formato Adobe PDF
283.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/660122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact