Several studies have identified a supramodal network critical to the reorienting of attention toward stimuli at novel locations and which involves the right temporoparietal junction and the inferior frontal areas. The present functional magnetic resonance imaging (fMRI)\magnetoencephalography (MEG) study investigates: 1) the cerebral circuit underlying attentional reorienting to spatially varying sound locations; 2) the circuit related to the regular change of sound location in the same hemifield, the change of sound location across hemifields, or sounds presented randomly at different locations on the azimuth plane; 3) functional temporal dynamics of the observed cortical areas exploiting the complementary characteristics of the fMRI and MEG paradigms. fMRI results suggest 3 distinct roles: the supratemporal plane appears modulated by variations of sound location; the inferior parietal lobule is modulated by the cross-meridian effect; and the inferior frontal cortex is engaged by the inhibition of a motor response. MEG data help to elucidate the temporal dynamics of this network by providing high-resolution time series with which to measure latency of neural activation manipulated by the reorienting of attention.

A Frontoparietal Network for Spatial Attention Reorienting in the Auditory Domain: A Human fMRI/MEG Study of Functional and Temporal Dynamics

BRUNETTI, Marcella;DELLA PENNA, Stefania;FERRETTI, Antonio;DEL GRATTA, Cosimo;CIANFLONE, FRANCESCO;BELARDINELLI, PAOLO;CAULO, MASSIMO;PIZZELLA, Vittorio;ROMANI, Gian Luca
2008-01-01

Abstract

Several studies have identified a supramodal network critical to the reorienting of attention toward stimuli at novel locations and which involves the right temporoparietal junction and the inferior frontal areas. The present functional magnetic resonance imaging (fMRI)\magnetoencephalography (MEG) study investigates: 1) the cerebral circuit underlying attentional reorienting to spatially varying sound locations; 2) the circuit related to the regular change of sound location in the same hemifield, the change of sound location across hemifields, or sounds presented randomly at different locations on the azimuth plane; 3) functional temporal dynamics of the observed cortical areas exploiting the complementary characteristics of the fMRI and MEG paradigms. fMRI results suggest 3 distinct roles: the supratemporal plane appears modulated by variations of sound location; the inferior parietal lobule is modulated by the cross-meridian effect; and the inferior frontal cortex is engaged by the inhibition of a motor response. MEG data help to elucidate the temporal dynamics of this network by providing high-resolution time series with which to measure latency of neural activation manipulated by the reorienting of attention.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/109031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 47
social impact