In this paper close parallels between Geostatistics-based models and spatial autoregression models are examined and the possible role of the inverse correlation function of a Gaussian Random Field in an interpolation context is discussed. Theoretical results suggest here that a space-time interpolator can be achieved by means of a spatiotemporal Gaussian Markov Random Field (ST-GMRF). The predictive ability of this model is demonstrated by a simulation study

Prediction of Spatio-Temporal Gaussian fields using the Inverse Correlation Function

FONTANELLA, Lara;IPPOLITI, Luigi;
2005-01-01

Abstract

In this paper close parallels between Geostatistics-based models and spatial autoregression models are examined and the possible role of the inverse correlation function of a Gaussian Random Field in an interpolation context is discussed. Theoretical results suggest here that a space-time interpolator can be achieved by means of a spatiotemporal Gaussian Markov Random Field (ST-GMRF). The predictive ability of this model is demonstrated by a simulation study
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/102223
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact