The improved understanding of multiple sclerosis (MS) neurobiology alongside the development of novel markers of disease will allow precision medicine to be applied to MS patients, bringing the promise of improved care. Combinations of clinical and paraclinical data are currently used for diagnosis and prognosis. The addition of advanced magnetic resonance imaging and biofluid markers has been strongly encouraged, since classifying patients according to the underlying biology will improve monitoring and treatment strategies. For example, silent progression seems to contribute significantly more than relapses to overall disability accumulation, but currently approved treatments for MS act mainly on neuroinflammation and offer only a partial protection against neurodegeneration. Further research, involving traditional and adaptive trial designs, should strive to halt, repair or protect against central nervous system damage. To personalize new treatments, their selectivity, tolerability, ease of administration, and safety must be considered, while to personalize treatment approaches, patient preferences, risk-aversion, and lifestyle must be factored in, and patient feedback used to indicate real-world treatment efficacy. The use of biosensors and machine-learning approaches to integrate biological, anatomical, and physiological parameters will take personalized medicine a step closer toward the patient's virtual twin, in which treatments can be tried before they are applied.
Lessons from immunotherapies in multiple sclerosis
Rispoli, Marianna G;D'Apolito, Maria;Pozzilli, Valeria;Tomassini, Valentina
Ultimo
2023-01-01
Abstract
The improved understanding of multiple sclerosis (MS) neurobiology alongside the development of novel markers of disease will allow precision medicine to be applied to MS patients, bringing the promise of improved care. Combinations of clinical and paraclinical data are currently used for diagnosis and prognosis. The addition of advanced magnetic resonance imaging and biofluid markers has been strongly encouraged, since classifying patients according to the underlying biology will improve monitoring and treatment strategies. For example, silent progression seems to contribute significantly more than relapses to overall disability accumulation, but currently approved treatments for MS act mainly on neuroinflammation and offer only a partial protection against neurodegeneration. Further research, involving traditional and adaptive trial designs, should strive to halt, repair or protect against central nervous system damage. To personalize new treatments, their selectivity, tolerability, ease of administration, and safety must be considered, while to personalize treatment approaches, patient preferences, risk-aversion, and lifestyle must be factored in, and patient feedback used to indicate real-world treatment efficacy. The use of biosensors and machine-learning approaches to integrate biological, anatomical, and physiological parameters will take personalized medicine a step closer toward the patient's virtual twin, in which treatments can be tried before they are applied.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.