Human aging is characterized by skeletal muscle wasting, a debilitating condition which sets the susceptibility for diseases that directly affect the quality of life and often limit life span. Sarcopenia, i.e. the reduction of muscle mass and/or function, is the consequence of a reduction of protein synthesis and an increase in muscle protein degradation. In addition, the capacity for muscle regeneration is severely impaired in aging and this can lead to disability, particularly in patients with other concomitant diseases or organ impairment. Immobility and lack of exercise, increased levels of proinflammatory cytokines, increased production of oxygen free radicals or impaired detoxification, low anabolic hormone output, malnutrition and reduced neurological drive have been advocated as being responsible for sarcopenia. It is intriguing to notice that multiple pathways converge on skeletal muscle dysfunction, but the factors involved sometimes diverge to different pathways, thus intersecting at critical points. It is reasonable to argue that the activity of these nodes results from the net balance of regulating mechanisms, as in the case of the GH/IGF-1 axis, the testosterone and cortisol functions, the pro- and anti-inflammatory cytokines and receptors. Both genetic and epigenetic mechanisms operate in regulating the final phenotype, the extent of muscle atrophy and reduction in strength and force generation. It is widely accepted that intervention on lifestyle habits represents an affordable and practical way to modify on a large scale some detrimental outcomes of aging, and particularly sarcopenia. The identification of the molecular chain able to reverse sarcopenia is a major goal of studies on human aging.
Sarcopenia: age-related skeletal muscle changes from determinants to physical disability
DI IORIO, Angelo;ABATE, MICHELE;BATTAGLINI, CORRADO;RIPARI, Patrizio;SAGGINI, Raoul;PAGANELLI, Roberto;ABATE, Giuseppe
2006-01-01
Abstract
Human aging is characterized by skeletal muscle wasting, a debilitating condition which sets the susceptibility for diseases that directly affect the quality of life and often limit life span. Sarcopenia, i.e. the reduction of muscle mass and/or function, is the consequence of a reduction of protein synthesis and an increase in muscle protein degradation. In addition, the capacity for muscle regeneration is severely impaired in aging and this can lead to disability, particularly in patients with other concomitant diseases or organ impairment. Immobility and lack of exercise, increased levels of proinflammatory cytokines, increased production of oxygen free radicals or impaired detoxification, low anabolic hormone output, malnutrition and reduced neurological drive have been advocated as being responsible for sarcopenia. It is intriguing to notice that multiple pathways converge on skeletal muscle dysfunction, but the factors involved sometimes diverge to different pathways, thus intersecting at critical points. It is reasonable to argue that the activity of these nodes results from the net balance of regulating mechanisms, as in the case of the GH/IGF-1 axis, the testosterone and cortisol functions, the pro- and anti-inflammatory cytokines and receptors. Both genetic and epigenetic mechanisms operate in regulating the final phenotype, the extent of muscle atrophy and reduction in strength and force generation. It is widely accepted that intervention on lifestyle habits represents an affordable and practical way to modify on a large scale some detrimental outcomes of aging, and particularly sarcopenia. The identification of the molecular chain able to reverse sarcopenia is a major goal of studies on human aging.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.