Aspirin affords cardioprotection through the acetylation of serine529 in human cyclooxygenase-1 (COX-1) of anucleated platelets, inducing a permanent defect in thromboxane A2 (TXA2)-dependent platelet function. However, heterogeneity of COX-1 suppression by aspirin has been detected in cardiovascular disease and may contribute to failure to prevent clinical events. The recent recognized capacity of platelets to make proteins de novo paves the way to identify new mechanisms involved in the variable response to aspirin. We found that in washed human platelets, the complete suppression of TXA2 biosynthesis by aspirin, in vitro, recovered in response to thrombin and fibrinogen in a time-dependent fashion (at 0.5 and 24 hours, TXB2 averaged 0.1+/-0.03 and 3+/-0.8 ng/mL; in the presence of arachidonic acid [10 micromol/L], it was 2+/-0.7 and 25+/-7 ng/mL, respectively), and it was blocked by translational inhibitors, by rapamycin, and by inhibitors of phosphatidylinositol 3-kinase. The results that COX-1 mRNA was readily detected in resting platelets and that [35S]-methionine was incorporated into COX-1 protein after stimulation strongly support the occurrence of de novo COX-1 synthesis in platelets. This process may interfere with the complete and persistent suppression of TXA2 biosynthesis by aspirin necessary for cardioprotection.

De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin.

DI FRANCESCO, LUIGIA;TACCONELLI, Stefania;PATRIGNANI, Paola
2006-01-01

Abstract

Aspirin affords cardioprotection through the acetylation of serine529 in human cyclooxygenase-1 (COX-1) of anucleated platelets, inducing a permanent defect in thromboxane A2 (TXA2)-dependent platelet function. However, heterogeneity of COX-1 suppression by aspirin has been detected in cardiovascular disease and may contribute to failure to prevent clinical events. The recent recognized capacity of platelets to make proteins de novo paves the way to identify new mechanisms involved in the variable response to aspirin. We found that in washed human platelets, the complete suppression of TXA2 biosynthesis by aspirin, in vitro, recovered in response to thrombin and fibrinogen in a time-dependent fashion (at 0.5 and 24 hours, TXB2 averaged 0.1+/-0.03 and 3+/-0.8 ng/mL; in the presence of arachidonic acid [10 micromol/L], it was 2+/-0.7 and 25+/-7 ng/mL, respectively), and it was blocked by translational inhibitors, by rapamycin, and by inhibitors of phosphatidylinositol 3-kinase. The results that COX-1 mRNA was readily detected in resting platelets and that [35S]-methionine was incorporated into COX-1 protein after stimulation strongly support the occurrence of de novo COX-1 synthesis in platelets. This process may interfere with the complete and persistent suppression of TXA2 biosynthesis by aspirin necessary for cardioprotection.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/132087
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 125
  • ???jsp.display-item.citation.isi??? ND
social impact