We study the problem of estimating circular densities when sample data are affected by measurement errors. We propose a deconvolution approach involving lower bias kernel estimators which take the additional source of bias due to the presence of measurement errors into account. Some asymptotic properties are discussed, and numerical results are provided.

Lower bias circular density estimation with contaminated data

Di Marzio Marco;Fensore Stefania;Panzera Agnese;Passamonti Chiara
2025-01-01

Abstract

We study the problem of estimating circular densities when sample data are affected by measurement errors. We propose a deconvolution approach involving lower bias kernel estimators which take the additional source of bias due to the presence of measurement errors into account. Some asymptotic properties are discussed, and numerical results are provided.
2025
978-3-031-64431-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/851794
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact