-This work presents a structural model for earthquake faulting in the Umbria-Marche Apennines (Central Italy). The model is derived by an integrated analysis of geological, geophysical and seismological data. At regional scale, the distribution and character of the seismicity appear to be mainly controlled by a low-angle east-dipping normal fault (Altotiberina fault, AF). The latter is the lower boundary of an active, continuously deforming hangingwall block moving toward NE. Moderate magnitude earthquakes (4 < M < 6), such as the Norcia 1979 (M = 5.9), the Gubbio 1984 (M = 5.2) and the Col®orito 1997 (Mmax = 5.9), occur within the active hangingwall block and are related to the activity of major west-dipping normal faults detaching on the AF. The geometry of the deep seismogenic structures is listric (as in the case of Col®orito) or more complex, because of local reactivation of pre-existing low-angle thrust (e.g. Gubbio) or high-angle strike-slip faults (e.g. Norcia). For all the analysed earthquakes the rupture nucleation is located at the base of the aftershock volumes, near the line of intersection between the SW-dipping normal faults and the east-dipping AF basal detachment. The progressive increase in depth of the earthquake foci from the north±west (e.g. Gubbio, 6±7 km) to the south±east (e.g. Norcia, 11±12 km) appears to be related to the eastward deepening of the basal detachment. These seismotectonic features are relevant for determining the seismogenic potential of the Apennine active faults, which depends not only on the length of the faults, but also on the depth of the detachment zone as well

A structural model for active extension in Central Italy

BONCIO, Paolo
;
LAVECCHIA, Giuseppina
2000-01-01

Abstract

-This work presents a structural model for earthquake faulting in the Umbria-Marche Apennines (Central Italy). The model is derived by an integrated analysis of geological, geophysical and seismological data. At regional scale, the distribution and character of the seismicity appear to be mainly controlled by a low-angle east-dipping normal fault (Altotiberina fault, AF). The latter is the lower boundary of an active, continuously deforming hangingwall block moving toward NE. Moderate magnitude earthquakes (4 < M < 6), such as the Norcia 1979 (M = 5.9), the Gubbio 1984 (M = 5.2) and the Col®orito 1997 (Mmax = 5.9), occur within the active hangingwall block and are related to the activity of major west-dipping normal faults detaching on the AF. The geometry of the deep seismogenic structures is listric (as in the case of Col®orito) or more complex, because of local reactivation of pre-existing low-angle thrust (e.g. Gubbio) or high-angle strike-slip faults (e.g. Norcia). For all the analysed earthquakes the rupture nucleation is located at the base of the aftershock volumes, near the line of intersection between the SW-dipping normal faults and the east-dipping AF basal detachment. The progressive increase in depth of the earthquake foci from the north±west (e.g. Gubbio, 6±7 km) to the south±east (e.g. Norcia, 11±12 km) appears to be related to the eastward deepening of the basal detachment. These seismotectonic features are relevant for determining the seismogenic potential of the Apennine active faults, which depends not only on the length of the faults, but also on the depth of the detachment zone as well
File in questo prodotto:
File Dimensione Formato  
06_Boncio-lavecchia2000_JGEOD_struct-model-active-ext.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 719.9 kB
Formato Adobe PDF
719.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/134094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 122
  • ???jsp.display-item.citation.isi??? 114
social impact