In the theory of abstract interpretation, a domain is complete when abstract computations are as precise as concrete computations. In addition to the standard notion of completeness, we introduce the concept of observational completeness. A domain is observationally complete for an observable π when abstract computations are as precise as concrete computations, if we only look at properties in π. We prove that continuity of state-transition functions ensures the existence of the least observationally complete domain and we provide a constructive characterization. We study the relationship between the least observationally complete domain and the complete shell. We provide sufficient conditions under which they coincide, and show several examples where they differ, included a detailed analysis of cellular automata.

Observational Completeness on Abstract Interpretation

AMATO, Gianluca;SCOZZARI, Francesca
2011-01-01

Abstract

In the theory of abstract interpretation, a domain is complete when abstract computations are as precise as concrete computations. In addition to the standard notion of completeness, we introduce the concept of observational completeness. A domain is observationally complete for an observable π when abstract computations are as precise as concrete computations, if we only look at properties in π. We prove that continuity of state-transition functions ensures the existence of the least observationally complete domain and we provide a constructive characterization. We study the relationship between the least observationally complete domain and the complete shell. We provide sufficient conditions under which they coincide, and show several examples where they differ, included a detailed analysis of cellular automata.
File in questo prodotto:
File Dimensione Formato  
Foundamenta_Informaticae_2011_original.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Dimensione 176.98 kB
Formato Adobe PDF
176.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/177773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 6
social impact