The purpose of this work is to investigate the olfactory response to a neuter and a smell stimulation through Olfactory Event Related Potentials (OERP). We arranged an experiment of olfactory stimulation by analyzing Event Related Potential during perception of 2 odor stimuli: pleasant (Rose, 2-phenyl ethanol C2H4O2) and neuter (Neuter, Vaseline Oil CH2). We recruited 15 adult safe non-smokers volunteers. In order to record OERP, we used VOS EEG, a new device dedicated to odorous stimulation in EEG. After the OERP task, the subject filled a visual analogic scale, regarding the administered smell, on three dimensions: pleasantness (P), arousing (A) and familiarity (F). We performed an artificial neural network analysis that highlighted three groups of significant features, one for each amplitude component. Three neural network classifiers were evaluated in terms of accuracy on both full and restricted datasets, showing the best performance with the latter. The improvement of the accuracy rate in all VAS classifications was: 13.93% (A), 64.81% (F), 9.8% (P) for P300 amplitude (Fz); 16.28% (A), 49.46% (F), 24% (P) for N400 amplitude (Cz, Fz, O2, P8); 110.42% (A), 21.19% (F), 24.1% (P) for N600 amplitude (Cz, Fz). Main results suggested that in smell presentation we can observe the involvement of slow Event-Related-Potentials, like N400 and N600, ERP involved in stimulus encoding.
Smell and meaning: An OERP study
Mazzatenta A.;
2017-01-01
Abstract
The purpose of this work is to investigate the olfactory response to a neuter and a smell stimulation through Olfactory Event Related Potentials (OERP). We arranged an experiment of olfactory stimulation by analyzing Event Related Potential during perception of 2 odor stimuli: pleasant (Rose, 2-phenyl ethanol C2H4O2) and neuter (Neuter, Vaseline Oil CH2). We recruited 15 adult safe non-smokers volunteers. In order to record OERP, we used VOS EEG, a new device dedicated to odorous stimulation in EEG. After the OERP task, the subject filled a visual analogic scale, regarding the administered smell, on three dimensions: pleasantness (P), arousing (A) and familiarity (F). We performed an artificial neural network analysis that highlighted three groups of significant features, one for each amplitude component. Three neural network classifiers were evaluated in terms of accuracy on both full and restricted datasets, showing the best performance with the latter. The improvement of the accuracy rate in all VAS classifications was: 13.93% (A), 64.81% (F), 9.8% (P) for P300 amplitude (Fz); 16.28% (A), 49.46% (F), 24% (P) for N400 amplitude (Cz, Fz, O2, P8); 110.42% (A), 21.19% (F), 24.1% (P) for N600 amplitude (Cz, Fz). Main results suggested that in smell presentation we can observe the involvement of slow Event-Related-Potentials, like N400 and N600, ERP involved in stimulus encoding.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.