Consider a spatio-temporal process and suppose it is of interest to predict at some fixed time point t0. We consider a modelling strategy which combines the two well-established approaches of spatial stochastic process decomposition in the field of spatial statistics, and the Kalman Filter in general state space formulation of multivariate time series analysis.

Decomposizione di Processi Stocastici Spaziali a Fini Previstivi

COLI, Mauro;FONTANELLA, Lara;IPPOLITI, Luigi
2000-01-01

Abstract

Consider a spatio-temporal process and suppose it is of interest to predict at some fixed time point t0. We consider a modelling strategy which combines the two well-established approaches of spatial stochastic process decomposition in the field of spatial statistics, and the Kalman Filter in general state space formulation of multivariate time series analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/102225
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact