Background: Mass spectrometry (MS) is becoming the gold standard for biomarker discovery. Several MS-based bioinformatics methods have been proposed for this application, but the divergence of the findings by different research groups on the same MS data suggests that the definition of a reliable method has not been achieved yet. In this work, we propose an integrated software platform, MASCAP, intended for comparative biomarker detection from MALDI-TOF MS data. Results: MASCAP integrates denoising and feature extraction algorithms, which have already shown to provide consistent peaks across mass spectra; furthermore, it relies on statistical analysis and graphical tools to compare the results between groups. The effectiveness in mass spectrum processing is demonstrated using MALDI-TOF data, as well as SELDI-TOF data. The usefulness in detecting potential protein biomarkers is shown comparing MALDI-TOF mass spectra collected from serum and plasma samples belonging to the same clinical population. Conclusions: The analysis approach implemented in MASCAP may simplify biomarker detection, by assisting the recognition of proteomic expression signatures of the disease. A MATLAB implementation of the software and the data used for its validation are available at http://www.unich.it/proteomica/bioinf.

A computational platform for MALDI-TOF mass spectrometry data: Application to serum and plasma samples

MANTINI, Dante;PETRUCCI, Francesca;PIERAGOSTINO, DAMIANA;DEL BOCCIO, PIERO;SACCHETTA, Paolo;LUGARESI, Alessandra;DI ILIO, Carmine;URBANI, ANDREA
2010

Abstract

Background: Mass spectrometry (MS) is becoming the gold standard for biomarker discovery. Several MS-based bioinformatics methods have been proposed for this application, but the divergence of the findings by different research groups on the same MS data suggests that the definition of a reliable method has not been achieved yet. In this work, we propose an integrated software platform, MASCAP, intended for comparative biomarker detection from MALDI-TOF MS data. Results: MASCAP integrates denoising and feature extraction algorithms, which have already shown to provide consistent peaks across mass spectra; furthermore, it relies on statistical analysis and graphical tools to compare the results between groups. The effectiveness in mass spectrum processing is demonstrated using MALDI-TOF data, as well as SELDI-TOF data. The usefulness in detecting potential protein biomarkers is shown comparing MALDI-TOF mass spectra collected from serum and plasma samples belonging to the same clinical population. Conclusions: The analysis approach implemented in MASCAP may simplify biomarker detection, by assisting the recognition of proteomic expression signatures of the disease. A MATLAB implementation of the software and the data used for its validation are available at http://www.unich.it/proteomica/bioinf.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/136521
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact