Let F be the Haag-Kastler net generated by the su(2) chiral current algebra at level 1. We classify the SL(2, R)-covariant subsystems B \subset F by showing that they are all fixed points nets F^H for some subgroup H of the gauge automorphisms group SO(3) of F. Then using the fact that the net F_1 generated by the u(1) chiral current can be regarded as a subsystem of F we classify the subsystems of F_1. In this case there are two distinct proper subsystems: the one generated by the energy-momentum tensor and the gauge invariant subsystem F_1^{Z_2}.

Classification of subsystems for the Haag-Kastler nets generated by c=1 chiral current algebras.

CARPI, Sebastiano
1999-01-01

Abstract

Let F be the Haag-Kastler net generated by the su(2) chiral current algebra at level 1. We classify the SL(2, R)-covariant subsystems B \subset F by showing that they are all fixed points nets F^H for some subgroup H of the gauge automorphisms group SO(3) of F. Then using the fact that the net F_1 generated by the u(1) chiral current can be regarded as a subsystem of F we classify the subsystems of F_1. In this case there are two distinct proper subsystems: the one generated by the energy-momentum tensor and the gauge invariant subsystem F_1^{Z_2}.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/107949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact