LmrP is a secondary active multidrug transporter from Lactococcus lactis. The protein belongs to the major facilitator superfamily and utilizes the electrochemical proton gradient (inside negative and alkaline) to extrude a wide range of lipophilic cations from the cell. Previous work has indicated that ethidium, a monovalent cationic substrate, is exported by LmrP by electrogenic antiport with two (or more) protons. This observation raised the question whether these protons are translocated sequentially along the same pathway, or through different routes. To address this question, we constructed a 3-D homology model of LmrP based on the high-resolution structure of the glycerol-3P/Pi antiporter GlpT from Escherichia coli, and we tested by mutagenesis the possible proton conduction points suggested by this model. Similar to the template, LmrP is predicted to contain an internal cavity formed at the interface between the two halves of the transporter. On the surface of this cavity lie two clusters of polar, aromatic and carboxylate residues with potentially important function in proton shuttling. Cluster 1 in the C-terminal half contains D235 and E327 in immediate proximity of each other, and is located near the apex of the cavity. Cluster 2 in the N-terminal half contains D142. Analyses of LmrP mutants containing charge-conservative or carboxyl-to-amide replacements at positions 142, 235 and 327 suggest that D142 is part of a dedicated proton translocation pathway in the ethidium translocation reaction. In contrast, D235 and E327 are part of an independent pathway, in which D235 interacts with protons. E327 appears to modulate the pKa of D235 and plays a role in the interaction with ethidium. These results are consistent with the proposal that major facilitator superfamily proteins consist of two membrane domains, one of which is involved in substrate binding and the other in ion coupling, and they indicate that there are two proton conduction pathways at play in the transport mechanism.

Two proton translocation pathways in a secondary-active multidrug transporter.

FEDERICI, Luca;
2007-01-01

Abstract

LmrP is a secondary active multidrug transporter from Lactococcus lactis. The protein belongs to the major facilitator superfamily and utilizes the electrochemical proton gradient (inside negative and alkaline) to extrude a wide range of lipophilic cations from the cell. Previous work has indicated that ethidium, a monovalent cationic substrate, is exported by LmrP by electrogenic antiport with two (or more) protons. This observation raised the question whether these protons are translocated sequentially along the same pathway, or through different routes. To address this question, we constructed a 3-D homology model of LmrP based on the high-resolution structure of the glycerol-3P/Pi antiporter GlpT from Escherichia coli, and we tested by mutagenesis the possible proton conduction points suggested by this model. Similar to the template, LmrP is predicted to contain an internal cavity formed at the interface between the two halves of the transporter. On the surface of this cavity lie two clusters of polar, aromatic and carboxylate residues with potentially important function in proton shuttling. Cluster 1 in the C-terminal half contains D235 and E327 in immediate proximity of each other, and is located near the apex of the cavity. Cluster 2 in the N-terminal half contains D142. Analyses of LmrP mutants containing charge-conservative or carboxyl-to-amide replacements at positions 142, 235 and 327 suggest that D142 is part of a dedicated proton translocation pathway in the ethidium translocation reaction. In contrast, D235 and E327 are part of an independent pathway, in which D235 interacts with protons. E327 appears to modulate the pKa of D235 and plays a role in the interaction with ethidium. These results are consistent with the proposal that major facilitator superfamily proteins consist of two membrane domains, one of which is involved in substrate binding and the other in ion coupling, and they indicate that there are two proton conduction pathways at play in the transport mechanism.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/105937
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact