In the analysis of logic programs, abstract domains for detecting sharing and linearity information are widely used. Devising abstract unification algorithms for such domains has proved to be rather hard. At the moment, the available algorithms are correct but not optimal; i.e., they cannot fully exploit the information conveyed by the abstract domains. In this paper, we define a new (infinite) domain ShLinω which can be thought of as a general framework from which other domains can be easily derived by abstraction. ShLinω makes the interaction between sharing and linearity explicit. We provide a constructive characterization of the optimal abstract unification operator on ShLinω, and we lift it to two well-known abstractions of ShLinω, namely, to the classical Sharing × Lin abstract domain and to the more precise ShLin2 abstract domain by Andy King. In the case of single-binding substitutions, we obtain optimal abstract unification algorithms for such domains.

On the interaction between sharing and linearity

AMATO, Gianluca;SCOZZARI, Francesca
2010-01-01

Abstract

In the analysis of logic programs, abstract domains for detecting sharing and linearity information are widely used. Devising abstract unification algorithms for such domains has proved to be rather hard. At the moment, the available algorithms are correct but not optimal; i.e., they cannot fully exploit the information conveyed by the abstract domains. In this paper, we define a new (infinite) domain ShLinω which can be thought of as a general framework from which other domains can be easily derived by abstraction. ShLinω makes the interaction between sharing and linearity explicit. We provide a constructive characterization of the optimal abstract unification operator on ShLinω, and we lift it to two well-known abstractions of ShLinω, namely, to the classical Sharing × Lin abstract domain and to the more precise ShLin2 abstract domain by Andy King. In the case of single-binding substitutions, we obtain optimal abstract unification algorithms for such domains.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/133037
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact