Objective: To verify whether optical coherence tomography (OCT) can accurately monitor the occurrence of arterial healing after stenting. Setting: Delayed stent endothelialisation may predispose to stent thrombosis. OCT is a high-resolution intravascular imaging technique that accurately identifies stent struts and arterial tissues. Design and interventions: Eight New Zealand white rabbits underwent the implantation of single bare metal stents (diameter 2-2.5 mm, length 8-13 mm) in the right common carotid artery through the external carotid artery. After a median of 11 days (range 2-28), the stented arteries were visualised by OCT, with images acquired at a pull-back speed of 0.5 mm/sec. The rabbits were then euthanised, vessels were formalin-fixed and finally processed for histopathology. Results: We analysed 32 cross-sections from eight stented carotid arteries, for a total of 384 stent struts. OCT detected all of the stent struts in 30 of 32 cross-sections (93.7%), and correctly identified the presence/absence of tissue for every strut. Histological and OCT measurements of mean neointima thickness (0.135 (SD 0.079) mm and 0.145 (SD 0.085) mm, respectively, p = NS) were similar and closely related (r = 0.85, p<0.001). Neointima area progressively increased with longer time intervals from stent deployment to sacrifice; histological and OCT measurements were similar for each time interval. The intra-observer and interobserver reproducibility of OCT neointima measurements were excellent (R2 = 0.90 and 0.88, respectively). Conclusions: OCT is a promising means for monitoring stent strut coverage and vessel wall healing in vivo, the relevance of which will become even more significant with the increasing use of drug-eluting stents.
Does optical coherence tomography identify arterial healing after stenting? An in vivo comparison with histology, in a rabbit carotid model
FILIPPINI, Arnaldo;PIZZICANNELLA J;DE CATERINA, Raffaele
2008-01-01
Abstract
Objective: To verify whether optical coherence tomography (OCT) can accurately monitor the occurrence of arterial healing after stenting. Setting: Delayed stent endothelialisation may predispose to stent thrombosis. OCT is a high-resolution intravascular imaging technique that accurately identifies stent struts and arterial tissues. Design and interventions: Eight New Zealand white rabbits underwent the implantation of single bare metal stents (diameter 2-2.5 mm, length 8-13 mm) in the right common carotid artery through the external carotid artery. After a median of 11 days (range 2-28), the stented arteries were visualised by OCT, with images acquired at a pull-back speed of 0.5 mm/sec. The rabbits were then euthanised, vessels were formalin-fixed and finally processed for histopathology. Results: We analysed 32 cross-sections from eight stented carotid arteries, for a total of 384 stent struts. OCT detected all of the stent struts in 30 of 32 cross-sections (93.7%), and correctly identified the presence/absence of tissue for every strut. Histological and OCT measurements of mean neointima thickness (0.135 (SD 0.079) mm and 0.145 (SD 0.085) mm, respectively, p = NS) were similar and closely related (r = 0.85, p<0.001). Neointima area progressively increased with longer time intervals from stent deployment to sacrifice; histological and OCT measurements were similar for each time interval. The intra-observer and interobserver reproducibility of OCT neointima measurements were excellent (R2 = 0.90 and 0.88, respectively). Conclusions: OCT is a promising means for monitoring stent strut coverage and vessel wall healing in vivo, the relevance of which will become even more significant with the increasing use of drug-eluting stents.File | Dimensione | Formato | |
---|---|---|---|
Does optical coherence tomography identify arterial.pdf
Solo gestori archivio
Descrizione: Basic Research
Tipologia:
PDF editoriale
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.