We study a multicast game in communication networks in which a source sends the same message or service to a set of destinations and the cost of the used links is divided among the receivers according to given cost sharing methods. Assuming a selfish and rational behavior, each receiving user is willing to select a strategy yielding the minimum shared cost. A Nash equilibrium is a solution in which no user can decrease its payment by adopting a different strategy, and the price of anarchy is defined as the worst case ratio between the overall communication cost yielded by an equilibrium and the minimum possible one. Nash equilibria requiring an excessive number of steps to be reached or being hard to compute or not existing at all, we are interested in the determination of the price of anarchy reached in a limited number of rounds, each of which containing at least one move per receiving user. We consider different reasonable cost sharing methods, including the well-known Shapley and egalitarian ones, and investigate their performances versus two possible global criteria: the overall cost of the used links and the maximum shared cost of users. We show that, even in case of two receivers making the best possible move at each step, the number of steps needed to reach a Nash equilibrium can be arbitrarily large. Moreover, we determine the cost sharing methods for which a single round is already sufficient to get a price of anarchy comparable to the one at equilibria, and the ones not satisfying such a property. Finally, we show that finding the sequence of moves leading to the best possible global performance after one-round is already an intractable problem, i.e., NP-hard.
Multicast Transmission in Non-Cooperative Networks with a Limited Number of Selfish Moves
MOSCARDELLI, Luca
2006-01-01
Abstract
We study a multicast game in communication networks in which a source sends the same message or service to a set of destinations and the cost of the used links is divided among the receivers according to given cost sharing methods. Assuming a selfish and rational behavior, each receiving user is willing to select a strategy yielding the minimum shared cost. A Nash equilibrium is a solution in which no user can decrease its payment by adopting a different strategy, and the price of anarchy is defined as the worst case ratio between the overall communication cost yielded by an equilibrium and the minimum possible one. Nash equilibria requiring an excessive number of steps to be reached or being hard to compute or not existing at all, we are interested in the determination of the price of anarchy reached in a limited number of rounds, each of which containing at least one move per receiving user. We consider different reasonable cost sharing methods, including the well-known Shapley and egalitarian ones, and investigate their performances versus two possible global criteria: the overall cost of the used links and the maximum shared cost of users. We show that, even in case of two receivers making the best possible move at each step, the number of steps needed to reach a Nash equilibrium can be arbitrarily large. Moreover, we determine the cost sharing methods for which a single round is already sufficient to get a price of anarchy comparable to the one at equilibria, and the ones not satisfying such a property. Finally, we show that finding the sequence of moves leading to the best possible global performance after one-round is already an intractable problem, i.e., NP-hard.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.