Fetal magnetocardiography (fMCG) is the only noninvasive technique allowing effective assessment of fetal cardiac electrical activity during the prenatal period. The reconstruction of reliable magnetic field mapping associated with fetal heart activity would allow three-dimensional source localization. The efficiency of independent component analysis (ICA) in restoring reliable fetal traces from multichannel fMCG has already been demonstrated. In this paper, we describe a method of reconstructing a complete set of fetal signals hidden in multichannel fMCG preserving their correct spatial distribution, waveform, polarity and amplitude. Fetal independent components, retrieved with an ICA algorithm (FastICA), were interpolated (fICI method) using information gathered during FastICA iterations. The restored fetal signals were used to reconstruct accurate magnetic mapping for every millisecond during the average beat. The procedure was validated on fMCG recorded from the 22nd gestational week onward with a multichannel MCG system working in a shielded room. The interpolated traces were compared with those obtained with a standard technique, and the consistency of fetal mapping was checked evaluating source localizations relative to fetal echocardiographic information. Good magnetic field distributions during the P-QRS-T waves were attained with fICI for all gestational periods; their reliability was confirmed by threedimensional source localizations.

Fetal magnetocardiographic mapping using independent component analysis.

COMANI, Silvia;ROMANI, Gian Luca
2004-01-01

Abstract

Fetal magnetocardiography (fMCG) is the only noninvasive technique allowing effective assessment of fetal cardiac electrical activity during the prenatal period. The reconstruction of reliable magnetic field mapping associated with fetal heart activity would allow three-dimensional source localization. The efficiency of independent component analysis (ICA) in restoring reliable fetal traces from multichannel fMCG has already been demonstrated. In this paper, we describe a method of reconstructing a complete set of fetal signals hidden in multichannel fMCG preserving their correct spatial distribution, waveform, polarity and amplitude. Fetal independent components, retrieved with an ICA algorithm (FastICA), were interpolated (fICI method) using information gathered during FastICA iterations. The restored fetal signals were used to reconstruct accurate magnetic mapping for every millisecond during the average beat. The procedure was validated on fMCG recorded from the 22nd gestational week onward with a multichannel MCG system working in a shielded room. The interpolated traces were compared with those obtained with a standard technique, and the consistency of fetal mapping was checked evaluating source localizations relative to fetal echocardiographic information. Good magnetic field distributions during the P-QRS-T waves were attained with fICI for all gestational periods; their reliability was confirmed by threedimensional source localizations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/120091
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact