Screening for genomic rearrangements is a fundamental task in the genetic diagnosis of many inherited disorders including cancer-predisposing syndromes. Several methods were developed for analysis of structural genomic abnormalities, some are targeted to the analysis of one or few specific loci, others are designed to scan the whole genome. Locus-specific methods are used when the candidate loci responsible for the specific pathological condition are known. Whole-genome methods are used to discover loci bearing structural abnormalities when the disease-associated locus is unknown. Three main approaches have been employed for the analysis of locus-specific structural changes. The first two are based on probe hybridization and include cytogenetics and DNA blotting. The third approach is based on PCR amplification and includes microsatellite or single nucleotide polymorphism (SNP) genotyping, relative allele quantitation, real-time quantitative PCR, long PCR and multiplex PCR-based methods such as multiplex ligation-dependent probe amplification and the recently developed nonfluorescent multiplex PCR coupled to high-performance liquid chromatography analysis. Whole-genome methods include cytogenetic methods, array-comparative genomic hybridization, SNP array and other sequence-based methods. The goal of the present review is to provide an overview of the main features and advantages and limitations of methods for the screening of structural genomic abnormalities relevant to oncological research.

Analysis of extended genomic rearrangements in oncological research.

DE LELLIS, LAURA;CURIA, Maria Cristina;ACETO, Gitana;MARIANI COSTANTINI, Renato;CAMA, Alessandro
2007-01-01

Abstract

Screening for genomic rearrangements is a fundamental task in the genetic diagnosis of many inherited disorders including cancer-predisposing syndromes. Several methods were developed for analysis of structural genomic abnormalities, some are targeted to the analysis of one or few specific loci, others are designed to scan the whole genome. Locus-specific methods are used when the candidate loci responsible for the specific pathological condition are known. Whole-genome methods are used to discover loci bearing structural abnormalities when the disease-associated locus is unknown. Three main approaches have been employed for the analysis of locus-specific structural changes. The first two are based on probe hybridization and include cytogenetics and DNA blotting. The third approach is based on PCR amplification and includes microsatellite or single nucleotide polymorphism (SNP) genotyping, relative allele quantitation, real-time quantitative PCR, long PCR and multiplex PCR-based methods such as multiplex ligation-dependent probe amplification and the recently developed nonfluorescent multiplex PCR coupled to high-performance liquid chromatography analysis. Whole-genome methods include cytogenetic methods, array-comparative genomic hybridization, SNP array and other sequence-based methods. The goal of the present review is to provide an overview of the main features and advantages and limitations of methods for the screening of structural genomic abnormalities relevant to oncological research.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/114004
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact