Because the calciocarbonatite lavas at Fort Portal were the first ever described they have received great attention, with the pyroclastic rocks being relatively neglected. Volumetrically the lavas are minute, and the major deposit is a 2 m thick blanket of “flaggy” tuffs, long regarded as carbonatite tuff with crustal debris. Fresh examination shows these tuffs to contain melilitite previously unreported from Fort Portal. The rock is a mix of crust and mantle debris with near-isotropic lapilli, set in a matrix composed predominantly of carbonate. The low birefringence parts of the lapilli are devitrified melilitite glass. Compound lapilli are abundant, containing aggregates of globules, together with xenolithic/crystic fragments. In some, there are concentric zones of more carbonate rich material alternating with melilitite: tangential phlogopite flakes mark the outer zones, in marked contrast to their planar distribution through the enclosing rock matrix. Euhedral titano-magnetite (10–15%) is the most obvious cognate mineral. Devitrified melilitite contains abundant small crystals and microlites of melilite, apatite, magnetite, and carbonates, mostly formed during disequilibrium quench crystallisation. Because of this, and widespread fine grained accidental debris, a precise bulk melt composition is hard to obtain, but the average is close to melilitite with high P2O5. Mantle debris is largely disaggregated magnetite–phlogopite clinopyroxenite, which could give a bulk composition close to the melt. Low Mg and high Mg calcite are present in the melilitite lapilli, and in the enclosing carbonate rich matrix. Previously, high Mg calcite was reported only as cement in lapilli tuffs, while the lavas contain only low Mg calcite in the assemblage calcite–periclase (consistent with low pressure carbonate melt crystallisation). Carbonatite–melilitite magma left the mantle carrying restite debris. Melt fragmentation took place in the deep crust, with rapidly quenched droplets enclosing crust debris. Chemical covariations within the flaggy tuffs are uniform and explicable as carbonatite–melilitite plus a thoroughly mixed combination of crust and mantle debris. New links are indicated with the alkaline ultramafic-carbonate volcanism to the south, in Uganda, and parallels with that in Italy.

Melilitite at Fort Portal, Uganda: another dimension to the carbonate volcanism

STOPPA, Francesco;
2005-01-01

Abstract

Because the calciocarbonatite lavas at Fort Portal were the first ever described they have received great attention, with the pyroclastic rocks being relatively neglected. Volumetrically the lavas are minute, and the major deposit is a 2 m thick blanket of “flaggy” tuffs, long regarded as carbonatite tuff with crustal debris. Fresh examination shows these tuffs to contain melilitite previously unreported from Fort Portal. The rock is a mix of crust and mantle debris with near-isotropic lapilli, set in a matrix composed predominantly of carbonate. The low birefringence parts of the lapilli are devitrified melilitite glass. Compound lapilli are abundant, containing aggregates of globules, together with xenolithic/crystic fragments. In some, there are concentric zones of more carbonate rich material alternating with melilitite: tangential phlogopite flakes mark the outer zones, in marked contrast to their planar distribution through the enclosing rock matrix. Euhedral titano-magnetite (10–15%) is the most obvious cognate mineral. Devitrified melilitite contains abundant small crystals and microlites of melilite, apatite, magnetite, and carbonates, mostly formed during disequilibrium quench crystallisation. Because of this, and widespread fine grained accidental debris, a precise bulk melt composition is hard to obtain, but the average is close to melilitite with high P2O5. Mantle debris is largely disaggregated magnetite–phlogopite clinopyroxenite, which could give a bulk composition close to the melt. Low Mg and high Mg calcite are present in the melilitite lapilli, and in the enclosing carbonate rich matrix. Previously, high Mg calcite was reported only as cement in lapilli tuffs, while the lavas contain only low Mg calcite in the assemblage calcite–periclase (consistent with low pressure carbonate melt crystallisation). Carbonatite–melilitite magma left the mantle carrying restite debris. Melt fragmentation took place in the deep crust, with rapidly quenched droplets enclosing crust debris. Chemical covariations within the flaggy tuffs are uniform and explicable as carbonatite–melilitite plus a thoroughly mixed combination of crust and mantle debris. New links are indicated with the alkaline ultramafic-carbonate volcanism to the south, in Uganda, and parallels with that in Italy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/110799
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact