We investigated the in vitro effects of seven fluoroquinolones (ciprofloxacin, grepafloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin, and rufloxacin), compared to those of trimethoprim-sulfamethoxazole SXT) and ceftazidime on total biomass and cell viability of Stenotrophomonas maltophilia biofilm. S. maltophilia attached rapidly to polystyrene, within 2 h of incubation, and then biofilm formation increased over time, reaching maximum growth at 24 h. In the presence of fluoroquinolones at one-half and one-fourth the MIC, biofilm biomass was significantly (P < 0.01) reduced to 55 to 70% and 66 to 76% of original mass, respectively. Ceftazidime and SXT did not exert any activity. Biofilm bacterial viability was significantly reduced by all antibiotics tested at one-half the MIC. At one-fourth the MIC all antibiotics, except levofloxacin, significantly reduced viability. Treatment of preformed biofilms with bactericidal concentrations (500, 100, and 50 ug/ml) of all fluoroquinolones caused, except for norfloxacin, significant reduction of biofilm biomass to 29.5 to 78.8, 64.1 to 83.6, and 70.5 to 82.8% of original mass, respectively. SXT exerted significant activity at 500 ug/ml only. Ceftazidime was completely inactive. Rufloxacin exhibited the highest activity on preformed biofilm viability, significantly decreasing viable counts by 0.6, 5.4, and 17.1% at 500, 100, and 50 ug/ml, respectively. Our results show that (i) subinhibitory (one-half and one-fourth the MIC) concentrations of fluoroquinolones inhibit adherence of S. maltophilia to polystyrene and (ii) clinically achievable concentrations (50 and 100 ug/ml) of rufloxacin are able to eradicate preformed S. maltophilia biofilm.

Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime.

DI BONAVENTURA, GIOVANNI;ROBUFFO I;PICCOLOMINI, Raffaele
2004-01-01

Abstract

We investigated the in vitro effects of seven fluoroquinolones (ciprofloxacin, grepafloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin, and rufloxacin), compared to those of trimethoprim-sulfamethoxazole SXT) and ceftazidime on total biomass and cell viability of Stenotrophomonas maltophilia biofilm. S. maltophilia attached rapidly to polystyrene, within 2 h of incubation, and then biofilm formation increased over time, reaching maximum growth at 24 h. In the presence of fluoroquinolones at one-half and one-fourth the MIC, biofilm biomass was significantly (P < 0.01) reduced to 55 to 70% and 66 to 76% of original mass, respectively. Ceftazidime and SXT did not exert any activity. Biofilm bacterial viability was significantly reduced by all antibiotics tested at one-half the MIC. At one-fourth the MIC all antibiotics, except levofloxacin, significantly reduced viability. Treatment of preformed biofilms with bactericidal concentrations (500, 100, and 50 ug/ml) of all fluoroquinolones caused, except for norfloxacin, significant reduction of biofilm biomass to 29.5 to 78.8, 64.1 to 83.6, and 70.5 to 82.8% of original mass, respectively. SXT exerted significant activity at 500 ug/ml only. Ceftazidime was completely inactive. Rufloxacin exhibited the highest activity on preformed biofilm viability, significantly decreasing viable counts by 0.6, 5.4, and 17.1% at 500, 100, and 50 ug/ml, respectively. Our results show that (i) subinhibitory (one-half and one-fourth the MIC) concentrations of fluoroquinolones inhibit adherence of S. maltophilia to polystyrene and (ii) clinically achievable concentrations (50 and 100 ug/ml) of rufloxacin are able to eradicate preformed S. maltophilia biofilm.
File in questo prodotto:
File Dimensione Formato  
Di Bonaventura G et al, AAC 2004.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Dimensione 506.66 kB
Formato Adobe PDF
506.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/120118
Citazioni
  • ???jsp.display-item.citation.pmc??? 49
  • Scopus 138
  • ???jsp.display-item.citation.isi??? 133
social impact