The design of a stratified simple random sample without replacement from a finite population deals with two main issues: the definition of a rule to partition the population into strata, and the allocation of sampling units in the selected strata. This article examines a tree-based strategy which plans to approach jointly these issues when the survey is multipurpose and multivariate information, quantitative or qualitative, is available. Strata are formed through a hierarchical divisive algorithm that selects finer and finer partitions by minimizing, at each step, the sample allocation required to achieve the precision levels set for each surveyed variable. In this way, large numbers of constraints can be satisfied without drastically increasing the sample size, and also without discarding variables selected for stratification or diminishing the number of their class intervals. Furthermore, the algorithm tends not to define empty or almost empty strata, thus avoiding the need for strata collapsing aggregations. The procedure was applied to redesign the Italian Farm Structure Survey. The results indicate that the gain in efficiency held using our strategy is nontrivial. For a given sample size, this procedure achieves the required precision by exploiting a number of strata which is usually a very small fraction of the number of strata available when combining all possible classes from any of the covariates.

A tree-based approach to forming strata in multipurpose business surveys

BENEDETTI, ROBERTO;LAFRATTA, Giovanni
2008-01-01

Abstract

The design of a stratified simple random sample without replacement from a finite population deals with two main issues: the definition of a rule to partition the population into strata, and the allocation of sampling units in the selected strata. This article examines a tree-based strategy which plans to approach jointly these issues when the survey is multipurpose and multivariate information, quantitative or qualitative, is available. Strata are formed through a hierarchical divisive algorithm that selects finer and finer partitions by minimizing, at each step, the sample allocation required to achieve the precision levels set for each surveyed variable. In this way, large numbers of constraints can be satisfied without drastically increasing the sample size, and also without discarding variables selected for stratification or diminishing the number of their class intervals. Furthermore, the algorithm tends not to define empty or almost empty strata, thus avoiding the need for strata collapsing aggregations. The procedure was applied to redesign the Italian Farm Structure Survey. The results indicate that the gain in efficiency held using our strategy is nontrivial. For a given sample size, this procedure achieves the required precision by exploiting a number of strata which is usually a very small fraction of the number of strata available when combining all possible classes from any of the covariates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/133851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact