A Moebius covariant net of von Neumann algebras on S^1 is diffeomorphism covariant if its Moebius symmetry extends to diffeomorphism symmetry. We prove that in case the net is either a Virasoro net or any at least 4-regular net such an extension is unique: the local algebras together with the Moebius symmetry (equivalently: the local algebras together with the vacuum vector) completely determine it. We draw the two following conclusions for such theories. (1) The value of the central charge c is an invariant and hence the Virasoro nets for different values of c are not isomorphic as M\"obius covariant nets. (2) A vacuum preserving internal symmetry always commutes with the diffeomorphism symmetries. We further use our result to give a large class of new examples of nets (even strongly additive ones), which are not diffeomorphism covariant; i.e. which do not admit an extension of the symmetry to Diff^+(S^1).

On the uniqueness of diffeomorphism symmetry in conformal field theory.

CARPI, Sebastiano;
2005-01-01

Abstract

A Moebius covariant net of von Neumann algebras on S^1 is diffeomorphism covariant if its Moebius symmetry extends to diffeomorphism symmetry. We prove that in case the net is either a Virasoro net or any at least 4-regular net such an extension is unique: the local algebras together with the Moebius symmetry (equivalently: the local algebras together with the vacuum vector) completely determine it. We draw the two following conclusions for such theories. (1) The value of the central charge c is an invariant and hence the Virasoro nets for different values of c are not isomorphic as M\"obius covariant nets. (2) A vacuum preserving internal symmetry always commutes with the diffeomorphism symmetries. We further use our result to give a large class of new examples of nets (even strongly additive ones), which are not diffeomorphism covariant; i.e. which do not admit an extension of the symmetry to Diff^+(S^1).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/108078
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact