We tested whether cyclooxygenase 2 (COX-2) expression and unacetylated COX-1 in newly formed platelets might contribute to persistent thromboxane (TX) biosynthesis in aspirin-treated essential thrombocythemia (ET). Forty-one patients on chronic aspirin (100 mg/day) and 24 healthy subjects were studied. Platelet COX-2 expression was significantly increased in patients and correlated with thiazole orange-positive platelets (r = 0.71, P < .001). The rate of TXA(2) biosynthesis in vivo, as reflected by urinary 11-dehydro-TXB(2) (TXM) excretion, and the maximal biosynthetic capacity of platelets, as reflected by serum TXB(2), were higher in patients compared with aspirin-treated healthy volunteers. Serum TXB(2) was significantly reduced by the selective COX-2 inhibitor NS-398 added in vitro. Patients were randomized to adding the selective COX-2 inhibitor, etoricoxib, or continuing aspirin for 7 days. Etoricoxib significantly reduced by approximately 25% TXM excretion and serum TXB(2). Fourteen of the 41 patients were studied again 21 (+/- 7) months after the first visit. Serum TXB(2) was consistently reduced by approximately 30% by adding NS398 in vitro, while it was completely suppressed with 50 microM aspirin. Accelerated platelet regeneration in most aspirin-treated ET patients may explain aspirin-persistent TXA(2) biosynthesis through enhanced COX-2 activity and faster renewal of unacetylated COX-1. These findings may help in reassessing the optimal antiplatelet strategy in ET.

The contribution of cyclooxygenase-1 and -2 to persistent thromboxane biosynthesis in aspirin-treated essential thrombocythemia: implications for antiplatelet therapy.

RECCHIUTI, ANTONIO;MATTOSCIO D;LATTANZIO, STEFANO;FERRANTE, ELISABETTA;CIABATTONI, Giovanni;DAVI', Giovanni;
2010-01-01

Abstract

We tested whether cyclooxygenase 2 (COX-2) expression and unacetylated COX-1 in newly formed platelets might contribute to persistent thromboxane (TX) biosynthesis in aspirin-treated essential thrombocythemia (ET). Forty-one patients on chronic aspirin (100 mg/day) and 24 healthy subjects were studied. Platelet COX-2 expression was significantly increased in patients and correlated with thiazole orange-positive platelets (r = 0.71, P < .001). The rate of TXA(2) biosynthesis in vivo, as reflected by urinary 11-dehydro-TXB(2) (TXM) excretion, and the maximal biosynthetic capacity of platelets, as reflected by serum TXB(2), were higher in patients compared with aspirin-treated healthy volunteers. Serum TXB(2) was significantly reduced by the selective COX-2 inhibitor NS-398 added in vitro. Patients were randomized to adding the selective COX-2 inhibitor, etoricoxib, or continuing aspirin for 7 days. Etoricoxib significantly reduced by approximately 25% TXM excretion and serum TXB(2). Fourteen of the 41 patients were studied again 21 (+/- 7) months after the first visit. Serum TXB(2) was consistently reduced by approximately 30% by adding NS398 in vitro, while it was completely suppressed with 50 microM aspirin. Accelerated platelet regeneration in most aspirin-treated ET patients may explain aspirin-persistent TXA(2) biosynthesis through enhanced COX-2 activity and faster renewal of unacetylated COX-1. These findings may help in reassessing the optimal antiplatelet strategy in ET.
File in questo prodotto:
File Dimensione Formato  
Dragani et al.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/169384
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 103
  • ???jsp.display-item.citation.isi??? 83
social impact