In this study, we have observed dental pulp stem cells (SBP-DPSCs) performances on different scaffolds, such as PLGA 85:15, hydroxyapatite chips (HA) and titanium. Stem cells were challenged with each engineered surface, either in plane cultures or in a rotating apparatus, for a month. Gingival fibroblasts were used as controls. Results showed that stem cells exerted a different response, depending on the different type of textured surface: in fact, microconcavities significantly affected SBP-DPSC differentiation into osteoblasts, both temporally and quantitatively, with respect to the other textured surfaces. Actually, stem cells challenged with concave surfaces differentiated quicker and showed nuclear polarity, an index of secretion, cellular activity and matrix formation. Moreover, bone-specific proteins were significantly expressed and the obtained bone tissue was of significant thickness. Thus, cells cultured on the concave textured surface had better cell-scaffold interactions and were induced to secrete factors that, due to their autocrine effects, quickly lead to osteodifferentiation, bone tissue formation, and vascularization. The worst cell performance was obtained using convex surfaces, due to the scarce cell proliferation on to the scaffold and the poor matrix secretion. In conclusion, this study stresses that for a suitable and successful bone tissue reconstruction the surface texture is of paramount importance.

Scaffold's surface geometry significantly affects human stem cell bone tissue engineering.

PIATTELLI, Adriano;TRAINI, TONINO;
2008-01-01

Abstract

In this study, we have observed dental pulp stem cells (SBP-DPSCs) performances on different scaffolds, such as PLGA 85:15, hydroxyapatite chips (HA) and titanium. Stem cells were challenged with each engineered surface, either in plane cultures or in a rotating apparatus, for a month. Gingival fibroblasts were used as controls. Results showed that stem cells exerted a different response, depending on the different type of textured surface: in fact, microconcavities significantly affected SBP-DPSC differentiation into osteoblasts, both temporally and quantitatively, with respect to the other textured surfaces. Actually, stem cells challenged with concave surfaces differentiated quicker and showed nuclear polarity, an index of secretion, cellular activity and matrix formation. Moreover, bone-specific proteins were significantly expressed and the obtained bone tissue was of significant thickness. Thus, cells cultured on the concave textured surface had better cell-scaffold interactions and were induced to secrete factors that, due to their autocrine effects, quickly lead to osteodifferentiation, bone tissue formation, and vascularization. The worst cell performance was obtained using convex surfaces, due to the scarce cell proliferation on to the scaffold and the poor matrix secretion. In conclusion, this study stresses that for a suitable and successful bone tissue reconstruction the surface texture is of paramount importance.
File in questo prodotto:
File Dimensione Formato  
J of Cellular Physiology papaccio.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 372.54 kB
Formato Adobe PDF
372.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/137382
Citazioni
  • ???jsp.display-item.citation.pmc??? 39
  • Scopus 123
  • ???jsp.display-item.citation.isi??? 108
social impact